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1 INTRODUCTION
Probabilistic algorithms canmake random choices during their execution. Often, such algorithms are

more efficient than known deterministic solutions; see, for example, the books [23, 25]. So, a natural

questions arises: is randomness a really useful resource, can randomization indeed substantially

speed up algorithms? In the computational complexity literature, this is the widely open
1
“BPP

versus P” question. The nonuniform version of this question, known as the “BPP versus P/poly,”
question asks whether probabilistic circuits can be efficiently simulated by deterministic circuits.

A probabilistic circuit is a deterministic circuit that is allowed to use additional input variables,

each being a random variable taking its values in the underlying domain. We allow arbitrary

probability distributions of these random variables, so that our derandomization results will be

distribution independent. Such a circuit computes a given function 𝑓 if, on every input 𝑥 , the

circuit outputs the correct value 𝑓 (𝑥) with probability at least
2
2/3. The size of a (deterministic or

probabilistic) circuit is the number of used gates.

A classical result of Adleman [1], extended to the case of two-sided error probability by Bennett

and Gill [7], has shown that randomness is useless in Boolean circuits: if a Boolean function 𝑓 of 𝑛

variables can be computed by a probabilistic Boolean circuit of size polynomial in 𝑛, then 𝑓 can be

∗
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also computed by a deterministic Boolean circuit of size polynomial in 𝑛. So, BPP ⊆ P/poly holds

for Boolean circuits.

In this paper, we are mainly interested in the BPP versus P/poly question for dynamic program-
ming algorithms (DP algorithms):

• Can randomization substantially speed up DP algorithms?

We answer this question in the negative: randomized DP algorithms can be derandomized. That is,

BPP ⊆ P/poly holds also for DP algorithms. In fact, we prove a much stronger result: BPP ⊆ P/poly
holds for circuits over any basis consisting of semialgebraic operations 𝑔 : R𝑙 → R of bounded

algebraic description complexity. We will also show that the inclusion BPP ⊆ P/poly holds even

when circuits are only required to approximate the values of given functions.

Proofs of BPP ⊆ P/poly for Boolean circuits in [1, 7] crucially used the fact that the domain

{0, 1} of such circuits is finite: the proof is then obtained by a simple application of the union and

Chernoff’s bounds (see Lemma 2 in Section 6). A trivial reason why such a simple argument cannot

derandomize DP algorithms is that these algorithms work over infinite domains such as N, Z, Q or

R (inputs for optimization problems), so that already the union bound badly fails.

One also faces the “infinite domain” issue, say, in the polynomial identity testing problem over

infinite fields; see, for example, surveys [28, 31]. But when derandomizing DP algorithms, we

additionally face the “non-arithmetic basis” issue: besides arithmetic +,−×,÷ operations, such

circuits can use additional non-arithmetic operations, like tropical min and max operations, sorting,

conditional branching (if-then-else), argmin, argmax, and other complicated operations.

To nail all this (infinite domain and powerful gates), in this paper, we consider the derandomi-

zation of circuits that can use any semialgebraic functions of bounded description complexity as

gates.

A function 𝑓 : R𝑛 → R is semialgebraic if its graph can be obtained by finitely many unions and

intersections of sets defined by a polynomial equality or strict inequality. The description complexity
of 𝑓 is the minimum number 𝑡 for which such a representation of the graph of 𝑓 is possible by

using at most 𝑡 distinct polynomials, each of degree at most 𝑡 (see Section 3 for precise definitions).

All operations mentioned above are semialgebraic of small description complexity; see Table 1

in Section 3 for more examples.

Derandomization of exactly computing circuits. Themajority vote function is a partly defined function
Maj(𝑥1, . . . , 𝑥𝑚) which outputs the majority element of its input string, if there is one. That is,

Maj(𝑥1, . . . , 𝑥𝑚) = 𝑦 if 𝑦 occurs > 𝑚/2 times among the 𝑥1, . . . , 𝑥𝑚 . (1)

For example, in the case of𝑚 = 5 variables, we have Maj(𝑎, 𝑏, 𝑐, 𝑏, 𝑏) = 𝑏, whereas the value of
Maj(𝑎, 𝑏, 𝑐, 𝑎, 𝑏) is undefined. The function Maj(𝑥1, . . . , 𝑥𝑚) is 𝑏-semialgebraic for 𝑏 ≤ 𝑚; see Table 1

in Section 3.

A deterministic copy of a probabilistic circuit is a deterministic circuit obtained by fixing the

values of its random input variables. A (deterministic or probabilistic) circuit is 𝑏-semialgebraic if
each its basis operation (a gate) is 𝑏-semialgebraic. Note that 𝑏 here is a local parameter: it bounds

the description complexity of only individual gates, not of the entire function computed by the

circuit. For example, circuits using any of the gates +,−,×,÷, min, max, “if 𝑥 < 𝑦 then 𝑢 else 𝑣” are

𝑏-semialgebraic for 𝑏 ≤ 3, and the majority vote gate Maj(𝑥1, . . . , 𝑥𝑚) is 𝑏-semialgebraic for 𝑏 ≤ 𝑚
(see Table 1).

Theorem 1. If a function 𝑓 : R𝑛 → R can be computed by a probabilistic 𝑏-semialgebraic circuit of
size 𝑠 , then 𝑓 can be also computed as a majority vote of𝑚 = 𝑂 (𝑛2𝑠 log𝑏𝑠) deterministic copies of this
circuit.
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Note that, even though the majority vote functions are only partially defined, the derandomized

circuit ensures that, on every input 𝑥 ∈ R𝑛 to the circuit, the sequence of values given to the last

majority vote gate will always (for every input 𝑥 to the entire circuit) contain a majority element.

Note also that the upper bound on the number𝑚 of deterministic copies in the derandomized

circuit only depends on the number 𝑛 of deterministic input variables, on the number 𝑠 of gates in

the probabilistic circuit, and on the (logarithm of) the description complexity 𝑏 of individual gates.

But it depends neither on the fanin of gates, nor on the number of random input variables.

Derandomization of approximating circuits. Our next (and main) result derandomizes probabilistic

circuits when they are only required to approximate the values of a given function (instead of

computing the function exactly, as in Theorem 1).

Let 𝑥 𝜚 𝑦 be any binary relation between real numbers 𝑥,𝑦 ∈ R. Onemay interpret 𝑥 𝜚 𝑦 (especially,

in the context of approximating algorithms) as “𝑥 lies close to 𝑦.” The description complexity of the

relation 𝜚 is the description complexity of the set 𝑆 = {(𝑥,𝑦) ∈ R2
: 𝑥 𝜚 𝑦}.

Given a binary relation 𝑥𝜚𝑦 between real numbers, we say that a probabilistic circuit 𝐹 (𝑥, 𝒓) 𝜚 -
approximates a given function 𝑓 (𝑥) if, for every input 𝑥 ∈ R𝑛 , 𝐹 (𝑥, 𝒓) 𝜚 𝑓 (𝑥) holds with probability

at least 2/3. That is, on every input 𝑥 , the circuit only has to output a value which is “close enough”

to the correct value 𝑓 (𝑥) with probability at least 2/3.

Example 1. Some of the most basic relations are the following ones.

(1) Equality relation: 𝑥 𝜚 𝑦 iff 𝑥 = 𝑦.

(2) Sign relation: 𝑥 𝜚 𝑦 iff 𝑥 = 𝑦 = 0 or 𝑥 · 𝑦 > 0.

(3) Nullity relation: 𝑥 𝜚 𝑦 iff 𝑥 = 𝑦 = 0 or 𝑥 · 𝑦 ≠ 0.

(4) Approximation relation: 𝑥 𝜚 𝑦 iff |𝑥 − 𝑦 | ≤ 𝑐 for some fixed number 𝑐 ≥ 0.

In the case of approximating circuits, the first relation (1) corresponds to computing the values 𝑓 (𝑥)
exactly, as in Theorem 1. The second relation (2) corresponds to detecting signs of the values 𝑓 (𝑥).
In the case of relation (3), a circuit must recognize the roots of 𝑓 , that is, must output 0 precisely

when 𝑓 (𝑥) = 0. In the case of the last relation (4), the values computed by the circuit must lie not

far away from the correct values 𝑓 (𝑥).

A majority 𝜚 -vote function is a (partial) function 𝜇 : R𝑚 → R with the following property for any

real numbers 𝑎, 𝑥1, . . . , 𝑥𝑚 :

if 𝑥𝑖 𝜚 𝑎 holds for more than𝑚/2 positions 𝑖 , then 𝜇 (𝑥1, . . . , 𝑥𝑚) 𝜚 𝑎 holds. (2)

That is, if more than half of the input numbers 𝑥1, . . . , 𝑥𝑚 lie close to the number 𝑎, then also the

value of 𝜇 must lie close to 𝑎. For example, the majority vote function Maj is the unique majority

𝜚 -vote function for the equality relation (when 𝑥 𝜚 𝑦 iff 𝑥 = 𝑦). In general, however, there may be

more than one majority 𝜚 -vote function. For example, for a function 𝜇 : R𝑚 → R to be a majority

𝜚 -vote function for the nullity relation 𝜚 it is enough that 𝜇 (𝑥) = 0 if more than half of input

numbers are zeros, and 𝜇 (𝑥) ≠ 0 otherwise.

In the following theorem, 𝑥 𝜚 𝑦 is an arbitrary 𝑡𝜚 -semialgebraic relation, and 𝑓 : R𝑛 → R a

𝑡𝑓 -semialgebraic function.

Theorem 2 (Main result). If 𝑓 can be 𝜚 -approximated by a probabilistic 𝑏-semialgebraic circuit
of size 𝑠 , then 𝑓 can be also 𝜚 -approximated as a majority 𝜚 -vote of𝑚 = 𝑂 (𝑛2𝑠 log𝐾) deterministic
copies of this circuit, where 𝐾 = 𝑠𝑏 + 𝑡𝑓 + 𝑡𝜚 .

Note that now (unlike in Theorem 1) the size of the derandomized circuit depends (albeit only

logarithmically) on the description complexities 𝑡𝑓 and 𝑡𝜚 of the function 𝑓 approximated and

of the approximation relation 𝜚 . Although 𝑡𝑓 may be large, the description complexity of the
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approximation relations 𝜚 is usually small; say, for all four relations mentioned in Example 1 we

have 𝑡𝜚 ≤ 2.

The majority vote “issue”. One issue still remains: just like in Theorem 1, the deterministic circuits

given by Theorem 2 are not in a “pure” form: they require one additional majority 𝜚 -vote operation

to output their values. To obtain a “pure” circuit, we have to compute this operation by a (possibly

small) circuit using only basis operations.

In some weak bases, even the (standard) majority vote function (1) cannot be computed at all.

For example, arithmetic (+,−,×) circuits, as well as tropical (min, +) and (max, +) circuits cannot
compute majority vote functions (Claim 6 in Appendix A). In most bases, however, majority vote

functions are easy to compute.

Call a relation 𝑥 𝜚 𝑦 contiguous if 𝑥 ≤ 𝑦 ≤ 𝑧, 𝑥 𝜚 𝑎 and 𝑧 𝜚 𝑎 imply 𝑦 𝜚 𝑎. That is, if the endpoints

of an interval are close to 𝑎, then also all numbers in the interval are close to 𝑎. Note that the

relations (1), (2) and (4) mentioned in Example 1 are contiguous. It can be easily shown (see Claim 7

in Appendix A) that:

• For every contiguous relation 𝑥 𝜚 𝑦, a majority 𝜚 -vote function of𝑚 variables can be computed

by a fanin-2 (min,max) circuit of size 𝑂 (𝑚 log𝑚) .
The nullity relation is not contiguous: take, for example, 𝑥 = −1, 𝑦 = 0 and 𝑧 = 𝑎 = 1. Then

𝑥 ≤ 𝑦 ≤ 𝑧, 𝑥 𝜚 𝑎 and 𝑧 𝜚 𝑎 hold but 𝑦 𝜚 𝑎 does not hold: 𝑦 = 0 but 𝑎 ≠ 0. Still, majority 𝜚 -vote

function of𝑚 variables for the nullity relation can be also computed by a (min,max,×) circuit
using𝑂 (𝑚 log𝑚) gates, and by a monotone arithmetic (+,×) circuit using𝑂 (𝑚2) gates (Claim 8 in

Appendix A).

Thus, if the approximation relation is contiguous, and if the operations (+,×) or the operations
(min,max,×) are available as gates, then Theorem 2 gives a “pure” circuit (without a majority vote

gate) of size 𝑂 (𝑚𝑠 +𝑚 log𝑚) = 𝑂 (𝑛2𝑠2 log𝐾), that is:
• The blow up in the size of the derandomized circuit is only about quadratic.

Remark 1 (Relation to dynamic programming). Most (if not all) DP algorithms in discrete optimiza-

tion use only several semialgebraic functions of small description complexity in their recursion

equations: min, max, arithmetic operations, and apparently some additional, but still semialgebraic

operations of small description complexity, like the selection or the “if-then–else” operations (see

Table 1 in Section 3). So, Theorem 1 implies that randomization is (almost) useless in DP algorithms,

at least as long as we are allowed to use different deterministic DP algorithms to solve optimization

problems on inputs 𝑥 ∈ R𝑛 from different dimensions 𝑛. In fact, the message of this paper is

even stronger: Theorem 2 shows that randomization is almost useless also for approximating DP

algorithms.

Remark 2 (The “uniformity” issue). Usually, a DP algorithm is described by giving one collection of

recursion equations that can be applied to inputs of any dimension 𝑛. In this respect, DP algorithms

are “uniform” (like Turing machines). Probabilistic DP algorithms may use random input weights

in their recursion equations. However, when derandomizing such algorithms, we do not obtain

also one collection of recursion equations valid for inputs of all dimensions. What we obtain is a

sequence of deterministic DP algorithms, one for each dimension 𝑛. To our best knowledge, in the

“uniform” setting (with P instead of P/poly), the inclusion BPP ⊆ P remains not known to hold for

DP algorithms, and even for “pure” DP algorithms using only (min, +) or (max, +) operations in
their recursion equations.

Organization. Section 2 shortly summarizes previous work towards derandomization of probabilistic

circuits working over infinite domains. In Section 3, we recall the notions of semialgebraic functions
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and probabilistic circuits. Section 4 describes the three steps in whichwewill come from probabilistic

to deterministic circuits. The next three sections (Sections 5 and 7) contain technical results used to

implement these three steps. After these technical preparations, Theorem 1 is proved in Section 8,

and Theorem 2 is proved in Section 9. In the last section (Section 10), we show that probabilistic

arithmetic and tropical circuits can be also derandomized using elementary arguments by using

so-called “isolating sets” for arithmetic and tropical polynomials.

2 RELATEDWORK
Aswementioned at the beginning, our starting point is the result of Adleman [1] that

3 BPP ⊆ P/poly
holds for Boolean circuits. In fact, Adleman proved this only when one-sided error is allowed. To

prove the two-sided error version, Bennett and Gill [7] used a simple “finite majority rule” (Lemma 2

in Section 6). This rule follows directly from the Chernoff and union bounds, and allows us to

simulate any probabilistic circuit of size 𝑠 on 𝑛 input variables taking their values in a finite domain

𝐷 as a majority vote of 𝑂 (𝑛 log |𝐷 |) deterministic circuits, each of size at most 𝑠 .

