
Cutting Planes Cannot Approximate Some Integer ProgramsI

Stasys Jukna∗,1

Georg Schnitger

University of Frankfurt, Institut of Computer Science, D-60054 Frankfurt, Germany.

Abstract

For every positive integer l, we consider a zero-one linear program describing the following optimization problem: maximize
the number of nodes in a clique of an n-vertex graph whose chromatic number does not exceed l. Although l is a trivial
solution for this problem, we show that any cutting-plane proof certifying that no such graph can have a clique on more than
r l vertices must generate an exponential in min{l, n/r l}1/4 number of inequalities. We allow Gomory–Chvátal cuts and even
the more powerful split cuts. This extends the results of Pudlák [J. Symb. Log. 62:3 (1997) 981–998] and Dash [Math. of
Operations Research 30:3 (2005) 678–700; Oper. Res. Lett. 38:2 (2010), 109–114] who proved exponential lower bounds
for the case when l = n2/3 and r = 1.
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1. Introduction

The study of inapproximability of combinatorial optimiza-
tion problems has two strands. One of them shows the inap-
proximability by any algorithm working in polynomial time.
But the results here rely on some unproven hypotheses in
computational complexity, like P 6= N P. The other strand—
“concrete inapproximability”—deals with restricted classes
of algorithms (like backtracking, dynamic programming, cut-
ting planes, etc.) and tries to prove unconditional inapprox-
imability results. In this note we follow this last direction.

An integer linear optimization problem (ILP) is specified
by an integer m × n matrix A and two integer vectors b ∈
Zm and e ∈ Zn. This gives us a rational polyhedron P =
{x ∈ Rn : Ax ≤ b}. The problem itself is to find an integer
solution x ∈ Zn maximizing a given linear target function
eT x subject to constraints Ax ≤ b. A solution y ∈ P ∩ Zn

is r-approximative (r ≥ 1) if eT y ≥ l/r holds, where l =
max{eT x : x ∈ P ∩ Zn} is the otpimal value of an integer
solution.

The main idea of so-called cutting plane algorithms is to
eliminate the necessity of integrity constraints by introducing
more and more new inequalities (cutting planes). One of the
most popular ways to produce cutting planes are Gomory–
Chvátal cuts. These are obtained by taking rounded linear
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combinations of already obtained inequalities. Namely, one
takes a non-negative vector λ such that λT A is an integer vec-
tor, and adds to Ax ≤ b the inequality λT Ax ≤ bλT bc. Since
the vector λT A is integral, every integer solution of Ax ≤ b is
also a solution of λT A≤ bλT bc. Moreover, by Carathéodory’s
theorem, one may assume that λ has at most n+ 1 nonzero
positions. Thus, each new inequality in such an algorithm is
derived from only at most n+ 1 previous inequalities.

Suppose that a cutting plane algorithm outputs some in-
tegral solution y ∈ P ∩ Zn. We are not interested in how it
does this at the end. But if the algorithm “claims” it is r-
approximative, then the value eT y of this solution must be
at least l/r, implying that the inequality eT x ≤ r ·(eT y), and
hence, also the inequality eT x ≤ r · l must hold in P ∩ Zn.
Thus, the sequence of inequalities produced by such an algo-
rithm is, in fact, a cutting plane derivation of the inequality
eT x ≤ r l from the initial system of inequalities Ax ≤ b. By
adding the inequality−eT x ≤−r l−1 to the derived inequal-
ity eT x ≤ r l we obtain a cutting plane derivation of the in-
equality 0 ≤ −1 from the system Ax ≤ b augmented by the
inequality eT x ≥ r l + 1, that is, we obtain a cutting plane
proof of integer infeasibility of this augmented system. The
length of such a proof is the number of produced inequalities.

More generally, for any cutting-plane proof of eT x ≤
d, there is always a cutting-plane proof of the same length
showing that no integral solutions satisfy eT x ≥ d+1, whereas
the converse is not true (see Cook et. al. [7] for a discus-
sion of indirect cutting-plane proofs). In this sense cutting-
plane proofs of integer infeasibility are even more general
than cutting-plane proofs of optimality.

