Entropy of Operators or Nechiporuk for Depth-2 Circuits

Stasys Jukna

Institute of Mathematics, Vilnius, Lithuania University of Frankfurt, Germany

Dagstuhl 2008

Model = Circuits with Arbitrary Gates

- Operator $F: \{0,1\}^n \to \{0,1\}^n$ \Rightarrow set of boolean functions $F = \{f_1, \dots, f_n\}$
- Want to simultaneously compute all functions in F
- $Wires_2(F) = Number of wires in depth-2 circuit$
- Arbitrary boolean functions as gates
 - \Rightarrow Wires₂(F) $\leq n^2$, even in depth-1
 - ⇒ Problem not computation but information transfer

- Depth-2 already non-trivial
- $f_i(\vec{x}) = \varphi(\vec{x}, g_1(\vec{x}), \dots, g_k(\vec{x})), \ \varphi, g_1, \dots, g_k \ \text{arbitrary}$ boolean functions

Why Depth-2 Interesting?

Valiant 1977 (Reduction to Depth-2)

Let $r = O(n/\ln \ln n)$ gates on the middle layer are given for free. If $Wires_2(F) = \Omega(n^{1+\epsilon})$ then F cannot be computed in log-depth and linear size.

- Best known: $\Omega((n^2/r)\ln(n/r))$ [Pudlák/Rödl/Sgal 1997]
- Weakening: $Wires_2(F) = count all wires (nothing "for free")$
- Graph-theoretical approach based on superkoncentrators
 Long history: Pippenger, Valiant, Wigderson, Pudlák, Raz, Shpilka, ...
- Best: $\Theta(n \ln^2 n / \ln \ln n)$ [Radhakrishnan/Ta-Shma 2003]
- Too weak since too strong: Establish graph structure of circuits

Direkt Approach

- Idea: count the wires directly, ignore the graph-structure
- [Cherukhin 2005]: $Wires_2(Conv_n) = \Omega(n^{3/2}) \Rightarrow a$ breakthough
- Question 1: What about other operators? Say, matrix product $F = X \cdot Y$?
- Question 2: Why some operators are difficult to compute?

Our result

For all $F: \{0,1\}^n \to \{0,1\}^m$ we have $Wires_2(F) \ge Entropy(F)$

- Conection to classics:
 - ▶ Proof = reminiscent of Nechiporuk's argument for formula size
- Yields new and/or higher lower bounds:
 - ► Tight bound for matrix product and a lot of other operators
 - ► Entropy + Raz&Shpilka ⇒ higher lower bounds for any constant depth [Cherukhin 2008]

() 4 / 12

Nechiporuk's Argument for Formula Size

- Boolean function f(X)
- $L(f) = \text{formula size universal basis (all fanin } \leq 2 \text{ functions)}$
- Partite variables $X = X_1 \cup \cdots \cup X_p$
- $\bullet \ \mathsf{Subf}(f|X_i) := \Big\{ f(X_i, \vec{a}) | \ \mathsf{assignments} \ \ \vec{a} : X \setminus X_i \to \{0, 1\} \Big\}$

Nechiporuk 1966

$$L(f) \geq \sum_{i=1}^{p} \log \# \mathsf{Subf}(f|X_i)$$

Proof Idea

- Subfunctions Subf(g) := { $g(\vec{0}, Y), g(\vec{e}_1, Y), \dots, g(\vec{e}_n, Y)$ }
- If no wire from x_i to g then $g(\vec{e}_i, Y) = g(\vec{0}, Y)$
 - ⇒ one and the same subfunction for all non-wires
- \Rightarrow number of different subfunctions $|Subf(g)| \le deg(g)$
- \Rightarrow # Wires := $\sum_{g \in G} \deg(g) \ge \sum_{g \in G} |\operatorname{Subf}(g)| \ge |G^*|$ where $G^* = \bigcup_{g \in G} \operatorname{Subf}(g)$ set of all subfunctions

Proof (end)

- Know: $Wires_2(F) \ge \text{number } |G^*| \text{ of subfunctions on the middle layer}$
- But ... don't know what G, and hence, what G^* is ...
- Still know: F* must be computable from G*
 - \Rightarrow If $S \subseteq \{0,1\}^Y$ is separated by F^*

i.e.
$$\forall \vec{a} \neq \vec{b} \in S \ \exists h \in F^* : \ h(\vec{a}) \neq h(\vec{b})$$

then S must be also separated by G^*

- Define $Entropy(G) := \max\{\log_2 |S| : S \text{ is separated by } G^*\}$
 - \Rightarrow Entropy(F) \leq Entropy(G) \leq |G*| \leq Wires₂(F)

Why Entropy, Not just Number of Subfunctions?