In the Boolean case, the domain 𝐷 = {0, 1} is clearly finite, and the majority vote functions turn

into Boolean majority functions: output 1 if and only if more than half of the input bits are 1s. Since

majority functions have small Boolean circuits, even monotone ones, the resulting deterministic

circuits are then not much larger than the probabilistic ones, is only 𝑂 (𝑛𝑠).
Using entirely different arguments (not relying on the finite majority rule), Ajtai and Ben-Or [2]

have shown that BPP ⊆ P/poly holds also for Boolean constant-depth circuits, known also as

AC
0
circuits. Note that this extension is far from being trivial, because the majority function itself

requires AC
0
circuits of exponential size.

Markov [20] has found a surprisingly tight combinatorial characterization of the minimum

number of NOT gates required by deterministic (∨,∧,¬) circuits to compute a given Boolean

functions 𝑓 . A natural question therefore was: can randomness substantially reduce the number of

NOT gates? Morizumi [24] has shown that Markov’s result itself already gives a negative answer:

in probabilistic circuits, the decrease of the number of NOT gates is at most by an additive constant,
where the constant depends only on the success probability.

The derandomization of circuits working over infinite domains 𝐷 , such as N, Z or R, is a more

delicate task. Here we have to somehow “cope” with the infinity of the domain: Chernoff’s and

union bounds alone do not help then. Two general approaches emerged along this line of research.

(A) Find (or just prove a mere existence of) a finite set 𝑋 ⊂ 𝐷𝑛 of input vectors that is “isolating”

in the following sense: if a (deterministic) circuit computes a given function 𝑓 correctly on

all inputs 𝑥 ∈ 𝑋 , then it must compute 𝑓 correctly on all inputs 𝑥 ∈ 𝐷𝑛 . Then use the finite

majority rule on inputs from 𝑋 .

(B) Use the “infinite majority rule” (Lemma 4 below) following from the uniform convergence in

probability results, proved by researchers in the statistical learning theory.

Approach (A) was used by many authors to show the inclusion BPP ⊆ P/poly for various types

of decision trees. The complexity measure here is the depth of a tree. These trees work over R, and
branch according to the sign of values of rational functions. In the case when only linear functions

are allowed for branching, the inclusion BPP ⊆ P/poly was proved by Manber and Tompa [19],

and Snir [32]. Meyer auf der Heide [21] proved the inclusion BPP ⊆ P/poly for the decision tree

depth when arbitrary rational functions are allowed. He uses a result of Milnor [22] about the

number of connected components of polynomial systems in R𝑛 to upper-bound the minimum

3
Actually, the result is stronger, and should be stated as “BPP/poly = P/poly:” even probabilistic circuits, not only probabilistic
Turing machines (uniform sequences of circuits) can be derandomized. We, however, prefer to use the less precise but more

familiar shortcut “BPP ⊆ P/poly.”
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size of an “isolating” subset 𝑋 ⊂ R𝑛 . Further explicit lower bounds on the depth of probabilistic

decision trees were proved by Bürgisser, Karpinski and Lickteig [8], Grigoriev and Karpinski [15],

Grigoriev et. al. [16], Grigoriev [14] and other authors.

Approach (B) was used by Cucker et. al. [9] to prove the inclusion BPP ⊆ P/poly for circuits

over the basis (+,−,×,÷, sgn), that is, for arithmetic (+,−,×,÷) circuits with signum gates. They

combined the upper bound on the Vapnik–Chervonenkis dimension (VC dimension) of such

circuits, obtained by Goldberg and Jerrum [12], with a uniform convergence in probability theorem

of Haussler [17] for classes of functions with bounded VC dimension. In the proofs of Theorems 1

and 2 we will also use Approach (B), but in a more direct way avoiding the detour through VC

dimension and Sauer’s lemma: we will directly combine the classical uniform convergence in

probability theorem of Vapnik and Chervonenkis [34] with the upper bound of Warren [35] on the

number of sign patterns of real polynomials.

The BPP vs. P problem in the uniform setting, that is, in terms of Turing machines (instead of

circuits), is an even more delicate task. Still, a strong indication that BPP = P “should” hold also

in the uniform setting was given by Impagliazzo and Wigderson [18]: either BPP = P holds or

every decision problem solvable by deterministic Turing machines in time 2
𝑂 (𝑛)

can be solved by a

Boolean circuit of sub-exponential size 2
𝑜 (𝑛)

. Goldreich [13] related the BPP vs. P problem with the

existence of pseudorandom generators: BPP = P if and only if there exists suitable pseudorandom

generators; the “if” direction was known for decades—the novelty is in the converse direction.

3 PRELIMINARIES
In this section, we define more precisely the concepts used in the paper (probabilistic circuits,

algebraic formulas, description complexity of sets and functions), and recall two known results

used in the proof of our main results (Theorems 1 and 2).

3.1 Semialgebraic sets and functions
A set 𝑆 ⊆ R𝑛 is semialgebraic if it can be obtained by finitely many unions and intersections of sets

defined by a polynomial equality or strict inequality. For us important will be not the mere fact

that a set 𝑆 is semialgebraic but rather “how much semialgebraic” it actually is: how many distinct

polynomials and of what degree do we need to define this set?

The sign function sgn : R → {−1, 0, +1} takes value sgn𝑥 = −1 if 𝑥 < 0, sgn 0 = 0, and sgn𝑥 = +1
if 𝑥 > 0. Let 𝑃 = (𝑝1, . . . , 𝑝𝑚) be a sequence of polynomials in R[𝑥1, . . . , 𝑥𝑛]. The sign pattern of

this sequence at a point 𝑥 ∈ R𝑛 is the vector

sgn 𝑃 (𝑥) =
(
sgn𝑝1 (𝑥), . . . , sgn𝑝𝑚 (𝑥)

)
∈ {−1, 0, +1}𝑛

of signs taken by these polynomials at the point 𝑥 .

A set 𝑆 ⊆ R𝑛 is 𝑡-semialgebraic if there is a sequence 𝑃 = (𝑝1, . . . , 𝑝𝑚) of𝑚 ≤ 𝑡 polynomials of

degree at most 𝑡 such that the membership of points 𝑥 ∈ R𝑛 in the set 𝑆 can be determined from sign

patterns of these polynomials at these points, that is, if 𝑥 ∈ 𝑆 and 𝑥 ′ ∉ 𝑆 , then sgn 𝑃 (𝑥) ≠ sgn 𝑃 (𝑥 ′).
A function 𝑓 : R𝑛 → R𝑚 is 𝑡-semialgebraic if its graph 𝑆 = {(𝑥,𝑦) : 𝑦 = 𝑓 (𝑥)} ⊆ R𝑛+𝑚 is such.

The description complexity of a semialgebraic set (or function) is the smallest number 𝑡 for which

this set (or function) is 𝑡-semialgebraic.

3.2 Algebraic formulas
The description complexity of sets and functions can be definedmore explicitly using the language of

“algebraic formulas.” An algebraic formula is an arbitrary Boolean combination of atomic predicates,

each being of the form [𝑝 (𝑥) ♦ 0] for some polynomial 𝑝 in R[𝑥1, . . . , 𝑥𝑛], where ♦ is one of the

standard relations >, ≥, =, ≠, ≤, <, and the predicate [𝜌] for a relation 𝜌 outputs 1 if the relation 𝜌

ACM Trans. Comput. Theory, Vol. 0, No. 0, Article 0. Publication date: 0.



Coin flipping in DP is useless 0:7

holds, and outputs 0 otherwise. So, for example, [𝑝 (𝑥) = 0] = 1 if and only if 𝑝 (𝑥) = 0. Note that

[𝑝 (𝑥) ♦ 𝑞(𝑥)] is equivalent to [𝑝 (𝑥) − 𝑞(𝑥) ♦ 0], so that we can also make comparisons between

polynomials. The description complexity of an algebraic formula is max{𝑚,𝑑}, where 𝑚 is the

number of distinct polynomials used in the formula, and 𝑑 is their maximal degree. An algebraic

formula Φ(𝑥) defines a set 𝑆 ⊆ R𝑛 if 𝑆 = {𝑥 ∈ R𝑛 : Φ(𝑥) = 1}.

Claim 1. For every algebraic formula there is a algebraic formula of the same description complexity
which only uses atomic predicates of the form [𝑝 < 0], [𝑝 = 0] and [𝑝 > 0].

The claim is trivial: just replace each atomic predicate [𝑝 ≤ 0] by the formula [𝑝 = 0] ∨ [𝑝 < 0],
each atomic predicate [𝑝 ≥ 0] by the formula [𝑝 = 0] ∨ [𝑝 > 0], and each atomic predicate [𝑝 ≠ 0]
by the formula [𝑝 < 0] ∨ [𝑝 > 0]. Neither the number of distinct polynomials used, nor their degree

increases during these transformations.

Claim 2. The description complexity of a semialgebraic set is the minimum description complexity
of an algebraic formula defining this set.

In the literature, this fact is often used as the definition of the description complexity of sets.

Proof. Let 𝑆 ⊆ R𝑛 be a set of vectors. Our goal is to show that the description complexity of 𝑆 is

at most 𝑡 if and only if the set 𝑆 can be defined by an algebraic formula Φ of description complexity

at most 𝑡 .

(⇐) By Claim 1, we can assume that only atomic predicates of the form [𝑝 < 0], [𝑝 = 0] and
[𝑝 > 0] are used in the formula Φ. Hence, the values of the formula Φ only depend on the sign

patterns of the sequence 𝑃 = (𝑝1, . . . , 𝑝𝑚) of all𝑚 ≤ 𝑡 polynomials of degree at most 𝑡 used in the

formula Φ.
(⇒) Let 𝑃 = (𝑝1, . . . , 𝑝𝑚) be a sequence of𝑚 ≤ 𝑡 polynomials of degree at most 𝑡 such that the

membership of points 𝑥 ∈ R𝑛 in the set 𝑆 can be determined from sign patterns of these polynomials

on these points. Consider the 𝑠 = 3𝑚 functions 𝑔𝑖 : R𝑛 → {0, 1} defined by: 𝑔𝑖 = [𝑝𝑖 < 0] for
1 ≤ 𝑖 ≤ 𝑚, 𝑔𝑖 = [𝑝𝑖 = 0] for𝑚 + 1 ≤ 𝑖 ≤ 2𝑚, and 𝑔𝑖 = [𝑝𝑖 > 0] for 2𝑚 + 1 ≤ 𝑖 ≤ 3𝑚.

We know that for every two points 𝑥 ∈ 𝑆 and 𝑥 ′ ∉ 𝑆 , sgn 𝑃 (𝑥) ≠ sgn 𝑃 (𝑥 ′) must hold. In

particular, this means that the operator 𝐺 = (𝑔1, . . . , 𝑔𝑠 ) : R𝑛 → {0, 1}𝑠 cannot take the same value

(output the same vector) on any pair of points 𝑥 ∈ 𝑆 and 𝑥 ′ ∉ 𝑆 . Thus, there is a Boolean function

𝑓 : {0, 1}𝑠 → {0, 1} such that, for every 𝑥 ∈ R𝑛 , 𝑓 (𝐺 (𝑥)) = 1 holds precisely when 𝑥 ∈ 𝑆 . It remains

to take any Boolean formula 𝐹 (𝑦1, . . . , 𝑦𝑠 ) computing the function 𝑓 , replace its inputs 𝑦𝑖 by the

corresponding atomic predicates 𝑔𝑖 (𝑥), and the resulting algebraic formula Φ then defines the set 𝑆 .

The number of distinct polynomials used by the formula Φ is𝑚 ≤ 𝑡 (note that in atomic predicates

[𝑝𝑖 < 0], [𝑝𝑖 = 0] and [𝑝𝑖 > 0], the same polynomial 𝑝𝑖 is used), and their degree is at most 𝑡 . The

actual size of the Boolean formula 𝐹 itself (number of gates in it) is irrelevant: important only is

that the algebraic formula Φ uses at most 𝑡 distinct polynomials of degree at most 𝑡 . □

By Claim 2, a function 𝑓 : R𝑛 → R is 𝑡-semialgebraic if there is an algebraic formula Φ(𝑥,𝑦) of
description complexity at most 𝑡 such that for every 𝑥 ∈ R𝑛 and 𝑦 ∈ R, Φ(𝑥,𝑦) = 1 holds precisely

when 𝑦 = 𝑓 (𝑥). Table 1 gives a sample of some basic semialgebraic functions of small description

complexity.

Let us stress that, in algebraic formulas, we only count the number of distinct polynomials used,

not the number of their occurrences in the formula: one and the same polynomial can appear many

times, and under different relations ♦.
Namely, a set 𝑆 ⊆ R𝑛 is 𝑡-semialgebraic if there is a Boolean function 𝜑 (𝑦1, . . . , 𝑦3𝑡 ) of 3𝑡 Boolean

variables, and there are𝑚 ≤ 𝑡 polynomials 𝑝1, . . . , 𝑝𝑚 , each of degree 𝑑 ≤ 𝑡 , such that for every
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Table 1. Examples of semialgebraic functions, where𝑚 is the number of distinct polynomials used in a formula, and 𝑑 is
their degree, that is, the largest sum of degrees of variables appearing in any monomial of these polynomials. Here, 𝑝 (𝑥) is
an arbitrary real multivariate polynomial of degree 𝑑 , and Ψ(𝑥) is a algebraic formula using 𝑠 polynomials of maximum
degree 𝑑 ≥ 1; Sel(𝑥1, . . . , 𝑥𝑛 |𝑦) is a partly defined function that outputs 𝑥𝑖 if 𝑦 = 𝑖 . In the algebraic formulas for the
majority vote functions, maj is the Boolean majority function.

