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Abstract

A monotone arithmetic circuit computes a given multivariate polynomial f if its values on all
nonnegative integer inputs are the same as those of f . The circuit counts f if this holds for 0-1
inputs; on other inputs, the circuit may output arbitrary values. The circuit decides f if it has the
same 0-1 roots as f . We first show that some multilinear polynomials can be exponentially easier
to count than to compute them, and that some polynomials can be exponentially easier to decide
than to count them. Our main results are general lower bounds on the size of counting circuits.
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1. Introduction

In this paper we consider computational complexity of multivariate polynomials with nonnegative
integer coefficients:

f(x1, . . . , xn) =
∑
e∈E

ce

n∏
i=1

xeii , (1)

where E ⊂ Nn is a finite set of vectors of nonnegative integers, coefficients ce are positive integers,
and x0

i = 1; here and throughout, N = {0, 1, 2, . . .}. Each coefficient ce stands for the number
of times the monomial p =

∏n
i=1 x

ei
i appears in f ; the support of such a monomial is the set

Xp = {xi : ei 6= 0} of variables appearing in it with nonzero exponents, and the degree of the
monomial p is the sum e1 + · · ·+ en of its exponents. The polynomial is multilinear if E ⊆ {0, 1}n,
and is homogeneous of degree d if all its monomials have the same degree d.

A natural model for compact representation of such polynomials (with nonnegative coefficients)
is that of monotone arithmetic (+,×) circuits. Such a circuit is a directed acyclic graph with three
types of nodes: input, addition (+), and multiplication (×). Input nodes have fanin zero, and
correspond to variables x1, . . . , xn. All other nodes have fanin two, and are called gates. Each gate
computes either the sum or product of its inputs. The size of a circuit is the number of gates in it.

Every such circuit syntactically produces a unique polynomial h with nonnegative integer
coefficients in a natural way: the polynomial produced at an input gate xi consists of a single
monomial xi, and the polynomial produced at a sum (product) gate is the sum (product) of
polynomials produced at its inputs; we use distributivity to write a product of polynomials as a
sum of monomials. The polynomial h produced by the circuit itself is the polynomial produced at
its output gate. Given a polynomial f(x1, . . . , xn), we say that the circuit:

• computes f (exactly) if h(a) = f(a) holds for every a ∈ Nn;
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• counts f if h(a) = f(a) holds for every a ∈ {0, 1}n;

• decides f if for every a ∈ {0, 1}n, h(a) = 0 exactly when f(a) = 0.

In this paper we are mainly interested in (+,×) circuits counting a given polynomial f . Such a
circuit needs only to correctly compute the restriction f : {0, 1}n → N of f on 0-1 inputs. Note
that, if the polynomial f is monic (has no coefficients > 1) then, on every 0-1 input a ∈ {0, 1}n,
the value f(a) taken by f on a is the number of monomials of f satisfied by (evaluated to 1 on) a.
For example, in the case of the permanent polynomial

Pern(x) =
∑
σ

n∏
i=1

xi,σ(i) (2)

with the summation over all permutations σ of [n] = {1, . . . , n}, its value Pern(a) on every input
a ∈ {0, 1}n×n is the number of perfect matchings in the bipartite n× n graph Ga specified by a;
nodes i and j are adjacent in Ga if and only if aij = 1. Thus, a circuit counting Per outputs the
number of perfect matchings in Ga, whereas a circuit deciding this polynomial merely tells us
whether Ga contains a perfect matching. On the other hand, computing circuits must actually
solve the same counting problem but in the case when all nonnegative integers (not just 0 and 1)
are allowed as weights.

Remark 1. Let us stress that we only consider monotone arithmetic circuits. The reason is that
counting (+,−,×) circuits are already omnipotent: they are as powerful as boolean {∨,∧,¬}
circuits, for which no super-linear lower bounds are known so far. This holds because then each of
the three boolean operations can be simulated over {0, 1}: x ∧ y by x× y, ¬x by 1− x, and x ∨ y
by x+ y − xy.

If a (+,×) circuit computes, counts or only decides a given polynomial f , what can then be said
about the structure of the produced by the circuit polynomial h? To answer these questions, we
associate with every polynomial f the following three sets (this notation will be used throughout
the paper):

• M (f) is the set of all monomials of f ;

• S(f) = {Xp : p ∈ M (f)} is the support of f ;

• L(f) ⊆ S(f) is the lower support of f consisting of all minimal sets of S(f); a set of a family
of sets is minimal if it contains no other set of the family.

We have the following information about the structure of the produced by a circuit polynomial h
(see Lemma 6). If the circuit:

• computes f then h = f , and hence, also M (h) = M (f);

• counts f then S(h) = S(f);

• decides f then L(h) = L(f).

Thus, in the case of circuits exactly computing f we have a full knowledge about the produced
by the circuit polynomial h: this polynomial must just coincide with f (the same monomials
with the same coefficients). This ensures that no “invalid” monomials can be formed during the
computation, and severely limits the power of such circuits. In particular, if the target polynomial f
is homogeneous (all monomials have the same degree) then the circuit itself must be homogeneous:
polynomials produced at its gates must be also homogeneous. If the target polynomial f is
multilinear (no variable has degree larger than 1) then the circuit must be also multilinear: the
polynomials produced at inputs of each product gate must depend on disjoint sets of variables.
These limitations were essentially exploited in all known proofs of lower bounds for monotone
arithmetic circuits, including [15, 17, 10, 21, 18, 6, 19, 7].
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Figure 1: A circuit of size 5 computes the polynomial F = (x + y)(y + z)(x + z), counts the polynomial f =
2xyz + 2xy + 2xz + 2yz, and decides the polynomial g = xy + xz + yz. Gate u is the output gate.

In the case of counting circuits, M (h) = M (f) needs not to hold, due to the multiplicative
idempotence axiom x2 = x valid on 0-1 inputs. That is, here exponents (and hence, degrees of
monomials) do not matter (see Fig. 1). For example, a polynomial f = 2x+ yz is counted by any
circuit producing a polynomial of the form h = 2xa + ybzc with a, b, c ∈ N \ {0}. That is, nonzero
exponents of the monomials in produced by counting circuits polynomials may be arbitrary: we
only know which sets of variables these monomials must contain, but we do not know their actual
degrees. In deciding circuits, even S(h) = S(f) needs not to hold, due to the additional absorption
axiom x+ xy = x.

Due to the limitations we mentioned above, lower bounds for (+,×) circuits computing a given
polynomial are relatively easy to obtain So, it is natural to ask whether known lower bounds for
exactly computing (+,×) circuits can be extended to counting circuits?

That they sometimes can be extended was demonstrated by Sengupta and Venkateswaran
in [16], where they show that the proof of an optimal lower bound n2n−1 on the (+,×) circuit
complexity of the permanent polynomial given by Jerrum and Snir [10], can be modified to yield
the same lower bound for circuits only counting this polynomial. Still, at least three questions
remained open:

1. Can counting circuits be substantially smaller than computing circuits?

2. Can deciding circuits be substantially smaller than counting circuits?

3. Can lower-bounds arguments for computing (+,×) circuits—not just bounds for specific
polynomials, like the permanent polynomial—be extended to counting circuits?