Chvátal, Cook and Hartmann [6] proved the first expo-
nential lower bounds on the number of cutting planes gen-



erated by Gomory–Chvátal cutting-plane algorithms for the
traveling salesman problem. Their bounds are, however, ex-
ponential in the number of variables but not in the number of
constraints (which is also exponential). Lower bounds expo-
nential in the number of constraints were proved by Bonet,
Pitassi and Raz [3] under a restriction that cuts must have
polynomially bounded coefficients. Finally, Pudlák [13] was
able to prove such a bound without any restriction on co-
efficients. Pudlák’s result was later extended by Dash [8]
to branch-and-cut proofs that use 0-1 branching and lift-
and-project cuts, and to proofs using so-called split cuts [9]
including Gomory–Chvátal cuts and lift-and-project cuts as
special cases.

Note. In what follows, by a cutting-plane proof (CP proof)
of an integer infeasibility Ax ≤ b we will mean a branch-
and-cut proof where only branchings on variables (x i ≤ 0
and x i ≥ 1) are allowed but arbitrary split cuts (including
Gomory–Chvátal cuts and lift-and-project cuts) can be used
(see [8] for details).

1.1. Our result
The optimization problem considered in [13, 8, 9] is

maximize
∑n

i=1 x i (1)

subject to Fl(x , y, z) and x , y, z integral,

where Fl(x , y, z) is the system of inequalities in n+
�n

2

�

+ nl
variables: for all 1 ≤ i 6= j ≤ n and 1 ≤ c ≤ l the system Fl
contains inequalities 0≤ x i , yi, j , zi,c ≤ 1 together with:

x i + x j − yi, j ≤ 1 (2)

zi,c + z j,c + yi, j ≤ 2 (3)

zi,1 + · · ·+ zi,l = 1 (4)

If treated as boolean variables, their interpretation is the fol-
lowing. The variables yi, j correspond to edges of a graph Gy
on n vertices, where vertices i and j are adjacent iff yi, j = 1.
The x-variables describe a subset of vertices Sx = {i : x i = 1},
and z-variables describe a coloring of vertices by l colors:
zi,c = 1 iff vertex i receives color c. Intuitively, inequalities
(2) ensure that, for every 0-1 solution (x , y, z) for this sys-
tem, the set of vertices Sx = {i : x i = 1} defined by vector
x forms a clique in the graph Gy defined by vector y . In-
equalities (3) ensure that no two adjacent vertices i 6= j of
Gy receive the same color, and (4) ensure that every vertex
receives a color.

Since l colors are not enough to color a clique on l + 1
vertices, l is the value of an optimal zero-one solution of
this optimization problem. Let Fl,r(x , y, z) denote the system
Fl(x , y, z) augmented with the inequality

x1 + · · ·+ xn ≥ r l + 1 .

Hence, Fl,r is integer infeasible (has no zero-one solutions),
for any r ≥ 1.

What the authors in [13, 8, 9] actually prove is that, for
l = n2/3 and r = 1, any cutting-plane proof of the integer

infeasibility of Fl,r must generate an exponential number of
inequalities.

In this note we show that a super-polynomial number
of inequalities is also necessary to approximate the optimal
solution of (1) within a factor r = n1−Ω(1).

Theorem 1. For every positive integers r and l such that rl ≤
n, the number of inequalities produced by any cutting-plane
proof of integer infeasibility of Fl,r(x , y, z) is exponential in
min{l, n/r l}1/4.

In particular, if l = (log n)8 and r ≤ n/l2 then nΩ(log n)

inequalities are necessary. That is, although the inequality
∑

i x i ≤ l holds for every 0-1 solution (x , y, z) of Fl(x , y, z),
no cutting-plane proof of polynomial length can prove that
even the weaker inequality

∑

i x i ≤ r l holds for every such
solution.

2. Tools we use

The proof of the theorem itself is a combination of two
known results, one from circuit complexity and the other
from proof complexity. So, the contribution of this note is
just the observation that these two results in computational
complexity do in fact imply that cutting-plane algorithms not
only fail to efficiently find an optimal solution of some inte-
ger optimization problems—they cannot even approximate
it within any non-trivial factor.