Graph of 𝑓 (𝑚,𝑑) Algebraic formula Φ

𝑧 = 𝑝 (𝑥) (1, 𝑑) [𝑧 = 𝑝 (𝑥)]
𝑧 = |𝑥 | (3, 1) ( [𝑥 ≥ 0] ∧ [𝑧 = 𝑥]) ∨ ([𝑥 < 0] ∧ [𝑧 = −𝑥])
𝑧 = 𝑥1/𝑘 (2, 𝑘)

[
𝑥 = 𝑧𝑘

]
(odd 𝑘), [𝑥 ≥ 0] ∧

[
𝑥 = 𝑧𝑘

]
(even 𝑘)

𝑧 = ∥𝑥 − 𝑦∥ (2, 2) [𝑧 ≥ 0] ∧
[
𝑧2 = (𝑥1 − 𝑦1)2 + · · · + (𝑥𝑛 − 𝑦𝑛)2

]
𝑧 = 𝑥/𝑦 (2, 2) [𝑦 ≠ 0] ∧ [𝑦 · 𝑧 = 𝑥]
𝑧 = min(𝑥,𝑦) (2, 1) [𝑧 ≤ 𝑥] ∧ [𝑧 ≤ 𝑦] ∧ ([𝑧 = 𝑥] ∨ [𝑧 = 𝑦])
𝑧 = max(𝑥,𝑦) (2, 1) [𝑧 ≥ 𝑥] ∧ [𝑧 ≥ 𝑦] ∧ ([𝑧 = 𝑥] ∨ [𝑧 = 𝑦])
𝑧 = Maj(𝑥1, . . . , 𝑥𝑛) (𝑛, 1) maj

(
[𝑧 = 𝑥1] , . . . , [𝑧 = 𝑥𝑛]

)
𝑧 = Sel(𝑥1, . . . , 𝑥𝑛 |𝑦) (2𝑛, 1) ∨𝑛

𝑖=1 [𝑦 = 𝑖] ∧ [𝑧 = 𝑥𝑖 ]
𝑧 = “if Ψ(𝑥) = 1 then 𝑢 else 𝑣” (𝑠 + 2, 𝑑) (Ψ(𝑥) ∧ [𝑧 = 𝑢]) ∨ (¬Ψ(𝑥) ∧ [𝑧 = 𝑣])

point 𝑥 ∈ R𝑛 , we have 𝑥 ∈ 𝑆 precisely when

𝜑
(
[𝑝1 (𝑥) < 0] , [𝑝1 (𝑥) = 0] , [𝑝1 (𝑥) > 0] , . . . , [𝑝𝑚 (𝑥) < 0] , [𝑝𝑚 (𝑥) = 0] , [𝑝𝑚 (𝑥) > 0]

)
= 1 .

The actual Boolean circuit (or formula) complexity of 𝜑 is irrelevant here: only the number𝑚 of

distinct polynomials 𝑝𝑖 used and their maximum degree 𝑑 do count. We use algebraic formulas just

to explicitly define the corresponding Boolean functions 𝜑 .

Example 2 (Sorting operation). The sorting operation sort : R𝑛 → R𝑛 takes a sequence 𝑥1, . . . , 𝑥𝑛 of

real numbers, and outputs its ordered permutation 𝑦1 ≤ 𝑦2 ≤ . . . ≤ 𝑦𝑛 . The graph of this operation

can be defined by the following algebraic formula of 2𝑛 variables:

Φ(𝑥,𝑦) =
𝑛−1∧
𝑖=1

[𝑦𝑖 ≤ 𝑦𝑖+1] ∧
( ∨
𝜎 ∈𝑆𝑛

𝑛∧
𝑖=1

[
𝑦𝑖 = 𝑥𝜎 (𝑖)

] )
,

where 𝑆𝑛 is the set of all permutations of {1, . . . , 𝑛}. The total number of occurrences of atomic

predicates in this formula (the “size” of the formula) is huge (is even larger than 𝑛!), but the formula

only uses𝑚 = 𝑛2+𝑛−1 distinct polynomials𝑦𝑖+1−𝑦𝑖 for 𝑖 = 1, . . . , 𝑛−1, and𝑦𝑖 −𝑥 𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑛

of degree 𝑑 = 1. Thus, the sorting operation sort : R𝑛 → R𝑛 is 𝑡-semialgebraic for 𝑡 = 𝑛2 + 𝑛 − 1.

3.3 Quantifier elimination
A quantified algebraic formula Ψ(𝑥) with 𝑛 free variables 𝑥 = (𝑥1, . . . , 𝑥𝑛) is of a form

(𝑄1®𝑧1 ∈ R𝑘1 ) . . . (𝑄𝜔 ®𝑧𝜔 ∈ R𝑘𝜔 ) Φ(𝑥, ®𝑧1, . . . , ®𝑧𝜔 ) , (3)

where 𝑄𝑖 ∈ {∃,∀}, 𝑄𝑖 ≠ 𝑄𝑖+1, and Ψ is an algebraic formula using𝑚 polynomials of degree at

most 𝑑 . That is, we have 𝜔 alternating blocks of quantifiers with 𝑘𝑖 quantified variables in the 𝑖th

block. Let 𝐾 =
∏𝜔
𝑖=1 𝑘𝑖 .

By the classical Tarski–Seidenberg theorem [30, 33], every quantified algebraic formula has an

equivalent quantifier-free formula. Thus, a set is semialgebraic if it can be defined by a quantified

ACM Trans. Comput. Theory, Vol. 0, No. 0, Article 0. Publication date: 0.



Coin flipping in DP is useless 0:9

algebraic formula. But the description complexity of the resulting quantifier formula resulting from

[30, 33] was huge, was not even bounded by any function which is a tower of exponents (in the

input parameters 𝑛,𝑚, 𝑑 and 𝐾 ) of a fixed height. In a series of works by many authors, the blow

up in description complexity was vastly decreased. In particular, the following upper bound was

proved in [5].

Theorem 3 (Basu, Pollack andRoy [5]). For every quantified formula Eq. (3) there is an equivalent
quantifier-free algebraic formula Φ(𝑥1, . . . , 𝑥𝑛) which uses at most (𝑠𝑑)𝑂 (𝑛𝐾) polynomials of degree
at most 𝑑𝑂 (𝐾) .

We will only use a very special consequence of this result for existential algebraic formulas, that

is, for formulas Eq. (3) with 𝜔 = 1, 𝑄1 = ∃ and 𝑘1 = 𝑞.

Corollary 1. If 𝑆 = {𝑥 ∈ R𝑛 : (∃𝑧 ∈ R𝑞) Φ(𝑥, 𝑧) = 1} for some quantifier-free algebraic formula
Φ of description complexity 𝜅, then 𝑆 is 𝑡-semialgebraic for log 𝑡 = 𝑂 (𝑛𝑞 log𝜅).

3.4 Number of sign patterns
By the definition, a set 𝑆 ⊆ R𝑛 is 𝑡-semialgebraic if the membership of points 𝑥 ∈ R𝑛 in 𝑆 can be

determined from seeing the sign patterns of some fixed sequence of 𝑡 polynomials of degree at

most 𝑡 on these points 𝑥 . So, a natural question arises: how many distinct sign patterns a given

sequence of𝑚 polynomials on 𝑛 variables can have? A trivial upper bound is |{−1, 0, +1}𝑚 | = 3
𝑚
.

A fundamental result of Warren [35, Theorem 3] shows that, when we have more than 𝑛

polynomials of bounded degree, then the critical parameter is not their number𝑚 but rather the

number 𝑛 of variables.

Theorem 4 (Warren [35]). No sequence of𝑚 ≥ 𝑛 polynomials in R[𝑥1, . . . , 𝑥𝑛] of degree at most
𝑑 ≥ 1 can have more than (8e𝑚𝑑/𝑛)𝑛 distinct sign patterns.

What Warren actually proved is the upper bound (4e𝑚𝑑/𝑛)𝑛 on the number of sign patterns

lying in the set {−1, +1}𝑛 . But as observed in [4, 12, 27], by “doubling” each polynomial, this bound

can be easily extended to the upper bound (8e𝑚𝑑/𝑛)𝑛 on the number of all sign patterns. To see

this, let 𝑝1, . . . , 𝑝𝑚 be a sequence of polynomials in R[𝑥1, . . . , 𝑥𝑛] of degree at most 𝑑 . The sequence

can clearly have at most 3
𝑚
distinct sign patterns. So, there is a finite set 𝑋 ⊂ R𝑛 of |𝑋 | ≤ 3

𝑚

vectors witnessing all distinct sign patterns of this sequence. Take

𝜖 = 1

2
·min{𝑝𝑖 (𝑥) : 𝑥 ∈ 𝑋 and 𝑝𝑖 (𝑥) ≠ 0} ,

and consider the sequence 𝑝1 − 𝜖, 𝑝1 + 𝜖, . . . , 𝑝𝑚 − 𝜖, 𝑝𝑚 + 𝜖 of 2𝑚 polynomials. By the choice of 𝜖 ,

each two distinct (−1, 0, +1) patterns of the original sequence lead to also distinct (−1, +1) patterns
of the new sequence.

We will use the following direct consequence of Warren’s theorem.

Corollary 2. Let Φ1 (𝑥), . . . ,Φ𝑚 (𝑥) be a sequence algebraic formulas on the same 𝑛 variables. If
each of these formulas have description complexity at most 𝑡 , then��� (Φ1 (𝑥), . . . ,Φ𝑚 (𝑥)

)
: 𝑥 ∈ R𝑛

��� ≤ (
8e𝑚𝑡2

𝑛

)𝑛
.

This follows from Theorem 4 because the values of any such sequence of algebraic formulas

only depend on the sign patterns of the sequence of ≤ 𝑚𝑡 polynomials of degree ≤ 𝑡 used in these

formulas.
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3.5 What functions are not semialgebraic?
To show what kind of operations we do not allow to be used as gates, let us recall the following

well known necessary condition for a set to be semialgebraic.

Claim 3. If a set 𝑆 ⊆ R𝑛 is semialgebraic, then either the interior of 𝑆 is nonempty, or some nonzero
polynomial vanishes on all points of 𝑆 .

Proof. By observing that a system of equations 𝑝1 (𝑥) = 0, . . . , 𝑝𝑚 (𝑥) = 0 is equivalent to one

equation 𝑝1 (𝑥)2 + · · · + 𝑝𝑚 (𝑥)2 = 0, and that 𝑝 (𝑥) < 0 is the same as −𝑝 (𝑥) > 0, we have that a

set 𝑆 ⊆ R𝑛 is semialgebraic if and only if it is a finite union 𝑆 = 𝑆1 ∪ 𝑆2 ∪ · · · ∪ 𝑆𝑚 of (nonempty)

sets of the form 𝑆𝑖 = {𝑥 ∈ R𝑛 : 𝑝𝑖 (𝑥) = 0, 𝑞𝑖,1 (𝑥) > 0, . . . , 𝑞𝑖,𝑘𝑖 (𝑥) > 0}, where 𝑝𝑖 and 𝑞𝑖, 𝑗 are real
polynomials. So, if some 𝑝𝑖 is the zero polynomial, then 𝑆 has a nonempty interior. Otherwise,

𝑝1 · 𝑝2 · · · 𝑝𝑚 is a nonzero polynomial vanishing on all points of 𝑆 . □

Example 3. Claim 3 can be used to show that some functions are not semialgebraic. Consider, for

example, the rounding function 𝑓 (𝑥) = ⌊𝑥⌋. That is, for a real number 𝑥 ∈ R, 𝑓 (𝑥) is the largest
integer 𝑛 such that 𝑛 ≤ 𝑥 . The interior of the graph 𝑆 = {(𝑥,𝑦) ∈ R × Z : ⌊𝑥⌋ = 𝑦} of ⌊𝑥⌋ is clearly
empty, because 𝑦 can only take integer values. But the only polynomial 𝑝 (𝑥,𝑦) = ∑𝑑

𝑖=0 𝑝𝑖 (𝑦) · 𝑥𝑖
vanishing on all points of 𝑆 must be the zero polynomial. Indeed, since 𝑝 vanishes on 𝑆 , the

polynomial 𝑝 (𝑥, 𝑛) has an infinite (and, hence, larger than 𝑑) number of roots 𝑥 ∈ [𝑛, 𝑛 + 1), for
every integer 𝑛; so, 𝑝𝑖 (𝑛) = 0 for all 𝑖 . Since this holds for infinitely many numbers 𝑛, all polynomials

𝑝0, 𝑝1, . . . , 𝑝𝑑 must be zero polynomials. So, the rounding function is not semialgebraic.

3.6 Probabilistic circuits
A circuit basis is any family B of multivariate real-valued functions. A circuit over a basis B is a

sequence 𝐹 = (𝑓1, . . . , 𝑓𝑠 ) of real-valued functions, where each 𝑓𝑖 is obtained by applying one of the

basis operations to the functions in R ∪ {𝑥1, . . . , 𝑥𝑛, 𝑓1, . . . , 𝑓𝑖−1}; scalars 𝑎 ∈ R can be also viewed

as (constant) functions. The size of a circuit is the number 𝑠 of functions in the sequence, and the

function 𝑓 : R𝑛 → R computed by the circuit is the last function 𝑓 = 𝑓𝑠 in the sequence. Every

circuit can be also viewed as a directed acyclic graph; parallel edges joining the same pair of nodes

are allowed. Each indegree-zero node holds either one of the variables 𝑥1, . . . , 𝑥𝑛 or a scalar 𝑎 ∈ R.
Every other node, a gate, performs one of the operations 𝑔 ∈ B on the results computed at its input

gates. A circuit is 𝑏-semialgebraic if each its basis operation (a gate) is 𝑏-semialgebraic.

A probabilistic circuit is a deterministic circuit which, besides the actual (deterministic) variables

𝑥1, . . . , 𝑥𝑛 , is allowed to use some number 𝑘 of additional variables 𝒓1, . . . , 𝒓𝑘 , each being a random
variable taking its values in R. As we already mentioned in the introduction, the probability

distribution of these random variables can be arbitrary: our derandomization results will hold for

any distribution.

4 THE ROUTE TO DERANDOMIZATION
In our derandomization of probabilistic circuits, the following parameters of (finite or infinite)

Boolean matrices𝑀 : 𝐴 × 𝐵 → {0, 1} will be crucial.
• The matrix 𝑀 has the 𝑚-majority property if there is a sequence 𝑏1, . . . , 𝑏𝑚 ∈ 𝐵 of not

necessarily distinct columns of𝑀 such that

𝑀 [𝑎, 𝑏1] + · · · +𝑀 [𝑎, 𝑏𝑚] > 𝑚/2

holds for every row 𝑎 ∈ 𝐴.
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• The matrix𝑀 is probabilistically dense if there exists a probability distribution Pr : 𝐵 → [0, 1]
on the set of columns such that

Pr {𝑏 ∈ 𝐵 : 𝑀 [𝑎, 𝑏] = 1} ≥ 2/3

holds for every row 𝑎 ∈ 𝐴. Note that the mere existence of at least one probability distribution
with this property is sufficient. Thus, density is a property of matrices, not of probability

distributions on their columns.

• The growth function of𝑀 is the function Π𝑀 : N → N whose value Π𝑀 (𝑚) for each integer

𝑚 ≥ 1 is the maximum

Π𝑀 (𝑚) = max

𝑏1,...,𝑏𝑚

�� { (𝑀 [𝑎, 𝑏1] . . . , 𝑀 [𝑎, 𝑏𝑚]
)
: 𝑎 ∈ 𝐴

} ��
over all choices of 𝑚 columns of 𝑀 , of the number of distinct 0-1 patterns from {0, 1}𝑚
appearing as rows of𝑀 in these columns. Note that 1 ≤ Π𝑀 (𝑚) ≤ 2

𝑚
for every𝑚 ≥ 1. The

maximum number𝑚 (if there is one) for which Π(𝑚) = 2
𝑚
holds is know as the Vapnik–

Chervonenkis dimension or just VC-dimension of the matrix𝑀 .