In this paper, we answer these questions affirmatively. For this, we consider the following three
basic complexity measures of a given polynomial f in the class of monotone arithmetic (+,×)
circuits:

A(f) (arithmetic complexity) = minimum size of a circuit computing f ;

C(f) (counting complexity) = minimum size of a circuit counting f ;

D(f) (decision or boolean complexity) = minimum size of a circuit deciding f .

Note that we always have

D(f) ≤ C(f) ≤ A(f) . (3)

That is, it is never harder to decide a given polynomial than to count it, and it is never harder to
count a polynomial than to compute it (exactly).

2. Main results

We will first show that both gaps in (3) can be exponentially large, and then give two general
combinatorial lower bounds on the counting complexity C(f).
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2.1. Complexity gaps

Our first result is that the gaps in (3) between arithmetic, counting and deciding complexities
of some polynomial can be exponential. Actually, we will show even stronger gaps: it may be
exponentially harder to count so-called lower and higher “envelopes” of a polynomial than to count
the polynomial itself.

The lower envelope of a polynomial f is a homogeneous polynomial fle consisting of the
monomials of f of smallest degree. The higher envelope fhe is defined by taking monomials of
largest degree.

As observed by Jerrum and Snir [10], every (+,×) circuit producing a polynomial f can be
easily transformed into a circuit producing fle or fhe by just removing (if necessary) one of the two
edges entering some of the sum-gates. This observation yields

A(f) ≥ max {A(fhe),A(fle)} . (4)

Thus, lower and higher envelopes of a polynomial f are not harder to compute than to compute
the polynomial itself. However, the following result shows that the situation with the counting
complexity C(f) is completely different.

Theorem 1.

(i) It can be exponentially harder to compute a polynomial than to count it.

(ii) It can be exponentially harder to count a polynomial than to decide it.

(iii) It can be exponentially harder to count lower or higher envelopes of a polynomial than to
count the polynomial itself.

Note that, together with (4), item (iii) already implies item (i). We stated these claims
separately only to stress that both gaps in (3) can be exponential.

2.2. Lower bounds

If a (+,×) circuit counts a given polynomial f(x1, . . . , xn) then the produced by this circuit
polynomial h must have the same family of supports, that is, S(h) = S(f) must hold (Lemma 6 in
Sect. 4.1).

Recall that the support of a monomial is the set of variables appearing in it with nonzero
exponents. The support S(f) of a polynomial is the family of supports of all its monomials.

Let now g and h be two polynomials on the same set of variables as f . Let A = S(f), B = S(g)
and C = S(h) be the corresponding supports (families of subsets of these variables). If f = g+ h is
the sum of these two polynomials then

A = B ∪ C := {A : A ∈ B or A ∈ C}

is just the set-theoretic union of the corresponding two families. If f = g × h is the product then

A = B ∨ C := {B ∪ C : B ∈ B and C ∈ C}

is the cross-union of these families. Thus, when dealing with supports only, every gate in a
(+,×) circuit is performing either a union or a cross-union operation on the supports of produced
polynomials. It is clear that we always have |B ∪ C | ≤ |B| + |C | and |B ∨ C | ≤ |B| · |C |. In this
context, it is perhaps worth to mentioning that the well-known Four Function Theorem of Ahlswede
and Daykin [1] implies that |B| · |C | ≤ |B ∨ C | · |B ∧ C |, where B ∧ C = {B ∩C : B ∈ B and C ∈ C}
is the cross-intersection.

For a nonnegative real number r, define the r-th degree dr(A) of a family A to be the maximal
possible number of sets in A containing a fixed set with r or more elements. In other words,
dr(A) is the maximal possible number of sets in A whose intersection has r or more elements. In
particular, if A is a graph (viewed as a set of its edges) then d1(A) is the maximum degree of this
graph; hence, the term “degree”.
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Theorem 2. Let f = g + h be a polynomial such that every monomial of g has fewer than m/3
variables and every monomial of h has at least m ≥ 2 variables. Let A = S(h) be the support of h.
Then there is an integer r between m/3 and 2m/3 for which

C(f) ≥ |A |
dr(A) · dm−r(A)

.

In the case when the polynomial f is homogeneous (all monomials have the same degree),
this fact was first proved by Hyafil [9], and a different and much simpler proof was found by
Valiant [21]. Various versions of this fact (but also for homogeneous polynomials) were proved
by other authors, including Jerrum and Snir [10] (implicitly), Raz and Yehudayoff [13], Hrubes
and Yehudayoff [8]. Besides that now we have such a lower bound for counting circuits, the main
difference of Theorem 2 from the previous versions is that now the polynomial needs not to be
homogeneous.

One of the first general lower bounds on the (monotone) arithmetic circuit complexity of
polynomials is due to Schnorr [15]. It states that

A(f) ≥ |M (f)|

holds for every polynomial f which is separated in the following sense: the product of no two
monomials of f can contain any third monomial of f as a factor; as before, M (f) stands for the
set of all monomials of f .

By using different arguments, Gashkov and Sergeev [6, 7] extended this lower bound to a
properly larger class of polynomials. Namely, they proved that

A(f) ≥ |M (f)|
max{k3, l2}

holds for every (k, l)-sparse polynomial. A polynomial f is (k, l)-sparse (1 ≤ k ≤ l) if M (f) cannot
contain all monomials of some product g × h of two polynomials such that g has more than k
and h has more than l monomials. It is easy to see that every separated polynomial f is also
(1, 1)-sparse. Indeed, if f is not (1, 1)-sparse then there are monomials p 6= p′ and q 6= q′ such that
all four monomials of the polynomial (p+ p′)× (q + q′) are monomials of f . But then the product
pq × p′q′ of two monomials of f contains a distinct monomial pq′ of f as a factor, meaning that f
is not separated.

Using a yet another and simpler argument, we extend these lower bounds to counting (+,×)
circuits.

Call a family A of sets (k, l)-free if for every two antichains B and C such that B ∨ C ⊆ A , at
least one of |B| ≤ k or |C | ≤ l must hold. Recall that a family of sets is an antichain if no two of
its sets are comparable under set-inclusion. A family is l-free if it is (l, l)-free. A polynomial f is
(k, l)-free if such is its support A = S(f).

Remark 2. To demonstrate the definition, let us show that every 1-free antichain A must be also
union-free in the sense that the union of no two distinct sets of A can be a member of A . To see
this, assume that A contains two sets A 6= B whose union A ∪ B also belongs to A. Then the
cross-union B ∨B = {A,B,A∪B} of the antichain B = {A,B} with itself lies in A , but |B| = 2 > 1,
implying that A is not 1-free.

Recall that the lower support L(f) consists of all minimal sets in the family S(f).

Theorem 3. If a polynomial f is (k, l)-free for some 1 ≤ k ≤ l then

C(f) ≥ |L(f)|
2kl2

.