The result from the circuit complexity we use concerns
so-called monotone real circuits. Such a circuit can use any
real valued functions f : R2→ R as gates. The only require-
ment is that f must be monotone: If x1 ≤ x2 and y1 ≤ y2
then f (x1, y1) ≤ f (x2, y2). A circuit for a boolean function
g(x1, . . . , xn) is a sequence g1, g2, . . . , gt of monotone real
functions, where gi = x i for i = 1, . . . , n, each gi for i > n
is of the form gi = f (g j , gk) with j, k < i and f a monotone
real function of two variables, and gt = g. The size of such
a circuit is the total number t of gates in it.

An n-vertex graph is a k-clique if it consists of a clique
(complete graph) on k vertices and n− k isolated vertices.
A k-coclique is a graph whose complement consist of ≤ k
vertex-disjoint cliques. An (a, b)-clique function (3≤ a < b ≤
n) is a monotone boolean function whose inputs are n-vertex
graphs encoded by

�n
2

�

boolean variables xe, each for one
potential edge e. It accepts every b-clique and rejects every
a-coclique; on other graphs, the function can take arbitrary
values—monotonicity of the function is the only restriction.

In his proof that the optimal solution of (1) cannot be
found by polynomial-time cutting-plane algorithms, Pudlák
[13] used the fact (proved in the same paper) that any mono-
tone real circuit computing an (a, b)-clique function with
a = n2/3 and b = a + 1 requires exponentially many gates.
In the case of approximation algorithms we need a similar
result in the case when the gap b − a is large. For mono-
tone boolean circuits such a result was proved by Alon and
Boppana [1] based on earlier result of Razborov [14]. For
monotone real-valued circuits such a result can be proved us-
ing a general lower bounds criterion from [11].
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Theorem 2. The number of gates in any monotone real circuit
computing an (a, b)-clique function on graphs with n vertices
is exponential in min{a, n/b}1/4.

We give the proof in the Appendix.
The result from proof complexity we use relates the length

of cutting plane proofs with the size of monotone circuits.
Suppose that our system of inequalities has the form F(x , y, z) =
F1(x , y)∧ F2(y, z), where the inequalities in F1(x , y) do not
have z-variables, and those in F2(y, z) do not have x-variables.
Suppose that F(x , y, z) is unsatisfiable, that is, has no zero-
one solution. Then, for any truth assignment α to the y-
variables, at least one of systems F1(x ,α) and F2(α, z) must
be unsatisfiable, for otherwise F(x ,α, z)would be satisfiable.
A so-called “interpolant” just tells us which of these two sys-
tem is unsatisfiable.

An interpolant of F is a boolean function I(y) (on the
common variables y) such that for any truth assignment α
to the y-variables:

- if I(α) = 0 then F1(x ,α) has no 0-1 solution x;

- if I(α) = 1 then F2(α, z) has no 0-1 solution z.

Say that a system F1(x , y)∧ F2(y, z) of linear inequalities
is separated if in at least one of the systems F1 and F2, all
y-variables appear in all inequalities of this system with only
non-negative coefficients, or all appear with non-positive co-
efficients.

The following theorem was proved Pudlák [13] based on
earlier ideas of Krajicek [12] and Bonet, Pitassi and Raz [3].

Theorem 3 (Pudlák [13]). If an unsatisfiable system F of lin-
ear inequalities is separated then it has an interpolating mono-
tone real circuit of size polynomial in the minimal length of a
cutting plane proof of F.

Pudlák [13] proved this result for proofs using Gomory–
Chvátal cuts. Dash [8, 9] extended it to proofs using ar-
bitrary split cuts. As observed by Dash [9], Theorem 3 is
quite general: it holds for any proof system whose deriva-
tion rules, producing in one step a new inequality (a “cut”)
c>x ≤ d from a system Ax ≤ b of already derived inequali-
ties, satisfy the following three conditions:

1. If gT x + hT y ≤ d is a cut for Ax + B y ≤ c, then for any
0-1 assignment α to the y-variables, gT x ≤ d−hTα is a
cut for Ax ≤ c− Bα.

2. If gT x + hT y ≤ d is a cut for Ax ≤ e, B y ≤ f , then
there are numbers r and s such that gT x ≤ r is a cut for
Ax ≤ e, and hT y ≤ s is a cut for B y ≤ f , and r + s ≤ d.