• A Boolean matrix𝑀 : R𝑛 × R𝑘 → {0, 1} is semialgebraic if the set

𝑆 = {(𝑥,𝑦) ∈ R𝑛+𝑘 : 𝑀 [𝑥,𝑦] = 1}

of its 1-entries is such. The description complexity of a column 𝑟 ∈ R𝑘 is the description

complexity of the set 𝑆𝑟 = {𝑥 ∈ R𝑛 : 𝑀 [𝑥, 𝑟 ] = 1} of its 1-entries.
Given a probabilistic circuit 𝐹 (𝑥, 𝒓) computing a given function 𝑓 : R𝑛 → R, the following two

Boolean matrices naturally arise, where 𝑘 is the number of random input variables 𝒓 = (𝒓1, . . . , 𝒓𝑘 ).
• The graph matrix of 𝐹 (𝑥, 𝒓) is the Boolean matrix 𝑀𝐹 : R𝑛+1 × R𝑘 → {0, 1} with entries

defined by:

𝑀𝐹 [(𝑥,𝑦), 𝑟 ] = 1 if and only if 𝐹 (𝑥, 𝑟 ) = 𝑦.
The graph matrix𝑀𝐹 gives us a full information about all functions computed by the circuits

𝐹 (𝑥, 𝑟 ) obtained from 𝐹 (𝑥, 𝒓) by setting the random inputs 𝒓 of 𝐹 to all possible values 𝑟 ∈ R𝑘 .
• The correctness matrix of 𝐹 (𝑥, 𝒓) with respect to the given function 𝑓 : R𝑛 → R is the Boolean

matrix𝑀 : R𝑛 × R𝑘 → {0, 1} with entries defined by:

𝑀 [𝑥, 𝑟 ] = 1 if and only if 𝐹 (𝑥, 𝑟 ) = 𝑓 (𝑥).

Note that 𝑀 is a submatrix of the graph matrix 𝑀𝐹 : just remove all rows of 𝑀𝐹 labeled by

pairs (𝑥,𝑦) such that 𝑦 ≠ 𝑓 (𝑥), and replace the label (𝑥,𝑦) of each remaining row by 𝑥 .

The relation of the majority property of matrices to the derandomization of probabilistic circuits

is quite natural. Suppose that a probabilistic circuit 𝐹 (𝑥, 𝒓) computes the correct values 𝑓 (𝑥) of
a given function 𝑓 with probability ≥ 2/3. Then the correctness matrix 𝑀 is probabilistically

dense per se. On the other hand, if the matrix 𝑀 has the𝑚-majority property, then there are𝑚

(not necessarily distinct) assignments 𝑟1, . . . , 𝑟𝑚 ∈ R𝑘 to the random input variables such that, for

every input 𝑥 ∈ R𝑛 , the deterministic circuit 𝐹 (𝑥) = Maj(𝐹 (𝑥, 𝑟1), . . . , 𝐹 (𝑥, 𝑟𝑚)) outputs the correct
value 𝑓 (𝑥).

Thus, the derandomization of probabilistic circuits boils down to showing that their correctness

matrices have the𝑚-majority property for possibly small values of𝑚. We will show this in the

following three steps, where 𝐹 (𝑥, 𝒓) is a probabilistic circuit with 𝑛 deterministic input variables, 𝑘

random input variables, and 𝑠 gates.

Let 𝑡 be the minimal number 𝑡 such that for every 𝑟 ∈ R𝑘 , the function 𝐹𝑟 : R𝑛 → R computed

by the deterministic circuit 𝐹𝑟 (𝑥) = 𝐹 (𝑥, 𝑟 ) is 𝑡-semialgebraic.
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Step 1 (Lemma 1 in Section 5) The growth function of the graph matrix𝑀𝐹 of 𝐹 satisfies

lnΠ𝑀𝐹
(𝑚) ≤ 𝑛 ln(8e𝑚𝑡2/𝑛) = 2𝑛 ln 𝑡 + 𝑛 ln(8e𝑚/𝑛) .

Step 2 (Lemma 3 in Section 6) There is an absolute constant 𝑐 > 0 such that every probabilisti-

cally dense submatrix of𝑀𝐹 has the𝑚-majority property for any𝑚 ≥ 2/𝑐 satisfying
lnΠ𝑀𝐹

(𝑚) ≤ 𝑐𝑚 .

Step 3 (Lemma 5 in Section 7) If the description complexity of each single gate of 𝐹 does not

exceed 𝑏, then

ln 𝑡 = 𝑂 (𝑛𝑠 ln𝑏𝑠) .
Now, if the probabilistic circuit 𝐹 (𝑥, 𝒓) computes a given function 𝑓 : R𝑛 → R, then the correctness

matrix 𝑀 of this circuit with respect to the function 𝑓 , is a probabilistically dense per se. Also,
as we have shown right after its definition, the correctness matrix𝑀 is a submatrix of the graph

matrix𝑀𝐹 of the circuit 𝐹 . Thus, by Steps 1–3, the matrix𝑀 has the𝑚-majority property for any𝑚

satisfying the inequality 2𝑛 ln 𝑡 + 𝑛 ln(8e𝑚/𝑛) ≤ 𝑐𝑚, where 2𝑛 ln 𝑡 = 𝑂 (𝑛2𝑠 log𝑏𝑠). This inequality
is satisfied by taking𝑚 = 𝐶𝑛2𝑠 log𝑏𝑠 for a sufficiently large (but absolute) constant 𝐶 .

The case of approximating (not necessarily exactly computing) probabilistic circuits requires an

additional idea. The reason is that then the “approximate correctness” matrix 𝑀 of the circuit 𝐹

approximating the function 𝑓 is not necessarily a submatrix of the graph matrix𝑀𝐹 of the circuit 𝐹 .

For example, if 𝐹 (𝑥, 𝑟 ) = 𝑧 for some 𝑧 such that 𝑧 ≠ 𝑓 (𝑥) but 𝑧 𝜚 𝑓 (𝑥), then𝑀𝐹 [(𝑥, 𝑓 (𝑥)), 𝑟 ] = 0 but

the corresponding entry (𝑥, 𝑟 ) in the “approximate correctness” matrix𝑀 will then be𝑀 [𝑥, 𝑟 ] = 1.

This is why in Theorem 2, unlike in Theorem 1, also the description complexities 𝑡𝜚 and 𝑡𝑓 of the

approximation relation 𝜚 and of the approximated function 𝑓 come to play.

We now turn to detailed proofs.

5 STEP 1: GROWTH FUNCTIONS FROM DESCRIPTION COMPLEXITY
The following lemma is an easy consequence of Warren’s theorem (Theorem 4).

Lemma 1. Let 𝑀 : R𝑛 × R𝑘 → {0, 1} be a Boolean matrix. If the description complexity of every
column of𝑀 does not exceed 𝑡 , then for all𝑚 ≥ 𝑛, the growth function Π𝑀 (𝑚) of𝑀 satisfies

Π𝑀 (𝑚) ≤
(
8e𝑚𝑡2

𝑛

)𝑛
.

Proof. Take arbitrary𝑚 columns 𝑟1, . . . , 𝑟𝑚 ∈ R𝑘 of𝑀 . Since every column of𝑀 is 𝑡-semialge-

braic, for every 𝑖 = 1, . . . ,𝑚 there is an algebraic formula Φ𝑖 (𝑥) which uses at most 𝑡 distinct

polynomials of degree at most 𝑡 , and satisfies𝑀 [𝑥, 𝑟𝑖 ] = Φ𝑖 (𝑥) for all 𝑥 ∈ R𝑛 . So, Π𝑀 (𝑚) is at most

the number of distinct 0-1 strings (Φ1 (𝑥), . . . ,Φ𝑚 (𝑥)
)
when 𝑥 ranges over the entire set R𝑛 of row

labels of the matrix𝑀 . By Corollary 2, the number of such strings is at most

(
8e𝑚𝑡2/𝑛

)𝑛
. □

Remark 3. In the case when the description complexity of the entire matrix 𝑀 is bounded by 𝑡 ,

similar upper bounds on the growth function were already derived from the Warren’s theorem

by Goldberg and Jerrum [12], and by Ben-David and Lindenbaum [6]. Our observation is that the

same upper bound actually holds when only the description complexities of individual columns are

bounded by 𝑡 . In the context of derandomization, this will alow us to make the blowup in size of

derandomized circuits independent on the number 𝑘 of random input variables (note that 𝑘 may be

as large as the size of the probabilistic circuits).

This observation also extends the bound to a properly larger class of matrices. The point is that the

description complexity of individual columns may be much smaller than that of the entire matrix𝑀 .

Even more: the former can even then be small, when the entire matrix is not semialgebraic at all (its
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description complexity is unbounded). As a trivial example, consider the matrix𝑀 : R×R → {0, 1}
whose entries are defined by: 𝑀 [𝑥, 𝑟 ] = 1 if and only if 𝑥 = ⌊𝑟⌋. The matrix is not semialgebraic

(see Example 3), but for every fixed column 𝑟 ∈ R, the set of 1-entries of the 𝑟 th column is defined

by a semialgebraic formula [𝑥 − 𝑐 = 0], where 𝑐 = ⌊𝑟⌋ is a (fixed) integer. Hence, the description
complexity of each individual column is 1.

6 STEP 2: MAJORITY PROPERTY FROM GROWTHS FUNCTIONS
As we mentioned at the beginning of Section 4, the derandomization of probabilistic circuits boils

down to showing that their correctness matrices have the𝑚-majority property for possibly small

values of𝑚. In this section, we target this “ensuring majority property” task.

6.1 Finite majority rule
Let 𝐻 be a class of 0-1 functions ℎ : 𝑋 → {0, 1} on a set 𝑋 , and Pr : 𝑋 → [0, 1] a probability

distribution on the set 𝑋 . Draw independently (with repetitions) a sequence 𝒙 = (𝒙1, . . . , 𝒙𝑚) of
samples 𝒙𝑖 ∈ 𝑋 according to this probability distribution. The empirical frequency of ℎ ∈ 𝐻 on 𝒙 is

the average value

aveℎ (𝒙) :=
ℎ(𝒙1) + · · · + ℎ(𝒙𝑚)

𝑚
,

while the theoretical probability of the function ℎ itself is its expected value

𝑝ℎ := Pr {𝑥 ∈ 𝑋 : ℎ(𝑥) = 1} .
Every function ℎ : 𝑋 → {0, 1} defines the event {𝑥 ∈ 𝑋 : ℎ(𝑥) = 1}. The law of large numbers says

that, for each single event, its empirical frequency in a sequence of independent trials converges

(with high probability) to its theoretical probability. We, however, are now interested not in a single

event but in a whole family of events. We would like to know whether the empirical frequency of

every event in the family converges to its theoretical probability simultaneously. This is the content
of so-called “uniform convergence in probability” results in statistics.

Let 𝜖 > 0 be a constant, and draw independently (with repetitions) a sequence 𝒙 = (𝒙1, . . . , 𝒙𝑚) of
samples 𝒙𝑖 ∈ 𝑋 according to a given probability distribution. We are interested in upper-bounding

the probability

Pr {∃ℎ ∈ 𝐻 : |aveℎ (𝒙) − 𝑝ℎ | > 𝜖} . (4)

When the class𝐻 of functions is finite, then the this can be easily done. By Hoeffding bound (see, for

example, [10, Theorem 1.1]), we have Pr {|aveℎ (𝒙) − 𝑝ℎ | > 𝜖} ≤ 2e
−2𝑚𝜖2

for each function ℎ ∈ 𝐻 .
By the union bound, this implies that the probability (4) is at most 2|𝐻 |e−2𝑚𝜖2 , which is strictly

smaller than 1 as long as the sample has𝑚 = Ω(ln 2|𝐻 |) elements. Thus, for such an𝑚, there exists

a sequence 𝑥 = (𝑥1, . . . , 𝑥𝑚) of (not necessarily distinct) points in 𝑋 such that aveℎ (𝑥) ≥ 𝑝ℎ − 𝜖 ,
that is,

ℎ(𝑥1) + · · · + ℎ(𝑥𝑚) ≥ (𝑝ℎ − 𝜖)𝑚 (5)

holds for all functions ℎ ∈ 𝐻 . This gives the well-known fact that, if the number of rows is finite,
then the𝑚-majority property holds already for𝑚 about the logarithm of this number.

Lemma 2 (Finite majority rule). Every probabilistically dense Boolean matrix𝑀 : 𝐴×𝐵 → {0, 1}
with a finite number |𝐴| of rows has the𝑚-majority property for𝑚 = 𝑂 (log |𝐴|). In particular, at
least one column of𝑀 has more than |𝐴|/2 ones.
Proof. View each row 𝑎 ∈ 𝐴 as a function ℎ : 𝐵 → {0, 1} given by ℎ(𝑏) := 𝑀 [𝑎, 𝑏]. Since the

matrix𝑀 is probabilistically dense, we have 𝑝ℎ ≥ 2/3 for each ℎ ∈ 𝐻 . So, when applied with, say

𝜖 = 1/7, Eq. (5) gives us at most𝑚 = 𝑂 (log |𝐻 |) = 𝑂 (log |𝐴|) columns 𝑏1, . . . , 𝑏𝑚 ∈ 𝐵 such that

ℎ(𝑏1) + · · · + ℎ(𝑏𝑚) ≥ (𝑝ℎ − 𝜖)𝑚 = (𝑝ℎ − 1/7)𝑚 ≥ (2/3 − 1/7)𝑚 > 𝑚/2 holds for every ℎ ∈ 𝐻 .
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Thus, the matrix 𝑀 has the𝑚-majority property for𝑚 = 𝑂 (log |𝐴|). This shows the first claim.

The second claim follows by double-counting: the number of ones in the corresponding𝑚 columns

of𝑀 is > (𝑚/2) |𝐴|. So, at least one of these columns must have > |𝐴|/2 ones. □

Lemma 2 allows us to derandomize probabilistic circuits working over any finite domain (in-

cluding Boolean circuits): if the probabilistic circuit has size 𝑠 , then the obtained deterministic

circuit (with one additional majority vote operation as the output gate) will have size 𝑂 (𝑛𝑠). We

are, however, interested in derandomizing circuits working over infinite domains, like N, Z, Q
or R. Sometimes even then the finite majority rule can be applied. In particular, this happens for

arithmetic (+,×,−, /) circuits working over entire domain R (see Theorem 6 in Section 10.1). But

this is just a rare exception: in most cases (including circuits simulating dynamic programs) the

finite majority rule is of no use at all.

6.2 Uniform convergence in probability
Fortunately, in infinite domains, results from the statistical learning theory come to rescue. The

classical uniform convergence in probability theorem of Vapnik and Chervonenkis [34] ensures the

majority property also for matrices 𝑀 with an infinite number of rows, as long as their growth

functions Π𝑀 (𝑚) grow not too fast (Lemma 3 below).