Remark 3. In all proofs of lower bounds on the arithmetic complexity A(f), the “monotonicity” of
the measure µ(f) = |M (f)| was essentially exploited: both µ(f) ≤ µ(f + g) and µ(f) ≤ µ(f × g)
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then hold. When dealing with the counting complexity C(f), the corresponding measure is
µ(f) = |S(f)|. But then µ(f) ≤ µ(f × g) needs not to hold, due to the idempotent axiom x2 = x
used by such circuits. If, for example, f = x1 + x2 + · · ·+ xn and g = x1x2 · · ·xn then |S(f)| = n
but |S(f × g)| = 1. So, a care and new arguments are necessary when trying to capture the
“progress” made by gates in counting circuits.

2.3. Some applications

We can associate with every set H of functions h : [n]→ [n] the following multilinear homoge-
neous polynomial of degree n on n2 variables:

fH(x) =
∑
h∈H

n∏
i=1

xi,h(i) .

Corollary 1. Let f = fh+ g, where H is some set of permutations of [n], and g is any polynomial,
none of whose monomials contains n/3 or more variables. Then

C(f) ≥
(
n

n/3

)
· |H|
n!

.

Proof. The polynomial h = fH has |H| monomials, each specified by a permutation h ∈ H of [n].
If some r variables are fixed, this fixes r values of h. Hence, at most (n− r)! of the permutations
can take r pre-described values, implying that dr(h) ≤ (n− r)!. Theorem 2 implies that C(f) is at
least |H| divided by the maximum of r!(n− r)! over all n/3 < r ≤ 2n/3.

By a t-(v, k, λ) design (2 ≤ t ≤ k ≤ v) we will mean a family A of k-element subsets (called
blocks) of a fixed v-element set (of points) such that no t-element set is contained in more than λ
blocks. 2 Steiner triple systems are 2-(v, 3, 1)-designs.

Every t-(v, k, λ) design A defines a multilinear homogeneous polynomial of degree k in v
variables in a natural way:

fA(x) =
∑
A∈A

∏
e∈A

xe .

Note that a trivial upper bound on the counting complexity of such a polynomial is C(fA) ≤ k|A |.

Corollary 2. Let A be a t-(v, k, λ) design. If 3t ≤ k then C(fA) ≥ |A |/λ2.

Proof. Since A is a t-(v, k, λ)-design, we have dr(A) ≤ λ for every r ≥ t. Since for every
k/3 ≤ r ≤ 2k/3, both r and k − r are at least k/3, the desired lower bound follows directly from
Theorem 2 (applied with m = k).

Example 1. Let n be a prime power, and let the elements of our ground-set be all v = n2 points
(i, j) of the grid GF(n)×GF(n). The graph of a polynomial h over GF(n) is the set of n points
(i, h(i)) with i ∈ GF(n). Let A = An,d be the family of all nd graphs of polynomials of degree at
most d− 1 over GF(n). Since no two distinct polynomials of degree at most d− 1 can coincide on
d points, A is a d-(n2, n, 1) design with |A | = nd blocks. Then we have

nd ≤ C(fA) ≤ nd+1 ,

where the upper bound is trivial, and the lower bound follows from Corollary 2.

2In the standard definition of such a design, we have a stronger requirement that every t-element set must be
contained in exactly λ blocks.
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Thus, for polynomials defined by t-(v, k, λ) designs A , where t is at most one third of the block
size k, Theorem 2 can yield almost optimal lower bounds on their counting complexity. If t is
larger, then the resulting bound can be pure because then dr(A) or dk−r(A) may be near to the
total number |A | of blocks in the design.

For example, if A is a Steiner triple system, then the lower bound on C(fA) given by Theorem 2
(when applied with m = 3) is of the form |A |/dr(F )d3−r(F ) for some integer 1 ≤ r ≤ 2. One of r
or 3− r must be equal to 1. So, since we always have d1(A) ≥ |A |/v (so many blocks can share one
point), Theorem 2 can only yield a trivial lower bound |A |/d1(A) ≤ v not exceeding the number v
of points. For designs with more than v blocks, this bound is rather poor.

Still, Theorem 3 allows one to obtain strong lower bounds also for larger parameters t.

Lemma 4. Every t-(v, k, λ) design with 2t ≤ k is l-free for l = λ2t.

Proof. Let A be a t-(v, k, λ) design with t ≤ k/2. Take any two antichains B and C whose cross
union B ∨ C is contained in A . Our goal is to show that then either |B| ≤ l or |C | ≤ l must hold.

Since every set of the design has k elements, at least one of the antichains, say B, must contain
a set B′ with at least k/2 ≥ t elements. So fix an arbitrary subset B ⊆ B′ with |B| = t elements.
For every set C ∈ C , there can be at most 2|B| = 2t distinct sets C ′ ∈ C such that B ∪C ′ = B ∪C,
implying that |C | ≤ |{B} ∨ C | · 2t. But all sets of the cross-sum {B} ∨ C are sets of the design
A and contain a t-element set B. So, |{B} ∨ C | ≤ λ, and the desired upper bound |C | ≤ λ2t = l
follows.

Together with Lemma 4, Theorem 3 yields the following lower bound which is weaker than that
in Corollary 2 but holds for larger parameters t.

Corollary 3. Let A be a t-(v, k, λ) design. If 2t ≤ k then C(fA) ≥ |A |/λ424t+1.

Lemma 4 implies that every Steiner triple system, that is, every 2-(v, 3, 1)-design is 4-free. By
using a bit more detailed argument, one can show that these systems are in fact 1-free.

Lemma 5. Every Steiner triple system is 1-free.

Hence, the polynomial defined by every Steiner triple system A has counting complexity at
least |A |/2.

Proof. Let A be a Steiner triple system, and suppose contrariwise that A is not 1-free. Then there
must be four sets A,B,C,D such that

(i) sets A and B, as well sets C and D are incomparable under set-inclusion

and all sets of the cross-union {A,B} ∨ {C,D} belong to A. Since A is a Steiner triple system,
this latter condition implies that

(ii) no two distinct sets of the cross-union {A,B} ∨ {C,D} can share more than one element in
common.

Case 1: Some of the four sets, say, the set A has three elements. If at least one of the sets C or D,
say, the set C has at least two elements then (ii) yields B ∪C = A ∪C = A, and hence, also B ⊆ A,
a contradiction with (i). So, C = {c} and D = {d} for some c 6= d ∈ A. Since then B must have
at least two elements, (ii) implies that B ∪ C = B ∪D is the same set of A. But this set shares
two elements c 6= d with the member A of A , implying that B ∪ C = A, and hence also B ⊆ A, a
contradiction with (i).

