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Abstract

We prove a general lower bound on the size of switching-and-rectifier networks over any
semiring of zero characteristic, including the (min,+) semiring. Using it, we show that the
classical dynamic programming algorithm of Bellman, Ford and Moore for the shortest s-t
path problem is optimal, if only Min and Sum operations are allowed.
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1. Introduction

Dynamic programming algorithms for discrete minimization problems are actually (recur-
sively constructed) circuits or switching networks over the (min,+) semiring, also known as
the tropical semiring. So, in order to understand the limitations of dynamic programming,
we need lower-bound arguments for tropical circuits and switching networks.

In this paper, we present such an argument for tropical switching networks over the
(min,+) semiring. These networks correspond to dynamic programming algorithms solving
minimization problems f : Nn → N of the form

f(x1, . . . , xn) = min
a∈A

n∑
i=1

aixi , (1)

where A ⊂ Nn is a finite set of nonnegative integer vectors a = (a1, . . . , an). We prove that
every tropical switching network solving f must have at least f(1, . . . , 1) · c(f) edges, where
c(f) is the smallest size of a subset S ⊆ [n] = {1, . . . , n} such that, for every vector a ∈ A,
there is a position i ∈ S with ai 6= 0 (Sect. 3). We then demonstrate this general lower bound
by two almost optimal lower bounds.

Shortest paths. Our first application—which was also our main motivation—concerns the
classical dynamic programming algorithm of Ford [1], Bellman [2], and Moore [3] for the
shortest s-t path problem. This algorithm actually solves the shortest k-walk problem: given
an assignment of nonnegative weights to the edges of the complete graph on [n] = {1, . . . , n},
find the minimum weight of a walk of length k from node s = 1 to the node t = n. Recall
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that a walk is an alternating sequence of nodes and connecting edges. A walk can travel over
any node (except of s and t) and any edge (including loops) any number of times. A path is
a walk which cannot travel over any node more than once. The length of a walk (or path) is
its number of edges, counting repetitions.

In a related shortest k-path problem, the goal is to compute the minimum weight of an
s-t path of length at most k. Note that, if we give zero weight to all loops, then these two
problems are equivalent. This holds because weights are nonnegative, every s-t walk of length
k contains an s-t path of length 6 k, and every s-t path of length 6 k can be extended to an
s-t walk of length k by adding loops.

The Bellman–Ford algorithm gives a tropical switching network of depth k, with kn nodes
and kn2 edges solving the k-walk problem, and hence, also the shortest k-path problem. By
combining our general lower bound with a result of Erdős and Gallai [4] about the maximal
number of edges in graphs without long paths, we show (Theorem 1) that this algorithm is
almost optimal: at least about kn(n − k) edges are also necessary in any tropical switching
network solving the k-walk problem. We also show that the same number of edges is necessary
even in boolean switching networks, if their depth is restricted to k (Theorem 4).

Matrix multiplication. Our next application concerns the complexity of matrix multiplication
over the (min,+) semiring. Kerr [5] has shown that any (min,+) circuit, simultaneously
computing all the n2 entries of the product of two n×n matrices over the (min,+) semiring,
requires Ω(n3) gates. This showed that the dynamic programming algorithm of Floyd [6] and
Warshall [7] for the all-pairs shortest paths problem is optimal, if only Min and Sum operations
are allowed. Later, Pratt [8], Paterson [9], and Mehlhorn and Galil [10] independently proved
the same lower bound even over the boolean semiring.

These lower bounds, however, do not imply the same lower bound for the single-output
version Mn of this problem: compute the sum of all entries of the product matrix. Using our
general lower bound, we show that the minimum number of switches in a tropical switching
network solving Mn over the (min,+) semiring is 2n3 (Theorem 3).

Remark 1. Let us stress that we are interested in proving lower bounds for problems that
have very small switching networks. In both problems above, we have N = Θ(n2) variables.
These problems have tropical switching networks of sizes O(kN) and O(N3/2), respectively.
Are these upper bounds tight?