Let 𝐻 be a class of 0-1 functions ℎ : 𝑋 → {0, 1} on a set 𝑋 , and Pr : 𝑋 → [0, 1] a probability
distribution on the set 𝑋 . The growth function of the family 𝐻 is the function Π𝐻 : N → N whose

value Π𝐻 (𝑚) for each integer𝑚 ≥ 1 is the maximum,

Π𝐻 (𝑚) = max

𝑥1,...,𝑥𝑚

�� { (ℎ(𝑥1), . . . , ℎ(𝑥𝑚)) : ℎ ∈ 𝐻
} ��

over all sequences 𝑥1, . . . , 𝑥𝑚 of (not necessarily distinct) points in 𝑋 , of the number of distinct 0-1

patterns from {0, 1}𝑚 produced by the functions ℎ ∈ 𝐻 on these points. Note that we always have

1 ≤ Π𝐻 (𝑚) ≤ 2
𝑚
.

Note that even if our family 𝐻 of functions ℎ : 𝑋 → {0, 1} is infinite or even uncountable, there

is only a finite number Π𝐻 (𝑚) of their classes such that the functions lying within the same class

take the same values on all𝑚 sampled points 𝒙1, . . . , 𝒙𝑚 ∈ 𝑋 . By combining this simple observation

with insightful ideas, Vapnik and Chervonenkis [34] proved the following result.

Remark 4. In this result, a mild measurability condition on the class 𝐻 of functions is necessary (to

avoid “pathological” situations when 𝐻 is uncountable). A class 𝐻 is permissible if the individual
functions ℎ ∈ 𝐻 as well as the supremum function 𝜋 (𝑥) = supℎ∈𝐻 |aveℎ (𝒙) − 𝜇ℎ | are measurable.

That is, we need that for a random sample 𝒙 ∈ 𝑋𝑚 , 𝜋 (𝒙) is a random variable. In our applications,

the classes 𝐻 will correspond to the rows of graph matrices of semialgebraic circuits. So, each class

𝐻 will consist of 0-1 valued semialgebraic functions ℎ : 𝑋 → {0, 1}, where 𝑋 = R𝑘 for some finite

𝑘 ≥ 1, and will be of the form 𝐻 = {𝑓 (𝑡, ·) : 𝑡 ∈ R𝑛} for a finite 𝑛 ≥ 1, where the indexing function

𝑓 : R𝑛 × 𝑋 → {0, 1} (the matrix itself) is also semialgebraic. Such classes 𝐻 are permissible; see

Appendix B for more details.

Theorem 5 (Vapnik and Chervonenkis [34]). Let 𝐻 be a permissible class of 0-1 functions
ℎ : 𝑋 → {0, 1} on a set 𝑋 , and Pr : 𝑋 → [0, 1] a probability distribution on the set 𝑋 . Let 𝜖 > 0,
and draw independently (with repetitions) a sequence 𝒙 = (𝒙1, . . . , 𝒙𝑚) of𝑚 ≥ 2/𝜖2 samples 𝒙𝑖 ∈ 𝑋
according to this probability distribution. Then

Pr {∃ℎ ∈ 𝐻 : |aveℎ (𝒙) − 𝑝ℎ | > 𝜖} ≤ 4 · Π𝐻 (2𝑚) · e−𝜖2𝑚/8 . (6)

In particular, for every constant 0 < 𝜖 ≤ 1 there is a constant 𝑐 > 0 with the following property:

if the sample size𝑚 satisfies

𝑚 ≥ 2/𝑐 and Π𝐻 (𝑚) ≤ e
𝑐𝑚 , (7)
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then there exists a sequence 𝑥 = (𝑥1, . . . , 𝑥𝑚) of (not necessarily distinct) points in 𝑋 such that

aveℎ (𝑥) ≥ 𝑝ℎ − 𝜖 , that is, the inequality Eq. (5) holds for all functions ℎ ∈ 𝐻 .
We now turn back to the language of matrices. Let𝑀 : 𝑇 ×𝑋 → {0, 1} be a Boolean matrix. Each

row 𝑡 ∈ 𝑇 of 𝑀 gives us a 0-1 valued function ℎ𝑡 : 𝑋 → {0, 1} whose values are ℎ𝑡 (𝑥) = 𝑀 [𝑡, 𝑥].
We say that the matrix𝑀 is permissible if the class 𝐻 = {ℎ𝑡 : 𝑡 ∈ 𝑇 } of functions corresponding to

its rows is permissible.

Recall that the growth function Π𝑀 (𝑚) of the matrix𝑀 is the maximum, over all choices of up to

𝑚 columns, of the number of distinct 0-1 patterns from {0, 1}𝑚 appearing as rows in these columns.

Note that Π𝑀 (𝑚) coincides with the growth function Π𝐻 (𝑚) of the class of functions 𝐻 defined by

the rows of𝑀 . In what follows, under a submatrix of a matrix𝑀 we will understand a submatrix

obtained by removing some rows of𝑀 ; that is, we do not remove columns.

Lemma 3. There is an absolute constant 𝑐 > 0 for which the following holds. If a Boolean matrix𝑀
is permissible, then every probabilistically dense submatrix of𝑀 has the𝑚-majority property for any
integer𝑚 ≥ 2/𝑐 satisfying Π𝑀 (𝑚) ≤ e

𝑐𝑚 .

Proof. Let𝑀 : 𝑇 × 𝑋 → {0, 1} be a permissible matrix, and let 𝐻 = {ℎ𝑡 : 𝑡 ∈ 𝑇 } be the class of
functions ℎ𝑡 (𝑥) = 𝑀 [𝑡, 𝑥] defined by the rows 𝑡 ∈ 𝑇 of 𝑀 . Let 𝑀 ′

be any probabilistically dense

submatrix of 𝑀 , and 𝐻 ′ ⊆ 𝐻 be the class of functions corresponding to the rows of 𝑀 ′
. Hence,

there is a probability distribution Pr : 𝑋 → [0, 1] on the set 𝑋 of columns such that the probability

𝑝ℎ = Pr {𝑥 ∈ 𝑋 : ℎ(𝑥) = 1} is at least 2/3 for every row ℎ ∈ 𝐻 ′
of the submatrix𝑀 ′

.

Fix 𝜖 := 1/7, and let 𝑐 > 0 be a constant for which Eq. (7) (and, hence, also Eq. (5)) holds with

this choice of 𝜖 . By Eq. (5) there exists a sequence 𝑥1, . . . , 𝑥𝑚 of (not necessarily distinct) columns

of𝑀 such that ℎ(𝑥1) + · · · + ℎ(𝑥𝑚) ≥ (𝑝ℎ − 𝜖)𝑚 =
(
𝑝ℎ − 1

7

)
𝑚 holds for every row ℎ ∈ 𝐻 of𝑀 . For

some rows ℎ ∈ 𝐻 of𝑀 (those with 𝑝ℎ ≤ 𝜖), this lower bound is trivial. But since the submatrix𝑀 ′

is probabilistically dense, we know that 𝑝ℎ ≥ 2/3 holds for all rows ℎ ∈ 𝐻 ′
of the submatrix 𝑀 ′

.

Thus, for every row ℎ ∈ 𝐻 ′
, we have ℎ(𝑥1) + · · · + ℎ(𝑥𝑚) ≥

(
𝑝ℎ − 1

7

)
𝑚 ≥

(
2

3
− 1

7

)
𝑚 = 11

21
𝑚 > 1

2
𝑚 ,

meaning that the submatrix𝑀 ′
has the𝑚-majority property, as desired. □

6.3 Infinite majority rule
Recall that every probabilistically dense Boolean matrix𝑀 : 𝐴 × 𝐵 → {0, 1} with a finite number

of rows has the𝑚-majority property for𝑚 = 𝑂 (log |𝐴|). When combined with Warren’s theorem

(Theorem 4), the theorem of Vapnik and Chervonenkis (Theorem 5) yields the following result for

infinite matrices.

Lemma 4 (Infinite majority rule). Let𝑀 : R𝑛 ×R𝑘 → {0, 1} be a semialgebraic Boolean matrix.
If the description complexity of every column of𝑀 does not exceed 𝑡 , then every probabilistically dense
submatrix of𝑀 has the𝑚-majority property for 𝑛 ≤ 𝑚 = 𝑂 (𝑛 log 𝑡).

Proof. Let 𝑀 ′
be a submatrix of 𝑀 , and assume that the matrix 𝑀 ′

is probabilistically dense.

Since𝑀 ′
is a submatrix of𝑀 , its growth function satisfies Π𝑀′ (𝑚) ≤ Π𝑀 (𝑚) for all𝑚 ≥ 1. Hence,

Lemma 1 gives us an upper bound

Π𝑀′ (𝑚) ≤ Π𝑀 (𝑚) ≤
(
8e𝑚𝑡2

𝑛

)𝑛
. (8)

on the growth function of the matrix 𝑀 ′
, for all𝑚 ≥ 𝑛. On the other hand, since the matrix 𝑀

is semialgebraic, it is permissible (see Appendix B). So, by Lemma 3, the submatrix 𝑀 ′
of 𝑀 has

the𝑚-majority property for any𝑚 ≥ 2/𝑐 satisfying Π𝑀′ (𝑚) ≤ e
𝑐𝑚

, where 𝑐 > 0 is an absolute

constant. Thus, by Eq. (8), in order to ensure the𝑚-majority property for the submatrix𝑀 ′
, it is
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enough that𝑚 satisfies the inequality (
8e𝑚𝑡2

𝑛

)𝑛
≤ e

𝑐𝑚 . (9)

By taking logarithms and setting𝑤 :=𝑚/𝑛, Eq. (9) turns into the inequality ln𝑤 + ln(8e𝑡2) ≤ 𝑐𝑤 .
If𝑤 ≤ 8e𝑡2, then it is enough that 2 ln(8e𝑡2) ≤ 𝑐𝑤 holds, which happens if𝑤 = 𝐶 log 𝑡 for a large

enough constant 𝐶 . If𝑤 ≥ 8e𝑡2, then it is enough that 2 ln𝑤 ≤ 𝑐𝑤 holds, which happens if𝑤 = 𝐶

itself is a large enough constant. In both cases, we have that𝑤 ≤ 𝐶 log 𝑡 and, hence, any integer

𝑚 ≤ 𝐶𝑛 log 𝑡 for a large enough constant 𝐶 satisfies the inequality Eq. (9). □

Remark 5. Note that in order to apply Lemma 4 for a boolean matrix𝑀 , an upper bound on the

description complexity 𝑡 of its individual columns does not suffice: to ensure the permissibility

of the entire matrix, we have also to ensure that the matrix itself is semialgebraic, that is, has

an arbitrary large but finite description complexity. This is because even when the description

complexity of individual columns is bounded, the entire matrix𝑀 may be not semialgebraic (see

Remark 3). Fortunately, already the classical Tarski–Seidenberg theorem [30, 33] (superpositions

of semialgebraic functions are semialgebraic) ensures that graph matrices of probabilistic circuits

consisting of semialgebraic gates are semialgebraic.

7 STEP 3: DESCRIPTION COMPLEXITY OF CIRCUITS
An important consequence of the Tarski–Seidenberg theorem [30, 33] is that compositions of

semialgebraic functions are also semialgebraic functions. This, in particular, implies that functions

computable by circuits over any basis consisting of semialgebraic functions are also semialgebraic.

But what about the description complexity of such functions?

(∗) If each basis function (gate) has description complexity at most 𝑏, how large can then the

description complexity of functions computable by circuits of size up to 𝑠 be?

The answer is given in the following lemma.

Lemma 5. Every function 𝑓 : R𝑛 → R computable by a deterministic 𝑏-semialgebraic circuit of size
at most 𝑠 has the following properties.

(i) The graph {(𝑥,𝑦) : 𝑓 (𝑥) = 𝑦} of 𝑓 can be defined by an existential algebraic formula of
description complexity at most 𝑠𝑏, and with at most 𝑠 − 1 (existential) quantifiers.

(ii) The function 𝑓 is 𝑡-semialgebraic for 𝑡 satisfying log 𝑡 = 𝑂 (𝑛𝑠 log𝑏𝑠).

Proof. The second property (ii) follows directly from (i) and Corollary 1. So, it is enough to

prove the first property (i).

Let B be a basis consisting of 𝑏-semialgebraic functions. Let 𝐹 be a circuit of size 𝑠 over B

computing the function 𝑓 : R𝑛 → R.
The circuit 𝐹 is a sequence 𝐹 = (𝑓1, . . . , 𝑓𝑠 ) of functions 𝑓𝑖 : R𝑛 → R, where 𝑓𝑠 = 𝑓 and each 𝑓𝑖

is obtained by applying one of the basis operations (a gate) to R ∪ {𝑥1, . . . , 𝑥𝑛, 𝑓1, . . . , 𝑓𝑖−1}. Since
every basis operation 𝑔𝑖 : R𝑘 → R is 𝑏-semialgebraic, there must be an algebraic formula Φ𝑖 (𝑥,𝑦)
using at most 𝑏 polynomials of degree at most 𝑏 such that Φ𝑖 (𝑥,𝑦) = 1 if and only if 𝑦 = 𝑔𝑖 (𝑥).
Replace now each gate 𝑓𝑖 in 𝐹 by a new variable 𝑧𝑖 . Then every gate 𝑓𝑖 = 𝑔𝑖 (𝑓𝑖1 , . . . , 𝑓𝑖𝑘 ) with

𝑔𝑖 ∈ B and each 𝑓𝑖 𝑗 in R ∪ {𝑥1, . . . , 𝑥𝑛, 𝑓1, . . . , 𝑓𝑖−1} gives us an equation 𝑧𝑖 = 𝑔𝑖 (𝑤𝑖 ), where𝑤𝑖 is a
vector in (R ∪ {𝑥1, . . . , 𝑥𝑛, 𝑧1, . . . , 𝑧𝑖−1})𝑘 . So, Φ𝑖 (𝑤𝑖 , 𝑧𝑖 ) = 1 if and only if 𝑧𝑖 = 𝑔𝑖 (𝑤𝑖 ). The value of
the first variable 𝑧1 in the sequence 𝑧1, . . . , 𝑧𝑠 is determined by the actual inputs R ∪ {𝑥1, . . . , 𝑥𝑛} to
the circuit (is obtained by applying the basis operation 𝑔1 to these inputs), whereas the value of

each subsequent variable 𝑧𝑖 (𝑖 ≥ 2) is obtained by applying the 𝑖th base operation 𝑔𝑖 to these inputs

ACM Trans. Comput. Theory, Vol. 0, No. 0, Article 0. Publication date: 0.