Case 2: None of the four sets A,B,C,D has three elements. Then at least one of them must have
exactly two elements, say, A = {a, b}. Since the sets A∪C and A∪D of A share these two elements
in common, they must be the same set F = {a, b, c} for some c 6∈ {a, b}. The sets C and D are
incomparable and both must contain the (missing in A) element c. Since none of these two sets
can have more than two elements, this implies that each of them must have exactly two elements
of F , say, C = {a, c} and D = {b, c}. Since each of the sets B ∪ C and B ∪D shares two elements
with F , we obtain that B ∪ C = B ∪D = F = {a, b, c}. Since b 6∈ C and c 6∈ D, the set B must
contain both elements a and b of A, a contradiction with A and B being incomparable.
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The triangle polynomial tn has
(
n
2

)
variables, each corresponding to an edge of the complete

graph Kn on n nodes. There are
(
n
3

)
monomials, each being the product of all three edges of some

triangle in Kn. Thus, for every input 0-1 vector a, the value tn(a) is the number of triangles in the
subgraph Ga of Kn specified by a.

Since every two edges of a triangle determine this triangle, the union of no two triangles can
contain a third triangle. This means that the polynomial tn is separated in Schnorr’s [15] sense,
and his general lower bound for separated polynomials (mentioned before Theorem 3) yields a
lower bound A(tn) ≥

(
n
3

)
on the arithmetic complexity of this polynomial.

On the other hand, a special case of the celebrated lower bound of Razborov [14] (see also [3])
on the monotone boolean circuit complexity of the clique function implies a sub-cubic lower bound
C(tn) ≥ Ω(n3/ log3 n) on the counting (and even on decision) complexity of tn. When combined
with Lemma 5, Theorem 3 yields a stronger bound for counting complexity.

Corollary 4. C(tn) ≥ 1
2

(
n
3

)
.

Proof. Let A be the set of all triples of edges forming a triangle in Kn. Thus, we have v =
(
n
2

)
points and |A | =

(
n
3

)
sets. Since no two triangles can share two edges in common, this family is a

Steiner triple system.

We now turn to the proofs of our main results.

3. Proof of Theorem 1

By the linearization of a polynomial f we will mean a multilinear polynomial f̃ obtained from
f by removing all exponents larger than 1 from all monomials of f . For example, the linearization
of f = 2xy2 + 3x4y2 + 6y2z is f̃ = 5xy + 6yz. It is clear that f̃(a) = f(a) holds for all a ∈ {0, 1}n.

3.1. Counting versus computing

To show that C(fle)/C(f), and hence also the gap A(f)/C(f) can be exponential, call a subgraph
G of Kn,n an almost perfect matching if every node of G has degree one or two. Consider the
following combinatorial counting problem: given a subgraph G of Kn,n, count the number of almost
perfect matchings in G.

To come up with a corresponding to this problem polynomial, let U and V be the parts of
Kn,n, and associate a variable xuv with each its edge (u, v). Every assignment a of 0-1 values to
these variables defines a subgraph Ga of Kn,n in a natural way. Consider the polynomial

In(x) =
∏
u∈U

∏
v∈V

(∑
j∈V

xuj

)(∑
i∈U

xiv

)
. (5)

The polynomial has n2 variables. Note that every monomial of this polynomial is obtained as
follows: take for each node u ∈ U exactly one edge xuj incident with u, and then take for each
node v ∈ V exactly one edge xiv incident with v. So, every variable has degree at most 2.

Let f be the linearization of In. That is, f is obtained from In by removing all nonzero
exponents in all monomials. Every monomial of f has degree between n and 2n, and corresponds
to some almost perfect matching in Kn,n. Thus, on every 0-1 input a, the value f(a) of f on this
input is exactly the number of almost perfect matching in Ga. By using a trivial (+,×) circuit
given by (5), our counting problem can be solved using at most 2n3 gates. Hence, C(f) ≤ 2n3.

We will now show that “weighted” case of our counting problem requires exponential (+,×)
circuits. For this, it is only enough to observe that the monomials of f of degree n correspond to
perfect matchings. Thus, the lower envelope fle of f is just the permanent polynomial, that is,
fle = Pern. By Corollary 1, we have that A(f) ≥ C(fle) = 2Ω(n), as desired.
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3.2. Deciding versus counting

Consider the polynomial f = g + h, where h = Pern is the permanent polynomial (2) with
n > 3, and g =

∑
i,j∈[n] xij is the sum of all variables. Every monomial of h has n variables, and

every monomial of g has 1 < n/3 variable; so, we can apply Theorem 2. For every fixed set of r
edges in Kn,n, only (n − r)! of all n! perfect matchings in Kn,n can share all these edges. This
gives an upper bound dr(A) ≤ (n− r)! for the support A = S(h) of h. By Theorem 2, there is an
integer r between n/3 and 2n/3 such that C(f) ≥ n!/r!(n− r)! =

(
n
r

)
= 2Ω(n).

On the other hand, on every 0-1 input a, we have that f(a) = 0 if and only if g(a) = 0, because
h(0, . . . , 0) = 0. Hence, D(f) = D(g) ≤ n2.

Remark 4. Another, less artificial polynomial exhibiting such a gap is given in A. Namely, using
some known lower bounds on monotone boolean circuit complexity, we show that it is exponentially
easier to decide whether an s-t path exists than to count the number of such paths.

3.3. Counting versus envelope counting

Recall that the lower envelope of a polynomial f is a homogeneous polynomial fle consisting of
the monomials of f of smallest degree. The higher envelope fhe is defined by taking monomials
of largest degree. We have mentioned (see (4)) that none of these two envelops can be harder to
compute than the polynomial itself, that is, both A(fhe) and A(fle) are at most A(f). Our goal is
to show that the situation with counting complexity is entirely different.

A polynomial f exhibiting an exponential gap C(fle)/C(f) was given in Sect. 3.1. To show
that counting higher envelopes can be also much harder than counting the polynomials themselves,
consider the following polynomial of n2 + n variables:

Per∗(x, y) =

n∏
i=1

n∑
j=1

xijyj . (6)

The relation to the permanent polynomial Pern is that the coefficient of the monomial y1y2 · · · yn
in Per∗(x, y) is exactly Pern(x).

Let now f(x, y) be the linearization of Per∗(x, y). That is, f(x, y) is a multilinear polynomial
obtained from Per∗(x, y) by removing all nonzero exponents from all monomials. Every monomial
of f has degree (sum of exponents) between n+ 1 and 2n, and the monomials

x1,j1x2,j2 · · ·xn,jny1y2 · · · yn

of degree 2n with all j1, . . . , jn distinct are exactly the monomials of the polynomial

h(x, y) = Pern(x) · y1y2 · · · yn .

Thus, h = fhe is the higher envelope of f . Since h(x, 1, . . . , 1) = Pern(x), Corollary 1 yields
C(fhe) ≥ C(Pern) = 2Ω(n). On the other hand, since exponents play no role on 0-1 inputs, we have
that Per∗(a) = f(a) holds for all 0-1 inputs a. Thus, the polynomial f itself can be counted by the
circuit given by the definition (6) of Per∗. This gives the upper bound C(f) = O(n2).

4. Preliminaries

In the proofs of our lower bounds for counting circuits (Theorems 2 and 3), we will need some
structural properties of monotone arithmetic circuits.

4.1. Structure of produced polynomials

As we mentioned in the introduction, every (+,×) circuit syntactically produces a unique
polynomial h with nonnegative integer coefficients in a natural way: the polynomial produced at
an input gate xi consists of a single monomial xi, and the polynomial produced at a sum (product)
gate is the sum (product) of polynomials produced at its inputs; we use distributivity to write a
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product of polynomials as a sum of monomials. The polynomial produced by the circuit itself is
the polynomial produced at its output gate.