Using known lower-bound arguments for monotone boolean and arithmetic circuits, large
(even exponential) lower bounds can be derived for tropical circuits solving some minimization
problems as the minimum weight spanning tree, or the minimum weight perfect matching
problem (see, e.g. [11, Theorem 30] and references herein). However, these arguments are
too “generous” and fail for problems that have small tropical complexity.

Fortunately, there is a classical lower-bound argument of Shannon, Moore and Markov
allowing to prove also small lower bounds for monotone boolean switching networks. By an
extension of this argument to tropical networks, we will show that the two upper bounds
above are indeed optimal.

In technical terms, none of the proofs in this paper is complicated. Our main contribu-
tion is a somewhat unexpected connection between different topics—some central dynamic
programming algorithms, tropical mathematics, extremal graph theory, and classical lower
bounds for monotone switching networks.
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2. Polynomials and their switching networks

Let (R,+,×, 0, 1) be a semiring with “sum” (+) and “product” (×) operations, additive
identity (“zero element”) 0, and multiplicative identity 1 (“unit element”). We only consider
commutative semirings, and assume the “annihilation” property x×0 = 0 of the zero element.
Recall that a (multivariate) polynomial over R is a formal expression of the form

f(x1, . . . , xn) =
∑
a∈A

ca

n∏
i=1

xaii , (2)

where A ⊂ Nn is a finite set of nonnegative integer vectors, and ca > 1 are integer coefficients.
The coefficients ca are not necessarily elements of R: they only indicate the number of times
the corresponding to them monomials appear in the polynomial. The degree of a monomial∏n
i=1 x

ai
i is the sum a1 + a2 + · · ·+ an of its exponents.

Every polynomial f defines the function f : Rn → R, whose value f(r) = f(r1, . . . , rn) is
obtained by substituting elements ri ∈ R for xi in f . Different polynomials may define the
same function. Moreover, over different semirings R, these functions may be different. For
example, in the boolean semiring, we have R = {0, 1}, x+y := x∨y, x×y := x∧y, 0 := 0, and
1 := 1, whereas in the tropical (min,+) semiring, we have R = N∪{+∞}, x+y := min{x, y},
x× y := x+ y, 0 := +∞, and 1 := 0. Hence, over these two semirings, the functions defined
by the polynomial (2) are, respectively,

f =
∨
a∈A

∧
i : ai 6=0

xi and f = min
a∈A

n∑
i=1

aixi .

A semiring (R,+,×, 0, 1) is of zero characteristic, if 1+ 1+ · · ·+ 1 6= 0 holds for any finite
sum of the unit element 1. Note that both semirings above are such.

The support of a monomial p =
∏n
i=1 x

ai
i is the set Xp = {xi : ai 6= 0} of all variables

occurring in the monomial with nonzero degree. A monomial of a polynomial f is minimal,
if its support does not contain the support of any another monomial of f as a proper subset.
Let Sup(f) denote the family of supports of all minimal monomials of f .

Lemma 1. If two polynomials f and g define the same function over a semiring of zero-
characteristic, then Sup(f) = Sup(g). In particular, both polynomials then define the same
function also over the boolean semiring.

Proof. Let us first show that the support of every monomial of g must contain the support
of at least one monomial of f , and vice versa.

Assume contrariwise that there is a monomial q of g such that Xp \Xq 6= ∅ holds for all
monomials p of f . If we set to 1 all variables in Xq, and set to 0 all the remaining variables,
then on the resulting assignment a, we have that f(a) = 0, because every monomial of f
contains at least one variable set to 0. But the monomial q of g is evaluated to 1. Since the
semiring is of zero-characteristic, this yields g(a) 6= 0, a contradiction.