Coin flipping in DP is useless 0:17

and some of the previous values 𝑧1, . . . , 𝑧𝑖−1. So, the existential formula

Ψ(𝑥,𝑦) = ∃𝑧1 . . . ∃𝑧𝑠−1 [𝑧1 = 𝑔1 (𝑤1)] ∧ · · · ∧ [𝑧𝑠−1 = 𝑔𝑠−1 (𝑤𝑠−1)] ∧ [𝑦 = 𝑔𝑠 (𝑤𝑠 )]
= ∃𝑧1 . . . ∃𝑧𝑠−1Φ1 (𝑤1, 𝑧1) ∧ . . . ∧ Φ𝑠−1 (𝑤𝑠−1, 𝑧𝑠−1) ∧ Φ𝑠 (𝑤𝑠 , 𝑦)

defines the graph {(𝑥,𝑦) : 𝑦 = 𝑓 (𝑥)} of the function 𝑓 = 𝑓𝑠 computed by our circuit 𝐹 . Existential

quantifiers just guess the possible values taken at intermediate gates, and the equalities ensure their

correctness. Since each algebraic formula Φ𝑖 uses at most 𝑏 polynomials of degree at most 𝑏, the

formula Ψ uses at most 𝑠𝑏 polynomials of degree at most 𝑏, and contains only 𝑠 − 1 quantifiers. □

8 PROOF OF THEOREM 1
Suppose that a probabilistic 𝑏-semialgebraic circuit 𝐹 (𝑥, 𝒓) of size 𝑠 with 𝑘 random input variables

computes a function 𝑓 : R𝑛 → R. Our goal is to show then there are𝑚 = 𝑂 (𝑛2𝑠 log𝑏𝑠) deterministic

copies 𝐹1 (𝑥, 𝑟1), . . . , 𝐹𝑚 (𝑥, 𝑟𝑚) of 𝐹 (𝑥, 𝒓) such that, for every input 𝑥 ∈ R𝑛 , more than the half of

these circuits will output the correct value 𝑓 (𝑥).
Let 𝑀 : R𝑛 × R𝑘 → {0, 1} be the correctness matrix of the circuit 𝐹 (with respect to the given

function 𝑓 ). Hence, the entries of𝑀 are defined by:𝑀 [𝑥, 𝑟 ] = 1 if and only if 𝐹 (𝑥, 𝑟 ) = 𝑓 (𝑥).

Claim 4. The matrix𝑀 has the𝑚-majority property for𝑚 = 𝑂 (𝑛2𝑠 log𝑏𝑠).

Proof. We are going to apply the infinite majority rule (Lemma 4). Recall that the graph matrix

of the circuit 𝐹 (𝑥, 𝒓) is the Boolean matrix 𝑀𝐹 : R𝑛+1 × R𝑘 → {0, 1} with entries defined by:

𝑀𝐹 [(𝑥,𝑦), 𝑟 ] = 1 if and only if 𝑦 = 𝐹 (𝑥, 𝑟 ).
Since the circuit 𝐹 only uses semialgebraic functions as gates, Tarski–Seidenberg theorem [30, 33]

implies that the function 𝐹 : R𝑛 × R𝑘 → R computed by the circuit 𝐹 and, hence, also the graph

matrix 𝑀𝐹 of 𝐹 is also semialgebraic. Furthermore, for every assignment 𝑟 ∈ R𝑛 of the values to
the random input variables, 𝐹 (𝑥, 𝑟 ) is a deterministic 𝑏-semialgebraic circuit of size 𝑠 computing

some function 𝐹𝑟 : R𝑛 → R. Lemma 5 implies that each of the functions 𝐹𝑟 is 𝑡-semialgebraic for 𝑡

satisfying log 𝑡 = 𝑂 (𝑛𝑠 log𝑏𝑠). Thus, the description complexity of every column of𝑀𝐹 does not

exceed 𝑡 .

Note that the correctness matrix𝑀 is a submatrix of the matrix𝑀𝐹 obtained by removing all rows

of𝑀𝐹 labeled by pairs (𝑥,𝑦) such that 𝑦 ≠ 𝑓 (𝑥), and replacing the label (𝑥,𝑦) of each remaining

row by 𝑥 . Moreover, since the (probabilistic) circuit 𝐹 (𝑥, 𝒓) computes 𝑓 , the correctness matrix𝑀

is probabilistically dense. (The graph matrix 𝑀𝐹 itself does not need to be such.) So, the infinite

majority rule (Lemma 4) implies that the correctness matrix 𝑀 has the𝑚-majority property for

𝑚 = 𝑂 (𝑛 log 𝑡) = 𝑂 (𝑛2𝑠 log𝑏𝑠). □

Claim 4 implies that there must be some𝑚 (not necessarily distinct) columns 𝑟1, . . . , 𝑟𝑚 of 𝑀

such that, for every input 𝑥 ∈ R𝑛 , the inequality |{𝑖 : 𝑀 [𝑥, 𝑟𝑖 ] = 1}| > 𝑚/2 and, hence, also the

inequality |{𝑖 : 𝐹 (𝑥, 𝑟𝑖 ) = 𝑓 (𝑥)}| > 𝑚/2 holds. Thus, on every input 𝑥 ∈ R𝑛 , more than the half of

the values computed by deterministic copies 𝐹1 (𝑥, 𝑟1), . . . , 𝐹𝑚 (𝑥, 𝑟𝑚) of the circuit 𝐹 (𝑥, 𝒓) compute

the correct value 𝑓 (𝑥), as desired. □

Remark 6. We could apply Lemma 5 to the function 𝐹 : R𝑛 × R𝑘 → R computed by the entire

circuit 𝐹 (𝑥, 𝒓), but this would result in quadratic increase of the size of the derandomized circuit.

Namely, Lemma 5 would then imply that this function is 𝑡-semialgebraic with log 𝑡 at most about

(𝑛 + 𝑘)𝑠 log𝑏𝑠 . Since the number 𝑘 of random input variables may be as large as the total number 𝑠

of gates, this is then about 𝑠2 log𝑏𝑠 , and we would obtain by a multiplicative factor 𝑠 worse upper

bound𝑚 = 𝑂 (𝑛2𝑠2 log𝑏𝑠) in Claim 4.
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9 PROOF OF THEOREM 2
Let 𝑥 𝜚 𝑦 be a 𝑡𝜚 -semialgebraic relation, and 𝑓 : R𝑛 → R a 𝑡𝑓 -semialgebraic function. Suppose that

𝑓 can be 𝜚 -approximated by a probabilistic 𝑏-semialgebraic circuit 𝐹 (𝑥, 𝒓) of size 𝑠 . Our goal is to
show that then 𝑓 can be also 𝜚 -approximated as a majority 𝜚 -vote of𝑚 = 𝑂 (𝑛2𝑠 log𝐾) deterministic

copies of this circuit, where 𝐾 = 𝑠𝑏 + 𝑡𝑓 + 𝑡𝜚 .
Consider the correctness matrix 𝑀 : R𝑛 × R𝑘 → {0, 1} with entries defined by:

𝑀 [𝑥, 𝑟 ] = 1 if and only if 𝐹 (𝑥, 𝑟 ) 𝜚 𝑓 (𝑥).
Since the circuit 𝐹 𝜚 -approximates the function, the matrix𝑀 is probabilistically dense.

Claim 5. The correctness matrix𝑀 is semialgebraic, and the description complexity 𝑡 of every its
column satisfies log 𝑡 = 𝑂 (𝑛𝑠 log𝐾).

Proof. The probabilistic circuit 𝐹 (𝑥, 𝒓) computes some function 𝐹 : R𝑛 × R𝑘 → R of 𝑛 + 𝑘
variables. Let Φ𝐹 (𝑥,𝑦, 𝑟 ) an existential algebraic formula ensured by Lemma 5(i). Hence, the formula

Φ𝐹 has at most 𝑠 − 1 quantifiers, has description complexity 𝜅 ≤ 𝑠𝑏, and defines the graph of, that

is, Φ𝐹 (𝑥,𝑦, 𝑟 ) = 1 if and only if 𝑦 = 𝐹 (𝑥, 𝑟 ).
Similarly, since the function 𝑓 is 𝑡𝑓 -semialgebraic, there is an algebraic formula Φ𝑓 (𝑥,𝑦) of size

and degree at most 𝑡𝑓 such that Φ𝑓 (𝑥,𝑦) = 1 if and only if 𝑦 = 𝑓 (𝑥). Finally, since the relation 𝜚
is 𝑡𝜚 -semialgebraic, there is an algebraic formula Φ𝜚 (𝑥,𝑦) of size and degree at most 𝑡𝜚 such that

Φ𝜚 (𝑥,𝑦) = 1 if and only if 𝑥 𝜚 𝑦. Consider the existential algebraic formula

Ψ(𝑥, 𝑟 ) = ∃𝑦1 ∃𝑦2 Φ𝐹 (𝑥,𝑦1, 𝑟 ) ∧ Φ𝑓 (𝑥,𝑦2) ∧ Φ𝜚 (𝑦1, 𝑦2) .

It is easy to see that for every row 𝑥 ∈ R𝑛 and every column 𝑟 ∈ R𝑘 of 𝑀 , we have 𝑀 [𝑥, 𝑟 ] = 1

if and only if Ψ(𝑥, 𝑟 ) = 1. Indeed, since both 𝐹 (𝑥, 𝑟 ) and 𝑓 (𝑥) are everywhere defined functions,

on every point (𝑥, 𝑟 ) they output some unique values 𝐹 (𝑥, 𝑟 ) = 𝑦1 and 𝑓 (𝑥) = 𝑦2. So, the first part
∃𝑦1 ∃𝑦2 Φ𝐹 (𝑥,𝑦1, 𝑟 ) ∧ Φ𝑓 (𝑥,𝑦2) of the formula Ψ is a tautology, that is, outputs 1 on all inputs. But

the last formula Φ𝜚 (𝑦1, 𝑦2) outputs 1 precisely when 𝑦1 𝜚 𝑦2 holds, which happens precisely when

𝐹 (𝑥, 𝑟 ) 𝜚 𝑓 (𝑥) holds.
Thus, the existential formula Ψ(𝑥, 𝑟 ) defines the correctness matrix𝑀 . By the Tarski–Seidenberg

theorem [30, 33], the formula Ψ(𝑥, 𝑟 ) has an equivalent quantifier-free algebraic formula. This

shows that the correctness matrix𝑀 is semialgebraic, and it remains to upper bound the description

complexity of its columns.

So, fix a column 𝑟 ∈ R𝑘 of𝑀 , and consider the existential formula Ψ𝑟 (𝑥) := Ψ(𝑥, 𝑟 ) obtained from
the formula Ψ(𝑥, 𝑟 ) by fixing the 𝑟 -variables to the corresponding values. This formula defines the

𝑟 th column of𝑀 , and its description complexity is is at most the sum 𝜅 + 𝑡𝑓 + 𝑡𝜚 ≤ 𝑠𝑏 + 𝑡𝑓 + 𝑡𝜚 ≤ 𝐾

of the description complexities of formulas Ψ𝐹 , Φ𝑓 and Φ𝜚 . The formula has 𝑛 free variables (𝑥-

variables). The formulas Φ𝑓 and Φ𝜚 have no quantifiers, and Ψ𝐹 has at most 𝑠 existential quantifiers.

So, the entire existential formula Ψ has only 𝑞 ≤ 𝑠 + 2 quantifiers, and its description complexity

is at most 𝐾 . Corollary 1 gives us an equivalent quantifier-free algebraic formula of description

complexity 𝑡 satisfying log 𝑡 = 𝑂 (𝑛𝑞 log𝐾) = 𝑂 (𝑛𝑠 log𝐾). Thus, the description complexity 𝑡 of

each single column of𝑀 satisfies log 𝑡 = 𝑂 (𝑛𝑠 log𝐾), as desired. □

Since the circuit 𝐹 (𝑥, 𝒓) 𝜚 -approximates our function 𝑓 , the correctness matrix 𝑀 is proba-

bilistically dense. By Claim 5, the description complexity 𝑡 of every its column satisfies log 𝑡 =

𝑂 (𝑛𝑠 log𝐾). So, by the infinite majority rule (Lemma 4), the matrix𝑀 has the𝑚-majority property

for𝑚 = 𝑂 (𝑛 log 𝑡) = 𝑂 (𝑛2𝑠 log𝐾). This means that there must be some𝑚 (not necessarily distinct)

columns 𝑟1, . . . , 𝑟𝑚 of𝑀 such that, for every input 𝑥 ∈ R𝑛 , the inequality |{𝑖 : 𝑀 [𝑥, 𝑟𝑖 ] = 1}| > 𝑚/2
and, hence, also the inequality |{𝑖 : 𝐹 (𝑥, 𝑟𝑖 ) 𝜚 𝑓 (𝑥)}| > 𝑚/2 holds. Thus, if 𝜇 : R𝑚 → R is a majority
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𝜚 -vote function, then 𝜇 (𝐹1 (𝑥, 𝑟1), . . . , 𝐹𝑚 (𝑥, 𝑟𝑚)) 𝜚 𝑓 (𝑥) holds for every input 𝑥 ∈ R𝑛 . That is, the
obtained deterministic circuit (with one majority 𝜚 -vote output gate) 𝜚 -approximates the values

𝑓 (𝑥) of our function 𝑓 , as desired. □

9.1 Circuits approximating optimization problems
Since one of the motivations in this paper is to derandomize probabilistic dynamic programming

algorithms, let us demonstrate Theorem 2 on semialgebraic circuits solving optimization problems.

The minimization problem 𝑓 : R𝑛 → R on a finite set 𝐴 ⊂ N𝑛
of feasible solutions is to compute

the values 𝑓 (𝑥) = min {𝑎1𝑥1 + · · ·𝑎𝑛𝑥𝑛 : 𝑎 ∈ 𝐴} on all input weighings 𝑥 ∈ R𝑛 .
A probabilistic circuit 𝐹 (𝑥, 𝒓) approximates the problem 𝑓 within a given factor 𝑐 ≥ 0 if for every

input weighting 𝑥 ∈ R𝑛 , |𝐹 (𝑥, 𝒓) − 𝑓 (𝑥) | ≤ 𝑐 holds with probability at least 2/3.
The relation 𝜚 is this case is: 𝑥 𝜚 𝑦 if and only if |𝑥 − 𝑦 | ≤ 𝑐 (the fourth relation in Example 1).

This relation can be defined by a trivial algebraic formula [𝑥 ≥ 𝑦 − 𝑐] ∧ [𝑥 ≤ 𝑦 + 𝑐]. The formula

uses only two polynomials 𝑥 −𝑦−𝑐 and 𝑥 −𝑦 +𝑐 of degree 1; so, the description complexity is 𝑡𝜚 ≤ 2.

The relation is clearly contiguous: if 𝑥 ≤ 𝑦 ≤ 𝑧, |𝑥 − 𝑎 | ≤ 𝑐 and |𝑧 − 𝑎 | ≤ 𝑐 , then also |𝑦 − 𝑎 | ≤ 𝑐 .
Let B be any basis containing the optimization operations min(𝑥,𝑦), max(𝑥,𝑦) and any other

operations of a constant description complexity 𝑏 = 𝑂 (1). For example, besides min and max, the

basis may contain any of the arithmetic operations +,−,×,÷, any branching operations “if 𝑥♦𝑦
then 𝑢 else 𝑣” with ♦ ∈ {>, ≥,=, ≤, <}, and other operations.

Corollary 3. If a minimization problem 𝑓 (𝑥) = min {𝑎1𝑥1 + · · ·𝑎𝑛𝑥𝑛 : 𝑎 ∈ 𝐴} can be approxi-
mated within some fixed factor by a probabilistic circuit of size 𝑠 over the basis B, then 𝑓 can be also
approximated within the same factor by a deterministic circuit over B of size at most a constant times
𝑛2𝑠2 log(𝑠 + |𝐴|).