If a (+,×) circuit computes, counts or decides a given polynomial, what can then be said about
the structure of the produced by the circuit polynomial?

Recall that the linearization of f is a multilinear polynomial f̃ which is obtained from f by
removing all nonzero exponents (the coefficients remain the same). Note that h̃ = f̃ implies
S(h) = S(f).

Lemma 6. Let f(x1, . . . , xn) be a polynomial, and h(x1, . . . , xn) be the polynomial produced by
some (+,×) circuit.

(i) The circuit computes f if and only if h = f .

(ii) The circuit counts f if and only if h̃ = f̃ , and hence, also S(h) = S(f).

(iii) The circuit decides f if and only if L(h) = L(f).

Proof. To show item (i), we will use the following very special version of the so-called Combinatorial
Nullstellensatz of Alon [2]; we also include a very short proof of this special case.

Claim 1. Let f(x1, . . . , xn) be a polynomial in which each variable xi has degree at most ti, and
let Si ⊆ N be arbitrary subsets of sizes |Si| ≥ ti + 1, i = 1, . . . , n. Then f is uniquely determined
by its values on S1 × S2 × · · · × Sn.

Proof. Induction on n. For n = 1, the claim is simply the assertion that a non-zero polynomial of
degree t1 in one variable can have at most t1 distinct roots. For the induction step, expand the
polynomial f by the variable xn:

f(x1, . . . , xn) =

tn∑
i=0

fi(x1, . . . , xn−1) · xin .

For each point a ∈ S1 × · · · × Sn−1,

f(a, xn) =

tn∑
i=0

fi(a) · xin

is a polynomial of degree at most tn in one variable xn, and hence, all its coefficients fi(a),
i = 0, 1, . . . , tn can be recovered knowing the values f(a, b) for all b ∈ Sn. Knowing the values fi(a)
for all a ∈ S1 × · · · × Sn−1 we can, by the induction hypothesis, recover the polynomials fi, and
hence, the original polynomial f .

To prove item (ii), suppose first that h̃ = f̃ . Then for every input a ∈ {0, 1}n, we have that
h(a) = h̃(a) = f̃(a) = f(a), meaning that the circuit must count the polynomial f . Suppose
now that the circuit counts f . Then h(a) = f(a), and hence, also h̃(a) = f̃(a) must hold for all
a ∈ {0, 1}n. When applied with all Si = {0, 1}, Claim 1 yields h̃ = f̃ , that is, h̃ and f̃ must
coincide as polynomials.

To prove item (iii), suppose first that L(h) = L(f) and take an input a ∈ {0, 1}n. Then
f(a) > 0 holds if and only if some set of L(f) is contained in {xi : ai = 1}. Hence, if L(h) = L(f)
then the circuit decides f . Suppose now that the circuit decides f , i.e., that h and f have the same
0-1 roots. Our goal is to show that then L(h) = L(f) must hold.

Suppose contrariwise that the polynomial h has some monomial p whose support Xp = {xi : ei 6=
0} belongs to L(h) but does not belong to L(f). If Xq 6⊆ Xp holds for all monomials q of f then
we can set all variables in Xp to 1 and the rest to 0. On the resulting assignment a, we will have
f(a) = 0 but h(a) ≥ p(a) = 1, a contradiction.

Thus, there must be a monomial q of f such that Xq ⊂ Xp; the inclusion must be proper,
because Xp 6∈ L(f). Set now all variables in Xq to 1 and the rest to 0. On the resulting assignment
a, we will have f(a) ≥ q(a) = 1. But since Xp belongs to L(h), every monomial p of h with
Xp′ 6= Xp must have at least one variable outside Xp, and hence, also outside Xq. This implies
that h(a) = 0, a contradiction again.
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4.2. Contents of gates and edges

Fix some (+,×) circuit, and let h be the produced by it polynomial. Recall that M (h) stands
for the set of monomials of h. For a gate v in the circuit, let Pv denote the set of monomials of
the (syntactically) produced at this gate v polynomial. Hence, if v = xi is an input gate then
Pv = {xi}. If v = u + w is a sum gate then Pv = Pu ∪ Pw is just a set-theoretic union of the
sets of monomials produced at its inputs. If v = u × w is a product gate then Pv is a rectangle
(cross-product of two sets of monomials)

Pv = Pu × Pw := {pq : p ∈ Pu and q ∈ Pw} .

If v is the output gate then we have Pv = M (h). If however v is not the output gate then
monomials of Pv need not to be monomials of the entire polynomial h. We only know that every
monomial of Pv must be a factor of at least one monomial of h. That is, for every monomial p ∈ Pv,
there is a unique monomial q (the co-factor of p within h) such that pq is a monomial of h. Define
the complement of gate v to be the set Qv of all possible monomials q which are co-factors of all
monomials in Pv, that is,

Qv = {q : pq ∈ M (h) for all p ∈ Pv} .

Following Jerrum and Snir [10], define the content of the gate v as the rectangle

Rv := Pv ×Qv ⊆ M (h) .

Even though the first set Pv is (very naturally) defined by the circuit alone, the second set Qv is
only implicitly defined by sets Pv and M (h). The following claim summarizes some properties of
the sets Pv and Qv.

Claim 2. If v = u + w is a sum gate then Pv = Pu ∪ Pw and Qv = Qu ∩ Qw. If v = u × w is a
product gate then Pv = Pu × Pw and Qv × Pw ⊆ Qu.

Proof. Only the last inclusion needs a proof. Suppose contrariwise that there are monomials
p ∈ Pw and q ∈ Qv such that the monomial pq does not belong to Qu. Then there must be a
monomial p′ ∈ Pu such that p′pq 6∈ M (h). But this is impossible because p′p is a monomial of the
set Pv = Pu × Pw produced at gate v, and q is a monomial of the complement Qv of this gate.

We define the content Re of an edge e = (u, v) to be the rectangle Re := Pu ×Qv if v is a sum
(+) gate, and to be the rectangle Re := Pv ×Qv if v is a product (×) gate. Note that the contents
of all edges also lie within M (h). This is clear when v is a product gate. If v is a sum gate then
Claim 2 implies that Qv ⊆ Qu, and hence, also Re ⊆ Ru ⊆ M (h) holds.

4.3. Traces

A trace in a (+,×) circuit is its subcircuit obtained by removing exactly one of the two edges
entering each sum gate. That is, in order to obtain a trace, we start at the output gate v of the
circuit and work backwards by the following rules:

1. If v is a product (×) gate then both its inputs are included.

2. If v is a sum (+) gate then exactly one of its inputs is included.

Lemma 7. For every monomial of h there is a trace, the contents of all whose gates and edges
contain this monomial.

For the contents of gates, this fact was proved already by Jerrum and Snir [10, Theorem 3.2].

