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Abstract. We use elementary arguments to show that randomization cannot spare even one
single ring operation to compute real multivariate polynomials.

1. INTRODUCTION. Let R be any of the rings Z (integers), Q (rational numbers),
or R (real numbers). We are interested in how many ring operations +, −, × must we
apply to compute a given polynomial f over R, when starting from input variables and
ring elements. Note that we only want to compute the polynomial f as a function, not
to produce it as a formal expression.

Every such procedure F for computing f (known also as a straight-line program
or arithmetic circuit) is just a sequence f1, . . . , fl of polynomials, where each fi is
obtained by applying one of the ring operations +, −, × to some two previous (not
necessarily distinct) polynomials in R ∪ {x1, . . . , xn, f1, . . . , fi−1}; elements of R are
also polynomials (of zero degree). The length of such a procedure is the number l of
polynomials in the sequence, and the function F : Rn → R computed by the procedure
is the function computed by the last polynomial fl .

Examples. A naive procedure to compute a univariate polynomial f (x) = ∑d

k=0 akx
k

has length 3d − 1: we need d − 1 additions and 2d multiplications (to compute powers
and multiply them with coefficients). But we can do better: the Horner procedure f1 =
ad−1 + ad × x, f2 = ad−2 + f1 × x, . . . , fd = a0 + fd−1 × x also computes f , and
has length only 2d; for ease of description, we here perform two operations in one
step. Some polynomials can be computed by even exponentially shorter procedures.
For example, the univariate polynomial f (x) = ∑d

k=0

(
d

k

)
xk of degree d = 2m can

be computed by the procedure f1, . . . , fl of length only l = m + 1. Namely, we can
take f1 = x + 1 and fi+1 = fi × fi ; then fm+1(x) = (x + 1)d which, by the binomial
theorem, is the same function as f (x).

A natural question is: can randomization shorten the procedures for computing
polynomials? Our goal is to give a negative answer, in a very strong sense: flipping
a coin during the computation will not spare even one single ring operation!

A random procedure is a (deterministic) procedure which, besides the string x =
(x1, . . . , xn) of input variables, can use an additional string r = (r1, . . . , rm) of ran-
dom variables taking their values in the underlying ring R; the actual probability dis-
tributions of these random variables will be irrelevant in our argument. What such a
procedure then computes is a random polynomial, an object which attracted the atten-
tion of many generations of mathematicians.

A random procedure F computes a given n-variate polynomial f (x) with a positive
success probability if there is an ε = ε(n) > 0 such that, for every input a ∈ Rn,
F(a, r) = f (a) holds with probability at least ε. That is, we allow an arbitrarily small
nonzero success probability but, on every input a ∈ Rn, the correct value f (a) must
be computed with this (or larger) probability.
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Theorem. If a polynomial f can be computed by a random procedure of length l

with a positive success probability, then f can be also computed by a deterministic
procedure of the same length l.

The message of this theorem is: randomization cannot save even one single ring
operation. This—the optimality of the result, together with the extreme simplicity of
its proof—is our main contribution. That randomization cannot help “much” when
computing polynomials was already shown by Cucker et al. [1]. They consider more
general procedures that, besides the ring operations +, −, ×, can also use the division
and signum operations, and show that also then random procedures can be simulated
by at most quadratically longer deterministic procedures. They obtained this result
via a cute combination of deep known results in statistical learning theory, algebraic
geometry, and quantifier elimination over the reals. In contrast, we show that if the
random procedures do not use the signum operation, then an elementary argument,
based on the following two simple lemmas, gives an optimal derandomization.

Lemma 1. Suppose that an n-variate polynomial f can be computed by a random
procedure of length l with a positive success probability ε > 0. Then, for every finite
nonempty set A ⊂ Rn, there is a deterministic procedure F of length l such that
F(a) = f (a) holds for more than ε

2 |A| inputs a ∈ A.

Proof. Take a random procedure of length l computing f with a success probability
ε > 0. Let A ⊂ Rn be a finite set, and take m := �4ε−2 ln |A|� independent copies
of this random procedure. For an input a ∈ A, let Xa,i be the Bernoulli 0/1-random
variable with Xa,i = 1 if and only if the ith copy outputs the correct value f (a)

on input a. Since Pr
[
Xa,i = 1

] ≥ ε holds for every i, the expected value μ of the
sum Xa = Xa,1 + · · · + Xa,m is μ ≥ εm. So, for δ := ε/2, we have Pr [Xa ≤ δm] ≤
Pr [Xa ≤ μ − δm]. By Chernoff’s bound (see, for example, [2, Theorem 1.1]), the
latter probability is at most p = e−2δ2m = e−ε2m/2 ≤ |A|−2. By the union bound, the
probability that Xa ≤ δm will hold for at least one input a ∈ A is at most p · |A|,
which is strictly smaller than 1. Thus, the probability that, for every input a ∈ A, more
than δm of the m copies of our random procedure will output the correct value f (a) is
nonzero.