Proof. The graph {(𝑥,𝑦) : 𝑦 = 𝑓 (𝑥)} of the function 𝑓 can be defined by an algebraic formula∧
𝑎∈𝐴

[𝑎1𝑥1 + · · ·𝑎𝑛𝑥𝑛 − 𝑦 ≥ 0] ∧
(∨
𝑎∈𝐴

[𝑎1𝑥1 + · · ·𝑎𝑛𝑥𝑛 − 𝑦 = 0]
)

using |𝐴| polynomials of degree 1. So, the description complexity of 𝑓 is 𝑡𝑓 ≤ |𝐴|. Since the

approximation relation 𝜚 in our case has a constant description complexity 𝑡𝜚 ≤ 2, and since the

description complexity 𝑏 of every gate is also constant, Theorem 2 implies that the minimization

problem 𝑓 can be approximated as a majority 𝜚 -vote function of𝑚 = 𝑂 (𝑛2𝑠 log𝐾) deterministic

copies of the probabilistic circuit, where 𝐾 = 𝑠𝑏 + 𝑡𝑓 + 𝑡𝜚 = 𝑂 (𝑠 + |𝐴|).
Since the relation 𝜚 is contiguous, and since both min andmax operations are available, a majority

𝜚 -vote function of𝑚 variables can be computed by a circuit over B of size𝑂 (𝑚 log𝑚) (see Claim 7

in Appendix A). Thus, the size of the derandomized circuit is at most a constant times𝑚 ·𝑠 +𝑚 log𝑚,

which is at most a constant times 𝑛2𝑠2 log(𝑠 + |𝐴|), as desired. □

Remark 7. Note that the upper bound on the size 𝑆 of the derandomized circuit, given by Theorem 2,

is only logarithmic in the number |𝐴| of feasible solutions of the minimization problem 𝑓 . In most

optimization problems, the set 𝐴 of feasible solutions is the set 𝐴 ⊆ {0, 1}𝑛 of characteristic 0-1

vectors of objects of interest: spanning trees, perfect matchings, etc. In these cases, log |𝐴| is at
most the number 𝑛 of variables. Thus, for such problems 𝑓 , the size of the derandomized circuit is

at most a constant times 𝑛3𝑠2 log 𝑠 .

10 DERANDOMIZATION VIA ISOLATING SETS
Theorems 1 and 2 derandomize very general classes of probabilistic circuits, but their proofs

rely on deep tools from three different fields: combinatorial algebraic geometry (sign patterns of

polynomials), probability theory (uniform convergence in probability), and quantifier elimination
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theory over the reals. When directly applied, elementary tools like the finite majority rule (Lemma 2)

fail for such circuits already because the domain is infinite.

In some cases, however, it is still possible to apply even such elementary tools also for circuits

working over infinite domains. In particular, this happens if the functions computed by a given

class of circuits have finite “isolating sets.” In this section, we will demonstrate this approach on

arithmetic and tropical circuits.

Given a family H of functions ℎ : 𝐷 → 𝑅 and a function 𝑓 : 𝐷 → 𝑅, a set 𝑋 ⊆ 𝐷 isolates the
function 𝑓 within F if for every function ℎ ∈ H,

ℎ(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 implies that ℎ(𝑥) = 𝑓 (𝑥) holds for all 𝑥 ∈ 𝐷 .
That is, if ℎ(𝑥) ≠ 𝑓 (𝑥) for some point 𝑥 ∈ 𝐷 of the entire domain 𝐷 , then ℎ(𝑥) ≠ 𝑓 (𝑥) for at least
one point 𝑥 ∈ 𝑋 .

10.1 Arithmetic circuits
In the case of (arithmetic) polynomials, we have the following strong isolation property.

Lemma 6. Let 𝑓 (𝑥) be a nonzero 𝑛-variate polynomial of degree 𝑑 over R, and 𝑆 ⊂ R a finite
subset of |𝑆 | ≥ 𝑑 + 1 elements. Then every subset 𝑋 ⊆ 𝑆𝑛 of size |𝑋 | > 𝑑 |𝑆 |𝑛−1 isolates 𝑓 within all
polynomials of degree at most 𝑑 .

Proof. Let 𝑆 ⊂ R a finite subset of |𝑆 | ≥ 𝑑 + 1 elements. Take an arbitrary 𝑛-variate polynomial

𝑔(𝑥) of degree at most 𝑑 , and suppose that 𝑔(𝑎) ≠ 𝑓 (𝑎) holds for at least one point 𝑎 ∈ R𝑛 .
Then 𝑝 (𝑥) := 𝑓 (𝑥) − 𝑔(𝑥) is a nonzero polynomial of degree at most 𝑑 . By the Schwartz–Zippel

lemma [29, 36], we then have |{𝑎 ∈ 𝑆𝑛 : 𝑝 (𝑎) = 0}| ≤ 𝑑 |𝑆 |𝑛−1. So, since |𝑋 | > 𝑑 |𝑆 |𝑛−1, 𝑝 (𝑎) ≠ 0

must hold for at least one point 𝑎 ∈ 𝑋 , as desired. □

Theorem 6. If a rational function 𝑓 : R𝑛 → R can be computed by a probabilistic arithmetic
(+,×,−, /) circuit, then 𝑓 can be also computed by a deterministic arithmetic (+,×,−, /) circuit of the
same size.

Proof. The function 𝑓 is of the form 𝑓 (𝑥) = 𝑝 (𝑥)/𝑞(𝑥) for some polynomials 𝑝 and 𝑞. Suppose

that 𝑓 can be computed by a probabilistic arithmetic (+,×,−, /) circuit 𝐹 (𝑥, 𝒓) of size 𝑠 . Set𝑑 := 𝑟 +2𝑠 ,
where 𝑟 is the maximum degree of 𝑝 and 𝑞. Take an arbitrary subset 𝑆 ⊆ R of size |𝑆 | ≥ 2𝑑 . By

the finite majority rule (Lemma 2), there is an assignment 𝑟 ∈ R𝑘 to the random input variables,

and a subset 𝑋 ⊂ 𝑆𝑛 of size |𝑋 | > 1

2
|𝑆 |𝑛 such that the deterministic copy 𝐹𝑟 (𝑥) = 𝐹 (𝑥, 𝑟 ) of the

probabilistic circuit 𝐹 computes 𝑓 correctly on all inputs from 𝑋 . The circuit 𝐹𝑟 computes some

rational function 𝐹𝑟 (𝑥) = 𝑃 (𝑥)/𝑄 (𝑥). Since the gates have fanin two, the polynomials 𝑃 and 𝑄

have degrees at most 2
𝑠
. Consider the polynomial 𝑔(𝑥) := 𝑝 (𝑥) ·𝑄 (𝑥) − 𝑞(𝑥) · 𝑃 (𝑥). By the choice

of 𝑑 , the degree of the polynomial 𝑔 is at most 𝑑 . We have only to show that 𝑔 is a null polynomial,

i.e., that 𝑔(𝑥) = 0 holds for all 𝑥 ∈ R𝑛 .
Were 𝑔 a nonzero polynomial, then Lemma 6 would require the set 𝑋 to have cardinality

|𝑋 | ≤ 𝑑 |𝑆 |𝑛−1. But then we would have
1

2
|𝑆 |𝑛 < |𝑋 | ≤ 𝑑 |𝑆 |𝑛−1 and, hence, also |𝑆 | < 2𝑑 , which

contradicts our choice of 𝑆 . □

10.2 Tropical circuits
We now consider circuits over the tropical semiring (R+,max, +). Since the basis operations

min(𝑥,𝑦) and 𝑥 + 𝑦 of such circuits have very small (constant) description complexities, The-

orem 1 implies that if an optimization problem 𝑓 : R𝑛 → R can be solved by a probabilistic tropical

circuit of size 𝑠 , then 𝑓 can be also solved as a majority vote of about 𝑛2𝑠 log 𝑠 deterministic copies

of this circuits.
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But tropical circuits cannot compute the majority vote function Maj at all (see Claim 6 in

Appendix A). The reason here is that, in such circuits, only one of the operations min or max is

allowed. So, the resulting deterministic circuit is not a tropical circuit.
On the other hand, tropical circuits are interesting in optimization, because they simulate so-

called pure dynamic programming algorithms (pure DP algorithms). This raises the question:

can probabilistic pure DP algorithms be (efficiently) derandomized at least in the one-sided error

probability scenario? In this section, we will give an affirmative answer: under the one-sided error

probability scenario, the resulting deterministic circuits are also tropical circuits (do not use majority

vote gates), and the derandomization itself is then elementary.

What circuits over the arithmetic semiring (R+, +,×) compute are polynomials

𝑝 (𝑥) =
∑
𝑎∈𝐴

𝑐𝑎

𝑛∏
𝑖=1

𝑥
𝑎𝑖
𝑖
, (10)

where 𝐴 ⊂ N𝑛
is some finite set of nonnegative integer exponent vectors, and 𝑐𝑎 ∈ R+ are positive

coefficients. In the tropical semiring (R+,max, +), “addition” 𝑥 + 𝑦 turns into taking the maximum

max(𝑥,𝑦), and “multiplication 𝑥 × 𝑦 turns into addition 𝑥 + 𝑦. So, what a tropical (max, +) circuit
computes is a tropical polynomial

𝑓 (𝑥) = max

𝑎∈𝐴
⟨𝑎, 𝑥⟩ + 𝑐𝑎 , (11)

where ⟨𝑎, 𝑥⟩ = 𝑎1𝑥1+ · · ·+𝑎𝑛𝑥𝑛 stands for the scalar product of vectors 𝑎 and 𝑥 . That is, (max, +) cir-
cuits solve maximization problems with linear objective functions; the set𝐴 is then the set of feasible

solutions. An (arithmetic) polynomial Eq. (10) is monic if 𝑐𝑎 = 1 for all 𝑎 ∈ 𝐴, and multilinear if the
degree of every variable is at most 1, that is, if𝐴 ⊆ {0, 1}𝑛 . By analogy with arithmetic polynomials,

we call a tropical polynomial Eq. (11) monic if 𝑐𝑎 = 0 holds for all 𝑎 ∈ 𝐴, and is multilinear if
𝐴 ⊆ {0, 1}𝑛 . (Note that, in the tropical semiring, the multiplicative unity element “1” is 0, because

𝑥 + 0 = 0 + 𝑥 = 𝑥 .)

Under a probabilistic (max, +) circuit of size 𝑠 we will now understand an arbitrary random

variable 𝑭 taking its values in the set of all deterministic (max, +) circuits of size at most 𝑠 . That

is, we now do not insist that the randomness into the circuits can be only introduced via random

input variables. Such a circuit solves a given maximization problem 𝑓 : 𝑅𝑛 → 𝑅 with one-sided
success probability 0 ≤ 𝑝 ≤ 1 if for every input weighting 𝑥 ∈ R𝑛+, we have

Pr {𝑭 (𝑥) > 𝑓 (𝑥)} = 0 and Pr {𝑭 (𝑥) < 𝑓 (𝑥)} ≤ 1 − 𝑝 .

That is, the circuit is not allowed to output any better than “optimum” value 𝑓 (𝑥), but is allowed to
output worse values with probability at most 1 − 𝑝 . In particular, 𝑝 = 1 means that the circuit must

correctly compute 𝑓 , while 𝑝 = 0 means that the circuit can do “almost everything,” it only must

never output better than optimal values.

As in Section 10.1, we will use the approach of isolating sets. Let 𝑓 be an 𝑛-variate (max, +) poly-
nomial. A set 𝑋 ⊆ R𝑛+ of input weights is isolating for 𝑓 if for every 𝑛-variate (max, +) polynomial

ℎ ∈ H,

ℎ(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 implies that ℎ(𝑥) = 𝑓 (𝑥) holds for all 𝑥 ∈ R𝑛+.

In the case of tropical polynomials, we do not have such a strong isolation fact as Lemma 6.

Still, also in the tropical case, some specific sets of input weighings are isolating. In the case of

(max, +) polynomials, such is the set of all 0-1 weighings.

Lemma 7. Let 𝑓 be a (max, +) polynomial of 𝑛 variables. If 𝑓 is multilinear and monic, then the set
𝑋 = {0, 1}𝑛 is isolating for 𝑓 .
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Proof. Let 𝑓 (𝑥) = max𝑎∈𝐴⟨𝑎, 𝑥⟩ + 𝑐𝑎 be a (max, +) polynomial. Since 𝑓 is multilinear, we have

𝐴 ⊆ {0, 1}𝑛 , and since 𝑓 is monic, we also have 𝑐𝑎 = 0 for all 𝑎 ∈ 𝐴. Now take an arbitrary

(max, +) polynomial ℎ(𝑥) = max𝑏∈𝐵 ⟨𝑏, 𝑥⟩ + 𝑐𝑏 , and suppose that

ℎ(𝑥) = 𝑓 (𝑥) holds for all input weightings 𝑥 ∈ {0, 1}𝑛 . (12)

Our goal is to show that then ℎ(𝑥) = 𝑓 (𝑥) also holds for all nonnegative real weighings 𝑥 ∈ R𝑛+.
Since the polynomial 𝑓 is monic, 𝑓 (®0) = 0 holds for the all-0 input weighting ®0. Together with

Eq. (12), this yields ℎ(®0) = 0. Since the “coefficients” 𝑐𝑏 ∈ R+ of the polynomial must be nonnegative,

and since the polynomial ℎ takes the maximum of the values ⟨𝑏, 𝑥⟩ + 𝑐𝑏 , the equality ℎ(®0) = 0

implies 𝑐𝑏 = 0 for all 𝑏 ∈ 𝐵. So, both polynomials 𝑓 and ℎ are monic.

Furthermore, since 𝑔(𝑥) = 𝑓 (𝑥) must hold for each of 𝑛 input weighings 𝑥 ∈ {0, 1}𝑛 with exactly

one 1, all vectors in 𝐵 must also be 0-1 vectors. So, both polynomials 𝑓 and ℎ are monic and

multilinear; in particular, 𝐵 ⊆ {0, 1}𝑛 holds. The vectors 𝑎 in 𝐴 and 𝐵 can be therefore identified

with their supports 𝑆𝑎 = {𝑖 : 𝑎𝑖 = 1}. We claim that:

(i) the support of every vector of 𝐵 lies in the support of at least one vector of 𝐴, and

(ii) the support of every vector of 𝐴 lies in the support of at least one vector of 𝐵.