Proof. Take an arbitrary monomial p of h. Then p belongs to the content Rv = M (h) of the output
gate v. So we start at the output gate and construct a desired trace by traversing the circuit
backwards. Suppose we have already reached some gate v, and let u and w be the gates in our
circuit entering this gate. Suppose that our monomial p belongs to the content Rv = Pv ×Qv of v.
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Case 1: v = u × w is a product gate. In this case, the contents of both edges entering v must
contain the polynomial p because these contents coincide with Rv. So, it is enough to show that
the monomial p must belong to the content Ru = Pu ×Qu of the head u of the edge (u, v). We
know that p belongs to the content Rv = Pv ×Qv = Pu × Pw ×Qv of the tail v. By Claim 2, we
also know that Pw ×Qv ⊆ Qu. So, p belongs to Ru = Pu ×Qu, as desired. Thus, in the case of a
product gate, we can include both entering edges into the trace.

Case 2: v = u+ w is a sum gate. Since our monomial p belongs to Pv ×Qv, we have that p = p′q
for some p′ ∈ Pv and q ∈ Qv. Since v is a sum gate, Claim 2 implies that p′ ∈ Pu ∪ Pw and
q ∈ Qu ∩ Qw. Assume w.l.o.g. that p′ ∈ Pu. Then the entire monomial p = p′q belongs to the
content Re = Pu ×Qv of the edge e = (u, v), as well as to the content Ru = Pu ×Qu of the head u
of this edge. So, in this case, we can include edge (u, v) into the trace.

4.4. Balanced rectangles

The support A = S(R) of each rectangle R = P ×Q is the cross-union A = B ∨C of the families
B = S(P ) and C = S(Q) of supports of the monomials in P and Q. Call a cross-union A = B ∨ C
m-balanced if m/3 ≤ |B| ≤ 2m/3 holds for all sets B ∈ B.

Lemma 8. Let f be a polynomial of counting complexity t = C(f). Then for every m ≥ 2, there
exit t cross-sums A1, . . . ,At such that:

(i) Ai ⊆ S(f) holds for all i;

(ii) every Ai is m-balanced;

(iii) every set S ∈ S(f) of size |S| ≥ m belongs to at least one Ai.

Proof. Take a (+,×) circuit of size t = C(f) counting a given polynomial f , and let h be the
produced by this circuit polynomial. Take a monomial p of h with at least m variables. By
Lemma 7, we know that there must be a trace such that the monomial p belongs to the content
Pv ×Qv of every gate v of this trace. That is, for every gate v of the trace, there must be a pair of
monomials pv ∈ Pv and qv ∈ Qv such that p = pvqv; if there are several such pairs, we just fix one
of them.

Claim 3. There is a gate v in the trace at which the factor pv of p has between m/3 and 2m/3
variables.

Proof. Define the weight of a gate v of the trace as the number of variables in the monomial pv.
Hence, every input gate of the trace has weight 1, whereas the output gate has weight at least m.
By starting at the output gate and traversing the trace backwards by always choosing the input
of larger weight, we can find a gate v whose weight is larger than 2m/3 but both gates u and w
entering v have weights at most 2m/3. By the subadditivity of the length-measure, at least one of
the gates u and w, say u, has then weight larger than (2m/3)/2 = m/3 and at most 2m/3.

Since our circuit counts the given polynomial f , the produced by the circuit polynomial h
must satisfy S(h) = S(f) (by Lemma 6). Let now v1, . . . , vt be the gates of our circuit, and let
Ai = Bi ∨ Ci be the cross-union of supports Bi = S(Pvi) and Ci = S(Qvi). All these cross-unions Ai
lie in the support S(h) of h, and hence, also in the support S(f) of our polynomial f . By Claim 3,
for every set S ∈ S(f) of size |S| ≥ m, there must be a cross-sum Ai = Bi ∨ Ci and sets A ∈ Bi and
C ∈ C such that S = B ∪C and m/3 ≤ |B| ≤ 2m/3. Thus, items (i) and (iii) are fulfilled. To fulfil
also item (ii), it is enough to just remove from each family Bi every set which is smaller than m/3
or larger than 2m/3.
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5. Proof of Theorem 2

We will need the following upper bound on the number of sets in a cross-union of two families.
Recall that dr(A) is the maximum possible number of sets in a family A containing a fixed set
with r or more elements.

Lemma 9. Let A ,B,C be families of sets such that B ∨ C ⊆ A. If every set of B ∨ C has at least
m elements, and B contains a set with r elements then

|B ∨ C | ≤ dr(A) · dm−r(A) .

Note that this upper bound is only nontrivial when B ∧ C 6= {∅}, that is, when sets of B may
intersect sets of C : if B ∧ C 6= {∅} then |C | ≤ dr(A) and |B| ≤ dm−r(A) trivially hold.

Proof. Fix a set B in B of size |B| = r, and consider the family

AB := {B} ∨ C = {B ∪ C : C ∈ C} ⊆ A .

Associate with every set A ∈ AB the family

CA := {C ∈ C : B ∪ C = A} ⊆ C .

The families CA with A ∈ AB give us a partition of C into |AB | pairwise disjoint subfamilies. Since
all sets in AB contain the set B of size |B| = r, we have that

|AB | ≤ dr(A) . (7)

On the other hand, for each set A ∈ AB, all sets of the family CA, and hence, also all sets of the
family B ∨CA contain the (fixed) set A \B of size |A \B| ≥ m− r, implying that for every A ∈ AB ,

|B ∨ CA| ≤ dm−r(A) . (8)

Take now any two sets B′ ∈ B and C ′ ∈ C . By the definition of families CA, the set C ′ belongs to
the family CA defined by the set A = B ∪C ′ of AB . Hence, the union B′ ∪C ′ belongs to the family
B ∨ CA. This yields

|B ∨ C | ≤
∑
A∈AB

|B ∨ CA| .

Together with (7) and (8), the desired upper bound follows:

|B ∨ C | ≤
∑
A∈AB

|B ∨ CA| ≤
∑
A∈AB

dm−r(A) = |AB | · dm−r(A) ≤ dr(A) · dm−r(A) .

Proof of Theorem 2. Let f = g + h be a polynomial such that every monomial of h has at least
m ≥ 2 variables, and every monomial of g has fewer than m/3 variables. Let A := S(h) be the
support of h. Our goal is to show that then C(f) must be at least |A | divided by the maximum K
of dr(A) · dm−r(A) over all integers r between m/3 and 2m/3.

By Lemma 8, there are at most t = C(f) m-balanced cross-sums A1, . . . ,At ⊆ S(f) such that
every set of S(f) with at least m elements belongs to at least one of these cross-sums. Since the
cross-sums Ai are m-balanced, they cannot have sets with fewer than m/3 elements, and hence,
cannot have any support of a monomial of the “smaller” polynomial g. This implies that each Ai
actually lies entirely in the support A = S(h) of the “larger” polynomial h. By Lemma 9, each |Ai|
is at most the product dri(A) · dm−ri(A) for some integer m/3 ≤ ri ≤ 2m/3. By taking an r = ri
for which this product is maximal, the desired lower bound t ≥ |A |/dr(A) · dm−r(A) follows.
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6. Proof of Theorem 3

We will give an amazing simple proof of a more general result, and then easily derive Theorem 3
as its special case. Associate with every finite set P of monomials a nonnegative real number µ(P ).
Call such a measure µ legal if the following three conditions are fulfilled.