There must therefore exist m realizations F1, . . . , Fm of our random procedure
(deterministic procedures of length l) such that, on every input a ∈ A, more that δm of
them will output the correct value f (a). By double counting, at least one of the pro-
cedures F1, . . . , Fm must then output correct values f (a) on more than δ|A| = ε

2 |A|
inputs a ∈ A.

For finite fields F, and S = F, the following extension of the fundamental theorem
of algebra to multivariate polynomials dates back to 1922, and was originally proved
by Ore [3]. Various extensions to arbitrary fields and arbitrary finite subsets S ⊆ F

were then found by other authors. We will use that due to Schwartz [4].

Lemma 2 (Ore–Schwartz). Let F be a field, f (x) a nonzero n-variate polynomial
of degree d ≤ |F| over F, and S ⊆ F a finite subset of |S| ≥ d field elements. Then
|{a ∈ Sn : f (a) = 0}| ≤ d|S|n−1.

Proof. We induct on the number n of variables. The statement is true for n = 1 since
then the number of roots of f cannot exceed its degree. For the induction step, write
the polynomial f as f (x) = ∑d

i=0 fi · xi
n, where each fi is some polynomial in the first

n − 1 variables. Let t = max{i : fi �= 0}. So, ft(x1, . . . , xn−1) is a nonzero polynomial
of degree at most d − t .
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By the induction hypothesis, ft can have at most (d − t)|S|n−2 roots a ∈ Sn−1 and,
hence, there can be at most (d − t)|S|n−1 points (a, b) in Sn−1 × S with f (a, b) = 0
and ft(a) = 0. For every point a ∈ Sn−1 with ft(a) �= 0, the polynomial f (a, xn) is a
nonzero univariate polynomial of degree t in one variable xn, and can have at most t

roots b ∈ S. So, there can be at most t |S|n−1 points (a, b) in Sn−1 × S with f (a, b) = 0
and ft(a) �= 0. Overall, the number of points (a, b) ∈ Sn with f (a, b) = 0 is at most
(d − t)|S|n−1 + t |S|n−1 = d|S|n−1.

2. PROOF OF THE THEOREM. Let f (x) be an n-variate polynomial over R, and
suppose that f can be computed by a random procedure of length l with a success
probability ε > 0. Set d := max{deg(f ), 2l}, and take a subset S ⊆ R of size |S| ≥
2d/ε; this is the only place where we need |R| to be unbounded. By Lemma 1 (applied
with A = Sn), there must be a subset X ⊆ Sn of |X| > ε

2 |S|n input vectors and a
deterministic procedure F of length l such that F(a) = f (a) holds for all a ∈ X.

The procedure F is a sequence of only l applications of ring operations to previously
obtained polynomials. Since we start from polynomials of degree 0 and 1 (scalars and
single variables), and since the degree after each application can only be doubled, the
polynomial F(x) has degree at most 2l . So, the degree of the polynomial g(x) :=
f (x) − F(x) cannot be larger than d.

Were g a nonzero polynomial, then Lemma 2 (applied with F = R) would require
the set X to have cardinality |X| at most d|S|n−1. But then we would have ε

2 |S|n <

|X| ≤ d|S|n−1 and, hence, also |S| < 2d/ε, which contradicts our choice of S. So,
g(x) = f (x) − F(x) must be the zero polynomial, meaning that F(a) = f (a) must
hold for all inputs a ∈ Rn, as desired.

Remark. The result also holds when the domain R is Q or R, and all four field oper-
ations +, −, ×, ÷ can be used, that is, when procedures can also divide. What such
procedures then compute are rational functions f (x) = p(x)/q(x), where p and q

are polynomials. In this case, we can argue as above with d := r + 2l , where r is the
maximum degree of p and q. The deterministic procedure F obtained in the proof of
the theorem then also computes some rational function F(x) = P(x)/Q(x), where
the polynomials P and Q have degrees at most 2l . So, the degree of the polynomial
g(x) := p(x) · Q(x) − q(x) · P(x) cannot exceed d, and the same argument shows
that g must be the zero polynomial.
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