Assume now that Sup(f) 6= Sup(g). Then, by symmetry, we may assume that there is
a minimal monomial p of f such that Xq 6= Xp holds for all monomials q of g. That is, for
every q, we have either Xq \Xp 6= ∅, or Xq ⊂ Xp (proper inclusion). As we have shown in the
previous paragraph, the support Xq of q must contain the support Xp′ of some monomial p′

of f . Since the monomial p is minimal in f , this means that the strict inclusion Xq ⊂ Xp is
3
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x2 // x3 // xk+1 //

x3 // x4 // xk+2 //
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xn−k+1 // xn−k+2 // xn //

Figure 1: A switching-and-rectifying network computing
the elementary symmetric polynomial

Sn
k (x1, . . . , xn) =

∑
|S|=k

∏
i∈S

xi

over any semiring. The polynomial has
(
n
k

)
monomials, but

the network has only k(n− k + 1) switches.

impossible. Thus, we have that Xq \Xp 6= ∅ must hold for all monomials q of g. If we set to 1
all variables in Xp, and set to 0 all the remaining variables, then on the resulting assignment a,
we have that g(a) = 0. But since q(a) = 1 and the semiring is of zero-characteristic, we have
that f(a) 6= 0, a contradiction. This completes the proof of the equality Sup(f) = Sup(g).

Over the boolean semiring, this equality means that the monotone boolean functions
corresponding to f and g have the same set of minterms, and hence, must coincide as boolean
functions.

A classical circuit model for computing polynomials f(x1, . . . , xn) over arbitrary semirings
is that of switching-and-rectifier networks; to use a shorter term, we will call them just
switching networks. Such a network is a directed acyclic graph G with two specified nodes,
the source node s and the target node t. Paths from s to t are called chains. Each edge is
either unlabeled (is a rectifier) or is labeled by some variable (is a switch). The graph may
be a multigraph, that is, several edges may have the same endpoints. The size of a network
is the total number of switches, and the depth is the maximum number of edges in a chain.

Every switching network G produces a unique polynomial fG in a natural way. Namely,
each chain π in G defines a monomial pπ, which is just the product of labels of switches along
π. The polynomial fG is then the sum of monomials pπ over all chains in G:

fG(x1, . . . , xn) =
∑

π is a chain in G

pπ .

The switching network G computes a given polynomial f over a semiring R, if both polyno-
mials fG and f define the same function over R. Every polynomial f can be computed by a
trivial switching network which has a separate chain for each monomial of f . However, some
polynomials allow much more compact representation as switching networks (see Fig. 1).

Remark 2. The example of the elementary symmetric polynomial Snk defined in Fig. 1 demon-
strates that the presence of rectifiers (unlabeled edges) in switching networks can increase
their power. The figure shows that, for k = 2, already 2n − 2 switches are enough over any
semiring. On the other hand, results of Krichevskii [12] and Hansel [13] imply that, even over
the boolean semiring, Sn2 requires Ω(n log n) switches, if no rectifiers are allowed.

3. A general lower bound

Our starting point is a classical lower bound on the size of monotone boolean switching
networks, i.e. networks over the boolean semiring. Recall that a minterm (resp., maxterm) of
a monotone boolean function f is a minimal set of its variables such that, if all these variables
are set to 1 (resp., to 0), then f outputs 1 (resp., 0) independently on the values of other
variables.
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The following lower bound is usually attributed to Markov [14]; a version of it for switching
networks without rectifiers was earlier proved by Moore and Shannon [15]. The theorem is
also reminiscent of the min-max fact—a dual to Menger’s theorem attributed to Roback-
er [16]: the maximum number of edge-disjoint s-t cuts in a graph is equal to the minimum
length of an s-t path.

Markov Theorem (Markov [14]). If l is the minimum size of a minterm, and c the minimum
size of a maxterm of a monotone boolean function f , then every monotone boolean switching
network for f must have at least l · c switches.

This theorem can already be used to derive lower bounds for tropical switching networks:
by Lemma 1, every lower bound over the boolean semiring is also a lower bound over any
semiring of zero characteristic, including the (min,+) semiring.