3. The numbers r can be computed from A, e or the num-
bers s can be computed from B, f with polynomially
many monotone operations.

3. Proof of Theorem 1

Let T be the minimum number of inequalities in a cutting-
plane derivation of 0 ≤ −1 from the system Fl,r(x , y, z).

The system itself consists of two systems Clique(x , y) and
Color(y, z), where Clique(x , y) consists of all inequalities

x i + x j − yi, j ≤ 1

− x1 − · · · − xn ≤−r l − 1

0≤ x i ≤ 1

− yi, j ≤ 0

stating that the graph Gy has a clique on r l + 1 vertices,
whereas Color(y, z) consists of all inequalities

zi,c + z j,c + yi, j ≤ 2

zi,1 + · · ·+ zi,l = 1

0≤ zi,c ≤ 1

yi, j ≤ 1

stating that the graph Gy is l-colorable. Since all y-variables
appear in Clique(x , y) with non-positive coefficients (as well
as in Color(y, z) with non-negative coefficients), the system
Fl,r is separated. We can therefore apply Theorem 3 and ob-
tain a monotone real circuit I(y) of size S ≤ T O(1) computing
an interpolant of Fl,r .

Claim 4. The circuit I(y) computes an (l, r l + 1)-clique func-
tion.

Proof. Every assignment α ∈ {0,1}(
n
2) to y-variables describes

a graph Gα. We have only to show that I(α) = 1 if Gα is a
clique on r l + 1 vertices, and I(α) = 0 if Gα is complete
l-partite graph.

If Gα is a complete l-partite graph, then it can be colored
by l colors, implying that the system Color(α, z) has a 0-1
solution z (an l-coloring of Gα). By the definition of the
interpolant, we have that I(α) = 0 in this case.

If Gα is a clique S on |S| = r l + 1 vertices, then the inci-
dence 0-1 vector x of S is a solution of Clique(x ,α). By the
definition of the interpolant, we have that I(α) = 1 in this
case.

From Claim 4 and Theorem 2 we obtain that the cir-
cuit I(y) must have size S exponential in min{l, n/(r l)}1/4.
Since, by Theorem 3, S is polynomial in the total number T
of inequalities produced by the algorithm, this implies that
T must be exponential in min{l, n/(r l)}1/4 as well.

4. Conclusion

Pudlák [13] exhibited a linear program l =max{eT x : Ax ≤
b, x ∈ Zn} such that any Chvátal–Gomory cutting planes
proof that eT x ≤ l is valid for all integer solutions x must
generate an exponential (in the number of variables) num-
ber of inequalities. Dash [8, 9] has shown that the result
remains also valid if one allows more powerful cutting rules.
We show that cutting plane proofs of polynomial length can-
not even prove a much weaker inequality eT x ≤ r l, as long
as l ≥ log8 n and r ≤ n/l2.
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A disadvantage of these results is that they say nothing
about the complexity of cutting plane proofs for natural opti-
mization problems, like the maximum independent set (MIS)
problem. Given a graph G on n vertices [n] = {1, . . . , n},
we can associate a variable x i to each its vertex i and con-
sider the system consisting of inequalities

∑

i∈S x i ≤ 1 for all
cliques S ⊆ [n] in G, and x i ≥ 0 for all vertices i ∈ [n]. Ev-
ery integral solution x for this system is a 0-1 vector which
corresponds to an independent set Ix = {i : x i = 1} in G,
and the incidence 0-1 vector of every independent set is a
valid solution. The problem is to maximize the sum

∑n
i=1 x i

over all integral solutions of this system. We are interested in
cutting-plane derivation of

∑n
i=1 x i ≤ α(G) from this system,

where α(G) is the maximum cardinality of an independent
set in G. An upper bound

� n
α(G)

�

on the length of such deriva-
tions was proved by Chvátal, Cook and Hartmann [6, The-
orem 6.2]. But to our best knowledge, no non-trivial lower
bound is known.