1. Normalization: µ({xi}) ≤ 1 for every variable xi.

2. Additivity : µ(P ∪Q) ≤ µ(P ) + µ(Q).

3. Multiplicativity : µ(P ×Q) ≤ µ(P ) · µ(Q).

Call a polynomial h (k, l)-free with respect to µ if for any two sets P and Q of monomials,
P ×Q ⊆ M (h) implies µ(P ) ≤ k or µ(Q) ≤ l. Recall that M (h) stands for the set of all monomials
of h.

Theorem 10. Let 1 ≤ k ≤ l. If a polynomial f is (k, l)-free with respect to some legal measure µ
then

A(h) ≥ µ(M (h))

2lk2
.

Proof. Fix some (+,×) circuit computing h. Recall that the content Re of an edge e = (u, v) in
the circuit is the rectangle Re = Pu×Qv if v is a sum (+) gate, and is the rectangle Re = Pv ×Qv
if v is a product (×) gate; as before, Pv is the set of monomials produced at the gate v, and Qv is
the complement of v. Call an edge e of the circuit light if µ(Re) ≤ lk2.

Lemma 11. Every monomial of h is contained in the content of at least one light edge.

Proof. Call a gate u small if µ(Pu) ≤ k, and large otherwise. We can assume that the output gate
is large because otherwise we would have µ(M (h)) ≤ |M (h)| ≤ k (by the additivity of µ), and
there would be nothing to prove.

Fix a monomial p in M (h). By Lemma 7, there must be a trace in the circuit, the contents Re
of all whose edges e contain this vector. Start at the output gate of the trace (which is also the
output gate of the entire circuit), and construct a path by going backwards and using the following
rule, where u is the last already reached gate:

1. If u is a sum (+) gate then go to the (unique) node entering u in the trace.

2. If u is a product (×) gate then go to any of its two inputs if they both are large or both are
small, and go to the large input if the second input is small.

Since the output gate is large and (due to the normalization property of our measure) every
input gate is small, we will eventually reach some input gate. Since the first node of this path
is small, and the last one is large, there must be an edge e = (u, v) such that µ(Pu) ≤ k but
µ(Pv) > k. It remains to show that this edge must be light. Since Pv ×Qv ⊆M and µ(Pv) > k,
the (k, l)-freeness of our polynomial f with respect to the measure µ implies that µ(Qv) ≤ l must
hold.

If v = u+ w is a sum gate then Re = Pu ×Qv, and the multiplicativity of µ yields

µ(Re) = µ(Pu ×Qv) ≤ µ(Pu) · µ(Qv) ≤ kl .

If v = u× w is a product gate then Re = Pv ×Qv = Pu × Pw ×Qv. Since the gate u is small (it
has µ(Pu) ≤ k), step 2 in the construction of the path implies that the second gate w entering v
must be also small, that is, µ(Pw) ≤ k must hold as well. The multiplicativity of µ yields

µ(Re) = µ(Pu × Pw ×Qv) ≤ µ(Pu) · µ(Pw) · µ(Qv) ≤ k2l .
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To finish the proof of Theorem 10, let E be the set of all light edges in the circuit. By
Lemma 11, every monomial p ∈ M (h) belongs to the content Re of at least one edge e ∈ E;
hence, M (h) ⊆

⋃
e∈E Re. Since every edge e ∈ E is light, its content Re has bounded measure:

µ(Re) ≤ lk2. The additivity of the measure yields

µ(M (h)) ≤
∑
e∈E

µ(Re) ≤ lk2 · |E| .

Since the gates have fanin at most two, the total number of gates must be at least |E|/2, as
desired.

Proof of Theorem 3. Take a polynomial f , and suppose that it is (k, l)-free for some 1 ≤ k ≤ l.
Let A = S(f) be the family of supports of monomials of f . The (k, l)-freeness of f means that for
every two antichains B and C such that B ∨ C ⊆ A , at least one of |B| ≤ k or |C | ≤ l must hold.

Fix a (+,×) circuit counting the polynomial f , and let h be the polynomial (syntactically)
produced by the circuit itself. Our goal is to show that the circuit must have at least |L(f)|/lk2

gates, where L(f) ⊆ S(f) is the lower support of f ; this is the antichain formed by only taking
minimal sets of S(f), those containing no other set of S(f).

Since the circuit counts f , Lemma 6 tells us that S(h) = S(f) must hold, that is, the produced
polynomial h must have the same support as the original polynomial f . In particular, then
L(h) = L(f) must hold as well.

We are going to apply Theorem 10 with the following measure µ(P ) := |L(P )| of sets P of
monomials, where L(P ) is the family of minimal supports of monomials in P . Since L(h) = L(f)
holds, we have that µ(M (f)) = µ(M (h)). So, it remains to show that this measure µ is legal, and
that the polynomial h is (k, l)-free with respect to this measure.

To show that the polynomial h is (k, l)-free with respect to the measure µ(P ) = |L(P )|, take
any two sets P and Q of monomials such that P ×Q ⊆ M (h), and let B = L(P ) and C = L(Q).
Then also

B ∨ C = L(P ) ∨ L(Q) ⊆ S(P ×Q) ⊆ S(h) = S(f) .

Since B ∨ C ⊆ S(f), the (k, l)-freeness of f implies that either µ(P ) = |B| ≤ k or µ(Q) = |C | ≤ l
must hold, as desired.

Let us now show that the measure µ(P ) = |L(P )| is legal. The measure is clearly normalized
because |L({xi})| = 1. To show the two remaining properties (additivity and multiplicativity),
take any two finite sets P and Q of monomials.

Since every minimal set of a union of two families must be minimal in at least one of these
families, we have that L(P ∪Q) ⊆ L(P ) ∪ L(Q), implying that

µ(P ∪Q) = |L(P ∪Q)| ≤ |L(P )|+ |L(Q)| = µ(P ) + µ(Q) ;

hence, the additivity. Since every minimal set of a cross-union of two families must be a union of
some minimal sets of these families, we also have that L(P ×Q) ⊆ L(P ) ∨ L(Q), implying that

µ(P ×Q) = |L(P ×Q)| ≤ |L(P ) ∨ L(Q)| ≤ |L(P )| · |L(Q)| = µ(P ) · µ(Q) ;

hence, the multiplicativity.

7. Concluding remarks

In this paper, we proved general lower bounds for a model of circuits whose power lies strictly
between that of monotone boolean and monotone arithmetic (+,×) circuits—the model of counting
(+,×) circuits.