- We need: If F computable from G then $|G| \geq \mu(F)$
- Why not take $\mu(F) = \text{number } |F|$ of different subfunctions, as Nechiporuk?
- Answer: Because gates are arbitrary boolean functions
- If $G = \{g_1, ..., g_k\}$ then

$$F = \{\varphi_1(g_1, \ldots, g_k), \ldots, \varphi_N(g_1, \ldots, g_k)\}\$$

is computable from G but

$$|F| \ge 2^{2^k} \gg k = |G| \quad \Rightarrow \quad |G| \ll \mu(F)$$

• Nechiporuk could do this because k = 2 for formulas

How to Apply?

- Boolean function f(X)
- Partite variables $X = X_1 \cup \cdots \cup X_p$
- Define $Entropy(f) := \sum_{i=1}^{p} \log \#Subf(f|X_i)$
- Nechiporuk: $L(f) \ge Entropy(f)$
- Operator F(X, Y) = set of boolean functions f(X, Y)
- Partite variables $X = X_1 \cup \cdots \cup X_p$ and operator $F = F_1 \cup \cdots \cup F_p$
- Know: For all $i = 1, \ldots, p$

$$\#(\text{Wires from } X_i) + \#(\text{Wires to } F_i) \geq Entropy(F_i|X_i)$$

$$\Rightarrow Wires_2(F) \ge \sum_{i=1}^p Entropy(F_i|X_i)$$

What Operators have Large Entropy?

- Entropy of $F(X, Y) = \log_2 \#$ Range of suboperator
- F(X, Y) isolates a variable $y \in Y$ if $\exists i$: $y \in F(\vec{e}_i, Y)$
- F isolates all variables in $Y \Rightarrow Entropy(F) \ge |Y|$
- Scalar product $f(X, Y) = \sum_{i=1}^{m} x_i y_i$ isolates all variables $y \in Y$

$$f(\vec{e}_j, Y) = 0 \cdot y_1 + \dots + 0 \cdot y_{j-1} + 1 \cdot y_j + 0 \cdot y_{j+1} + \dots + 0 \cdot y_m = y_j$$

- ⇒ operators based on quadratic forms have large entropy
- Natural candidate: $m \times m$ Matrix product = set of $n = m^2$ scalar products

() 10 / 12

Entropy of Matrix Product

- $Mult_n := \text{Product of two } m \times m \text{ matrices; input size } 2n \text{ with } n = m^2$
- Trivial upper bound $Wires_2(Mult_n) \le nm = n^{1.5}$ (even in depth-1)
- Any depth: $O(n^{1.2})$ wires enough (fanin-2) [V. Strassen 1973]
- 2.5n gates necessary (fanin-2) [N. Bshouthy 1982]
- Best for depth-2: $Wires_2(Mult_n) = \Omega(n \log n)$ [Raz-Spilka 2003]

Entropy of Matrix Product

$$Entropy(Mult_n) = \Omega(n^{1.5}) \Rightarrow Wires_2(Mult_n) = \Theta(n^{1.5})$$

Proof.

$$F = X \cdot Y \Rightarrow \text{ partite row-wise } X = X_1 \cup \cdots \cup X_m, \ F = F_1 \cup \cdots \cup F_m$$

Scalar products $\Rightarrow \text{ Entropy}(F_i|X_i) \geq |Y| = n \text{ for all } i = 1, \ldots, m = \sqrt{n}$
 $\Rightarrow \text{ Entropy}(F) \geq m \cdot n = n^{1.5}$

Problems

Problem 1 (probably YES, try counting)

What is $\max_F Wires_2(F)$ over all $F : \{0,1\}^n \to \{0,1\}^n$? Is it $\Omega(n^2)$?

- The same for linear operators $f_A(\vec{x}) = A\vec{x}$
- Best explicit: $Wires_2(f_A) = \Omega(n \ln n)$ [Pudlák (Combinatorica 1994)]

Problem 2 (surprising if YES, much harder but tractable)

What is $\max_A Wires_2(f_A)$? Is it $\Omega(n^2/\ln n)$?

Problem 3 (THE challenge, hard)

Extend the entropic approach to Valiant's depth-2 circuits, where $O(n/\ln \ln n)$ gates on the middle are given for free.

• Would yield super-linear lower bound for NC¹-circuits

END

()