The best known polynomial time approximation algo-
rithm of Boppana and Halldórsson [5] for the MIS problem
achieves an approximation ratio n/ log2 n. (Note that n is
a trivial approximation ratio for n-vertex graphs.) Hastad
[10] has proved that the MIS problem cannot be approxi-
mated by any polynomial time algorithm within a factor of
n1−ε, unless every problem in NP can be solved in probabilis-
tic polynomial time. This is a very strong result (it captures
all possible algorithms running in polynomial time). A disad-
vantage, however, is that it relies on an unproven conjecture
concerning complexity classes.

Thus, a super-polynomial lower bound on the length of
cutting-plane derivations of

∑n
i=1 x i ≤ α(G) from the system

of independent set inequalities of G would be interesting,
even if it only concerns a particular class of algorithms—
cutting plane algorithms. Such a lower bound in the case
of resolution proofs was already given by Beame, Impagli-
azzo and Sabharwal in [2]. But resolution is also known to
be exponentially weaker than cutting plane proofs on some
instances, like systems of inequalities describing the pigeon-
hole principle.

5. Appendix: Proof of Theorem 2

The proof is almost the same as that of Theorem 3.4 in
[11]. Fix a set V of |V | = n vertices, and an (a, b)-clique
function f : 2(

V
2) → {0, 1} for graphs G ⊆

�V
2

�

on these ver-
tices; we look at graphs as sets of their edges. An a-coloring
is a mapping h : V → {1, . . . , a}. Each such mapping defines
the graph Gh = (V, E) where {u, v} ∈ E iff h(u) = h(v). Note
that complements of such graphs are a-cocliques, and hence,
must be rejected by f . In the proof of Theorem 3.4 in [11]
a measure v(G)− κ(G) for rejected graphs was used, where
v(G) is the set of vertices incident with at least one edge of
G, and κ(G) is the number of connected components in G.
Since every tree on m vertices has m− 1 edges, v(G)−κ(G)
is just the maximum number |F | of edges in a spanning for-
est F ⊆ G. With this proviso, when adopted to this special

function f , the lower bounds criterion in [11, Theorem 2.2]
states the following.

If an (a, b)-clique function can be computed by a mono-
tone real-valued circuit of size t then, for all integers 1 ≤
r, s ≤ n− 1 there exist a set E of |E| ≤ s2 edges, a family Q
of |Q| ≤ t(2s)4r r-cliques, and a family F of |F | ≤ t(2r)4s

forests with |F | ≥ s edges in each F ∈ F such that at least
one of the following two conditions hold:

(i) Every b-clique either intersects the set E or contains at
least one clique Q ∈Q.

(ii) For every a-coloring h, the graph Gh must contain at
least one forest F ∈ F .

To show that the size t of a circuit must be exponential in
min{a, n/b}1/4, set r := b(a/32)1/4c and s := b(n/32b)1/4c.
Suppose first that, for this choice of parameters, the first con-
dition (i) holds. At least

�n
b

�

− s2�n−2
b−2

�

≥ 1
2

�n
b

�

of b-cliques
must avoid a fixed set I of |I | ≤ s2 edges. Each of these b-
cliques must contain at least one of r-cliques Q i . Since only
�n−r

b−r

�

of b-cliques can contain one clique Q i , and we only
have L ≤ t(2r)4s of the Q i , in this case we have the lower
bound

t ≥
1
2

�n
b

�

(2s)4r
�n−r

b−r

�
=
� n

16s4 b

�Ω(r)
= 2Ω(a

1/4) .

Suppose now that the second condition (ii) holds. Fix
one forest F ∈ F , and let T1, . . . , Td be all its connected com-
ponents (trees). By the definition, a graph Gh contains F iff
h(u) = h(v) for all edges {u, v} of F . Thus, all vertices in
each of these trees must receive the same color. Since each
tree Ti has |Ti |+ 1 vertices, the total number of vertices in
the forest F is v =

∑d
i=1(|Ti |+ 1) = |F |+ d ≥ s + d. There

are ad ways for the coloring h to color the trees Ti , and at
most an−v ≤ an−(s+d ways to color the remaining n− v ver-
tices. Thus, the number of graphs Gh containing one fixed
forest F ∈ F does not exceed ad an−(s+d) = an−s. Since we
only have |F | ≤ t(2r)4s forests in F , in this case we have
the lower bound

t ≥
an

(2r)4san−s =
� a

16r4

�s
= 2(n/b)1/4 .
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