A yet another interesting model, whose power lies between the monotone arithmetic and
monotone boolean complexities, is that of tropical (min,+) circuits. Inputs here are variables
x1, . . . , xn taking their values in N = {0, 1, . . .}, and gates are fanin-2 Min and Sum operations.
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That is, the “sum” (+) in a (+,×) circuit is now interpreted as min{x, y}, and the “product” (×)
as x+ y. Each such circuit solves some minimization problem of the form

f̂(x) = min
e∈E

n∑
i=1

eixi ,

where E ⊂ Nn is some (fixed) finite set of vectors. Tropical circuits are important because any
dynamic programming algorithm for minimization problems, using only Min and Sum operations,
is just a (recursively constructed) tropical circuit.

As counting and deciding (+,×) circuits, tropical circuits can be also viewed as standard (+,×)
circuits “tropically” computing a given polynomial

f(x) =
∑
e∈E

ce

n∏
i=1

xeii

in the following sense. The tropicalization of f is the minimization problem f̂ above. For example,
the tropicalization of f = xy2 + 3y2z3 is f̂ = min{x+ 2y, 2y + 3z}.

If a (+,×) circuit produces some polynomial h then we say that the circuit tropically computes

a given polynomial f , if ĥ(a) = f̂(a) holds for all a ∈ Nn. The difference from counting (+,×)
circuits is that, in tropically computing (+,×) circuits, the absorption axiom x+ xy = x is allowed
(min{x, x + y} = x), but the idempotent axiom x2 = x is not (x + x 6= x unless x = 0). For
a polynomial f , its tropical complexity T(f) is the minimum size of a (+,×) circuit tropically
computing f . It is clear that T(f) ≤ A(f) holds for every polynomial f .

An interesting fact is that T(f) ≥ A(fle) holds, as long as the polynomial f is multilinear
[10, 11]. Recall that fle is lower envelope of f , that is, a homogeneous polynomial consisting of all
monomials of f of smallest degree. In particular, this implies that for multilinear polynomials f
which are also homogeneous, their tropical complexity is at least their counting complexity.

Let us note, however, that the homogeneity is here crucial: no similar relation holds for
nonhomogeneous polynomials. In fact, then both gaps C(f)/T(f) and T(f)/C(f) can be exponential
in the number of variables. This means that tropical and counting complexity measures are
incomparable!

To show the first gap, consider the extension f = Pern+
∑n
i,j=1 xij of the permanent polynomial

Pern by adding the sum of all n2 variables. Corollary 1 implies that the counting complexity of f
remains exponential: C(f) = 2Ω(n). But the tropical complexity of f is T(f) ≤ n2: since variables
cannot take negative values, the minimum will be achieved on a single variable. Hence, the first
gap C(f)/T(f) = 2Ω(n).

To show the second gap, consider the isolated node polynomial In of n2 variables introduced
in Sect. 3.1. Let f be the linearization of In. That is, f is obtained from In by removing all
nonzero exponents in all monomials. We observed that C(f) = O(n3). On the other hand, every
monomial of f has degree between n and 2n, and the monomials of degree n correspond to perfect
matchings. Thus, the lower envelope fle of f is just the permanent polynomial, that is, fle = Pern.
Since A(Pern) ≥ C(Pern) = 2Ω(n) (see Corollary 1) and T(f) ≥ A(fle) holds for every multilinear
polynomial, the desired lower bound T(f) = 2Ω(n) follows.
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A. Number of s-t paths is hard to count

The s-t path polynomial Pn has one variable xi,j for each edge of a complete directed graph
Kn on n nodes {1, . . . , n}. Each monomial of Pn is the product of all variables corresponding to
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the edges of some simple directed path from node s = 1 to node t = n. Hamiltonian paths are s-t
paths with n− 1 edges. The Bellman–Ford dynamic programming algorithm [4, 5] immediately
yields that the decision complexity of this polynomial is small: D(Pn) = O(n3).

Every 0-1 input a to the polynomial Pn specifies some subgraph of Kn, and Pn(a) is then
exactly the number of simple s-t paths in this subgraph. Thus, every (+,×) circuit counting the
polynomial Pn counts the number of s-t paths in the corresponding graphs. Our goal is to show
that every such circuit must have exponential size. We will do this indirectly via reductions to
some known results.

The Hamiltonian path function Hn is a monotone boolean function which, given a subgraph G
of Kn (specified by 0-1 input), decides whether G has a Hamiltonian path. The Clique function
Cln is also a monotone boolean function which, given a subgraph G of Kn, decides whether G has
a complete subgraph on

√
n or more nodes.

By tightening Razborov’s method of approximations [14], Alon and Boppana [3] proved that

Cln requires monotone boolean circuits of size 2n
Ω(1)

. Then Pudlák [12, Theorem 6] observed that
Razborov’s proof also works when arbitrary monotone real-valued functions g : R2 → R are allowed

as gates. This led to a lower bound B(Cln) = 2n
Ω(1)

for the clique function, where B(f) stands for
the minimum number of gates in a monotone real-valued circuit computing f .

By known reductions, this gives an exponential lower bound also for Hn. Namely, say that
a boolean function f(x1, . . . , xn) is a monotone projection of a boolean function g(y1, . . . , ym)
if there exists an assignment σ : {y1, . . . , ym} → {x1, . . . , xn, 0, 1} such that f(x1, . . . , xn) =
g(σ(y1), . . . , σ(ym)). It is clear that then B(f) ≤ B(g): we only have to change inputs of a circuit
for g to obtain a circuit computing f . Results of Valiant [20] imply that Cln is a monotone
projection of Hm for m = nO(1); as noted by Alon and Boppana [3], already m = O(n2) is enough

in this case. Thus, we have that B(Hm) ≥ B(Cln) ≥ 2n
Ω(1)

. It remains therefore to show that
B(Hn) ≤ C(Pm) + 1 holds for m = nO(1).

This can be shown by a standard trick allowing to decide whether a graph has a Hamiltonian
s-t path, if one can count the number of all s-t paths. Set p = n log n, and assume for simplicity
that p is an integer. Given an input graph Gn on n nodes, replace each edge (u, v) by a directed
acyclic graph containing exactly 2p paths from u to v:

u ◦
◦

◦
1

◦

◦
2

· · ·

· · ·

◦

◦

◦

◦
p

◦ v
66

((
((66

//

##//

;; //

##//

;;

The resulting graph Gm has only m = O(pn2) = O(n3 log n) nodes.

Claim 4. A graph Gn has a Hamiltonian path if and only if the number of s-t paths in Gm is at
least T = (2p)n−1.

Proof. By the construction, every s-t path of length l in Gn gives exactly (2p)l s-t paths in the
resulting graph Gm. Thus, if Gn has a Hamiltonian s-t path (of length l = n− 1) then the graph
Gm has at least T s-t paths. On the other hand, if Gn has no Hamiltonian s-t path then the longest
s-t path has at most n − 2 edges. The number of s-t paths of length at most n − 2 is bounded
from above by nn−1. So, in this case, Gm can have at most (2p)n−2 · nn−1 = T/n s-t paths.

Suppose now we have a (+,×) circuit counting Pm. Extend this circuit by adding one additional
threshold gate testing whether the number computed at the output gate of the circuit is at least T .
By Claim 4, the resulting circuit is a (very special) monotone real-valued circuit computing the
Hamiltonian path function Hn.
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