Now, for every input weighting 𝑥 ∈ R𝑛+, property (i) gives the inequality ℎ(𝑥) ≤ 𝑓 (𝑥), while (ii)
gives the converse inequality. It thus remains to prove the properties (i) and (ii). To show (i), suppose

contrariwise that there is a vector 𝑏 ∈ 𝐵 such that 𝑆𝑏 \ 𝑆𝑎 ≠ ∅ holds for all 𝑎 ∈ 𝐴. Then on the 0-1

input 𝑥 = 𝑏 ∈ {0, 1}𝑛 , we have 𝑔(𝑥) ≥ ⟨𝑏, 𝑥⟩ = ⟨𝑏,𝑏⟩ = |𝑆𝑏 |. But since every vector 𝑎 ∈ 𝐴 has a

zero in some position 𝑖 ∈ 𝑆𝑏 , we have ⟨𝑎, 𝑥⟩ = ⟨𝑎, 𝑏⟩ ≤ |𝑆𝑏 | − 1 and, hence, also 𝑓 (𝑥) ≤ |𝑆𝑏 | − 1, a

contradiction with Eq. (12). The argument for the property (ii) is the same with the roles of 𝐴 and

𝐵 interchanged. □

Theorem 7. If a multilinear and monic (max, +) polynomial 𝑓 can be computed by a probabilistic
(max, +) circuit of size 𝑠 with one-sided success probability 𝑝 > 0 then 𝑓 can be also computed by a
deterministic (max, +) circuit of size at most (𝑠 + 1) ⌈𝑛/𝑝⌉.

Note that the size of the obtained deterministic circuits remains proportional to 𝑛𝑠 even if the

success probability 𝑝 > 0 is an arbitrarily small constant. This is in sharp contrast with the two-sided

error scenario, where we required the success probability to be 𝑝 ≥ 1/2 + 𝑐 for a constant 𝑐 > 0 (for

definiteness, we have used 𝑝 = 2/3).

Proof. By Lemma 7, we know that the set 𝑋 = {0, 1}𝑛 isolates 𝑓 within all (max, +) polynomials.

Let 𝑭 be a probabilistic (max, +) circuit of size 𝑠 computing 𝑓 with a one-sided success probability

𝑝 > 0. Take 𝑚 = ⌈(1/𝑝) log |𝑋 |⌉ = ⌈𝑛/𝑝⌉ independent copies 𝑭 1, . . . , 𝑭𝑚 of the circuit 𝑭 , and
consider the probabilistic (max, +) circuit 𝑯 (𝑥) = max {𝑭 1 (𝑥), . . . , 𝑭𝑚 (𝑥)}.
Fix a vector 𝑥 ∈ 𝑋 . Since only one-sided error 𝜖 = 1 − 𝑝 is allowed, we know that 𝑭 𝑖 (𝑥) ≤ 𝑓 (𝑥)

must hold for all 𝑖 . Hence, 𝑯 (𝑥) ≠ 𝑓 (𝑥) can only happen when all the values 𝑭 1 (𝑥), · · · , 𝑭𝑚 (𝑥)
are strictly smaller than the optimal value 𝑓 (𝑥), and this can only happen with probability at most

𝜖𝑚 = (1 − 𝑝)𝑚 ≤ e
−𝑝𝑚

. So, by the union bound, the probability that 𝑯 (𝑥) ≠ 𝑓 (𝑥) holds for at
least one of the inputs 𝑥 ∈ 𝑋 does not exceed |𝑋 |𝜖𝑚 ≤ |𝑋 |e−𝑝𝑚 , which is smaller than 1, because

𝑚 ≥ (1/𝑝) log |𝑋 | (and log e > 1).

There must therefore be a realization 𝐻 (𝑥) = max {𝐹1 (𝑥), . . . , 𝐹𝑚 (𝑥)} of the probabilistic circuit
𝑯 such that the polynomial ℎ(𝑥) computed by 𝐻 (𝑥) satisfies ℎ(𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 . The size
of the obtained deterministic circuit 𝐻 (𝑥) is at most𝑚𝑠 +𝑚 − 1 ≤ (𝑠 + 1) ⌈𝑛/𝑝⌉. Since the set 𝑋 is

isolating for 𝑓 , the fact that ℎ(𝑥) = 𝑓 (𝑥) holds for all 𝑥 ∈ 𝑋 implies this implies ℎ(𝑥) = 𝑓 (𝑥) holds
for all 𝑥 ∈ R𝑛+, that is, the obtained deterministic circuit 𝐻 correctly computes 𝑓 on all possible

inputs. □
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A CIRCUITS FOR MAJORITY VOTE
Recall that the majority vote function of𝑚 variables is a partly defined function Maj𝑛 (𝑥1, . . . , 𝑥𝑛)
that outputs the majority element of its input string 𝑥1, . . . , 𝑥𝑛 , if there is one.

Claim 6. Arithmetic (+,−,×) circuits, as well as tropical (min, +) and (max, +) circuits cannot
compute majority vote functions.

Proof. Functions computed by circuits over the arithmetic basis {+,−,×} are polynomial func-

tions. So, suppose contrariwise that we can express Maj(𝑥,𝑦, 𝑧) as a polynomial 𝑓 (𝑥,𝑦, 𝑧) =

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + ℎ(𝑥,𝑦, 𝑧), where the polynomial ℎ is either a zero polynomial or has degree > 1.

Then 𝑓 (𝑥, 𝑥, 𝑧) = 𝑥 implies 𝑐 = 0, 𝑓 (𝑥,𝑦, 𝑥) = 𝑥 implies 𝑏 = 0, and 𝑓 (𝑥,𝑦,𝑦) = 𝑦 implies 𝑎 = 0. This

holds because, over fields of zero characteristic, equality of polynomial functions means equality of

coefficients. We have thus shown that ℎ = Maj. So, the polynomial ℎ cannot be the zero polynomial.

But then ℎ has degree > 1, so ℎ(𝑥, 𝑥, 𝑥) = 𝑥 for all 𝑥 ∈ R is impossible.

Let us now show that also tropical circuits cannot compute majority vote functions. Every

tropical (min, +) circuit computes some tropical (min, +) polynomial. The functions 𝑓 : R𝑛 → R
computed by tropical (min, +) polynomials are piecewise linear concave functions. In particular,

𝑓 ( 1
2
𝑥 + 1

2
𝑦) ≥ 1

2
𝑓 (𝑥) + 1

2
𝑓 (𝑦) must hold for all 𝑥,𝑦 ∈ R𝑛 :

min

𝑣∈𝑉
⟨𝑣, 𝑥 + 𝑦⟩ ≥ min

𝑣∈𝑉
⟨𝑣, 𝑥⟩ +min

𝑣∈𝑉
⟨𝑣,𝑦⟩ .

But already the majority vote function Maj : R3 → R of three variables is not concave. To see

this, take two input vectors 𝑥 = (𝑎, 𝑎, 𝑐) and 𝑦 = (𝑎, 𝑏, 𝑏) with 𝑎 < 𝑏 and 𝑐 = 2𝑎 − 𝑏. Then
Maj( 1

2
𝑥 + 1

2
𝑦) = Maj(𝑎, (𝑎 + 𝑏)/2, 𝑎) = 𝑎 but 1

2
Maj(𝑥) + 1

2
Maj(𝑦) = 1

2
𝑎 + 1

2
𝑏 > 𝑎 since 𝑏 > 𝑎. So,

Maj is not concave. Similar argument shows that Maj is not convex and, hence, cannot be computed

by tropical (max, +) circuits. □

Recall that a binary relation 𝜚 ⊆ R × R contiguous if 𝑥 ≤ 𝑦 ≤ 𝑧, 𝑥 𝜚 𝑎 and 𝑧 𝜚 𝑎 imply 𝑦 𝜚 𝑎. That

is, if the endpoints of an interval are close to 𝑎, then also all numbers in the interval are close to 𝑎.

Claim 7. For every contiguous relation 𝑥 𝜚 𝑦, a majority 𝜚 -vote function of 𝑚 variables can be
computed by a fanin-2 (min,max) circuit of size 𝑂 (𝑚 log𝑚).

Proof. Given a sequence 𝑥1, . . . , 𝑥𝑚 of real numbers, the median function outputs the middle

number 𝑥𝑖 ⌈𝑚/2⌉ of the sorted sequence 𝑥𝑖1 ≤ . . . ≤ 𝑥𝑖𝑚 . So, the sorting network of Ajtai, Komlós and

Szemerédi [3] computes the median function using only 𝑂 (𝑚 log𝑚) min and max operations. On

the other hand, it is easy to see that the median function is a majority 𝜚 -vote function for every

contiguous relation 𝑥 𝜚 𝑦.
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Indeed, let 𝑥1 ≤ . . . ≤ 𝑥𝑚 be a sorted sequence of real numbers, and 𝑎 a real number. Call a

position 𝑖 good, if 𝑥𝑖 𝜚 𝑎 holds. Suppose that more than half of the positions 𝑖 are good. Since the

relation 𝜚 is contiguous, good positions constitute a contiguous interval of length > 𝑚/2. So, the
median of 𝑥1, . . . , 𝑥𝑚 must be the number 𝑥𝑖 in a good position 𝑖 . □

Recall that the nullity relation 𝑥 𝜚 𝑦 holds precisely when either both 𝑥 = 0 and 𝑦 = 0, or both

𝑥 ≠ 0 and 𝑦 ≠ 0 hold. A zero vote function of 𝑛 variables is any function 𝑓 : R𝑛 → R such that

𝑓 (𝑥1, . . . , 𝑥𝑛) = 0 precisely when more than 𝑛/2 of the numbers 𝑥𝑖 are zeros. Note that every

zero-vote function is a majority 𝜚 -vote function for the nullity relation 𝜚 : either more than half of

all numbers 𝑥1, . . . , 𝑥𝑛 are zeros, or more than half of them are nonzero.

Claim 8. A zero-vote function of 𝑛 variables can be computed a (min,max,×) circuit of size
𝑂 (𝑛 log𝑛), as well as by a monotone fanin-2 arithmetic (+,×) circuit of size 𝑂 (𝑛2).

Proof. First, suppose that we have (min,max,×) among the basis operations. Then we can just

sort the sequence 𝑥2
1
, . . . , 𝑥2𝑛 of squares using 𝑂 (𝑛 log𝑛) (min,max) gates, and output the median

of the sorted sequence 𝑦1 ≤ . . . ≤ 𝑦𝑛 . Since the squared sequence has only nonnegative numbers,

zeros (if any) will lie at the beginning of the sorted sequence.

In the case of arithmetic (+,×) circuits, we can use the standard dynamic programming. We

have only to show how to efficiently compute polynomials 𝑃𝑚,𝑘 such that 𝑃𝑚,𝑘 (𝑥1, . . . , 𝑥𝑚) =

0 precisely when at least 𝑘 of the numbers 𝑥1, . . . , 𝑥𝑚 are zeros. For the base cases, we can

take 𝑃𝑚,𝑘 (𝑥1, . . . , 𝑥𝑚) = 𝑥2
1
· · · 𝑥2𝑚 for 𝑘 = 1, 𝑃𝑚,𝑘 (𝑥1, . . . , 𝑥𝑚) = 𝑥2

1
+ · · · + 𝑥2𝑚 for 𝑘 = 𝑚, and

𝑃𝑚,𝑘 (𝑥1, . . . , 𝑥𝑚) = 1 (≠ 0) for 𝑘 > 𝑚. (We take squares just to avoid possible cancelations.) Then

we can use the recursion

𝑃𝑚,𝑘 (𝑥1, . . . , 𝑥𝑚) = 𝑃𝑚−1,𝑘 (𝑥1, . . . , 𝑥𝑚−1) ·
[
𝑃𝑚−1,𝑘−1 (𝑥1, . . . , 𝑥𝑚−1) + 𝑥2𝑚

]
.

The first polynomial 𝑃𝑚−1,𝑘 in this product is 0 iff there are at least 𝑘 zeros already among the first

𝑚 − 1 positions, whereas the second term is 0 iff there are at least 𝑘 − 1 zeros among the first𝑚 − 1

positions, and the last position is also zero. For𝑚 = 𝑛 and 𝑘 = ⌊𝑛/2⌋ + 1, the obtained arithmetic

(+,×) circuit has size 𝑂 (𝑘𝑛) = 𝑂 (𝑛2), and computes the zero vote function. □

B NOTES ON MEASURABILITY
In the uniform convergence result of Vapnik and Chervonenkis given in Theorem 5, the class

of functions 𝐻 is required to be permissible (see Remark 4). While every countable class 𝐻 is

permissible, uncountable classes need not automatically be such.

Haussler in [17, Appendix 9.2] gives a sufficient condition for a class 𝐻 of (not necessarily 0-1

valued) functions ℎ : 𝑋 → R to be permissible. He calls a class 𝐻 indexed by a set𝑇 if there is a real

valued function 𝑓 on 𝑇 × 𝑋 such that 𝐻 = {𝑓 (𝑡, ·) : 𝑡 ∈ 𝑇 }, where 𝑓 (𝑡, ·) denotes the real-valued
function on 𝑋 obtained from 𝑓 by fixing the first parameter to 𝑡 . Haussler shows that the following

conditions are already sufficient for the class 𝐻 to be permissible: (1) every function ℎ ∈ 𝐻 is

measurable, (2) the class 𝐻 can be indexed by a set 𝑇 = R𝑛 for a finite 𝑛 ≥ 1, and (3) the indexing

function 𝑓 : 𝑇 × 𝑋 → R itself is measurable.

In the case of Boolean semialgebraic matrices 𝑀 : 𝑇 × 𝑋 → {0, 1}, we have a class 𝐻 of 0-1

functions ℎ𝑡 : 𝑋 → {0, 1}, where 𝑋 = R𝑘 and ℎ𝑡 (𝑥) = 𝑀 [𝑡, 𝑥]. The class 𝐻 is indexed by the set 𝑇

of the form 𝑇 = R𝑛 , and the indexing function 𝑓 = 𝑀 is the matrix 𝑀 itself. Since the matrix 𝑀

is semialgebraic, the functions ℎ𝑡 ∈ 𝐻 as well as the indexing function 𝑓 are semialgebraic. Since

the functions ℎ𝑡 and the indexing function 𝑓 are 0-1 valued functions, this implies that all these

functions are measurable.

Indeed, every semialgebraic set 𝑆 ⊆ R𝑛 is a finite union of finite intersections of sets of the form
{𝑥 ∈ R𝑛 : 𝑝 (𝑥) = 0} and {𝑥 ∈ R𝑛 : 𝑝 (𝑥) > 0}, where 𝑝 is a polynomial. So, semialgebraic sets are
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measurable. Recall that a function ℎ : 𝑋 → R is measurable if the set 𝑋 itself is a measurable set,

and for each real number 𝑟 , the set 𝑆𝑟 = {𝑥 ∈ 𝑋 : ℎ(𝑥) > 𝑟 } is measurable. In our case, functions

ℎ : 𝑋 → {0, 1} are 0-1 valued functions. Each such function is the characteristic function of the

set 𝑆 = {𝑥 ∈ 𝑋 : ℎ(𝑥) = 1}. Then each set 𝑆𝑟 is either ∅, 𝑆 or 𝑋 . Hence, a 0-1 valued function ℎ is

measurable if and only if the set 𝑆 = ℎ−1 (1) it represents is measurable. Since semialgebraic sets

are measurable, we have that every semialgebraic 0-1 valued function is measurable.

The books of Dudley [11, Chapter 10] and Pollard [26, Appendix C] discuss more general sufficient

conditions for classes of not necessarily 0-1 valued functions ℎ : 𝑋 → R to be permissible.
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