Example 1. Since all minterms of the boolean version of the elementary symmetric polynomial
Snk defined in Fig. 1 have size l = k, and all maxterms have size c = n − k + 1, Markov’s
theorem immediately implies that every boolean switching network computing Snk must have
at least k(n − k + 1) switches. By Lemma 1, we have the same lower bound for tropical
(min,+) switching networks solving the minimization problem

Snk (x1, . . . , xn) = min
|S|=k

∑
i∈S

xi .

This shows that the the naive switching network depicted in Fig. 1 is, in fact, optimal.

However, boolean versions of some important minimization problems have very short
minterms. A prominent example in this respect is the k-walk polynomial f . This polynomial
has, for example, the monomial p = x1,2x

k−2
2,2 x2,n of degree k corresponding to a walk of

length k from 1 over 2 to n (the loop at node 2 is taken k−2 times). But the boolean version
x1,2x2,2x2,n of this monomial has only three variables. So, Markov’s theorem cannot yield
any nontrivial lower bound on the boolean complexity of the k-walk polynomial.

To still be able to obtain nontrivial lower bounds at least for tropical switching networks,
we will now extend Markov’s theorem to arbitrary semirings of zero characteristic, including
the (min,+) semiring.

Let f(x1, . . . , xn) be a polynomial over some semiring (R,+,×, 0, 1). Define the length
l(f) of f over R to be the smallest degree of a monomial in a polynomial g defining the
same function over R as f . Note that l(f) may crucially depend of the underlying semiring.
For example, the polynomial f = x2y3 + z6 has l(f) = 5 over the (min,+) semiring (then
f = min{2x+ 3y, 6z}), but has l(f) = 1 over the boolean semiring (then f = xy ∨ z).

The cover number c(f) of a polynomial f is the minimum number of variables such that
every monomial of f contains at least one of these variables. In other words, c(f) is the
minimum number of variables such that setting these variables to 0 forces f to output 0
independently on the values of the remaining variables.

Observation 1. If two polynomials f and g define the same function over a semiring of
zero-characteristic, then l(f) = l(g) and c(f) = c(g).

Proof. The first equality l(f) = l(g) follows directly from the definition of the length of poly-
nomials, and holds over any semiring. The equality c(f) = c(g) follows from Lemma 1, because
c(f) is exactly the minimum size of a set of variables of f intersecting all sets in Sup(f).
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Theorem 1. Every switching network computing a polynomial f over a semiring of zero
characteristic must have at least l(f) · c(f) switches.

Proof. Take such a switching network G, and let fG be the polynomial produced by G. The
polynomial fG must define the same function as f . Since the minimum degree of a monomial
of fG is exactly the minimum number of switches in a chain of G, Observation 1 implies that
every chain of G must have at least l(f) switches.

Define a cut of G to be a set of its switches such that every chain in G contains at least
one switch in this set. The set of labels of each cut of G must clearly contain at least one
variable of every monomial of the polynomial fG and, by Lemma 1, also of the polynomial
f . By Observation 1, every cut of G must have at least c(fG) = c(f) switches. So, to obtain
the desired lower bound l(f) · c(f) on the total number of switches in G, it is enough to show
that G must contain at least l(f) edge-disjoint cuts.

For this, associate with every node u in G the minimum number du of switches in a path
from the source node s to u. Hence, the source node s has ds = 0. Since every chain of G
must have at least l(f) switches, the target node t has dt > l(f). Moreover, dv 6 du+ 1 holds
for every edge e = (u, v), and dv 6 du if the edge e is a rectifier. For every 0 6 i 6 dt − 1,
let Ci be the set of all edges (u, v) such that du = i and dv = i + 1. Since the sets Ci are
clearly disjoint, and all edges in Ci must be switches, it remains to show that each Ci is a
cut. For this, take an arbitrary chain (u1, u2, . . . , um) with u1 = s and um = t. The sequence
of numbers du1 , . . . , dum must reach the value dt > l(f) by starting at ds = 0. At each step,
the value can be increased by at most 1. So, there must be a j where a jump from duj = i to
duj+1 = i+ 1 happens, meaning that the edge (uj , uj+1) belongs to Ci, as desired.

Note that, in the case of the boolean semiring, Theorem 1 is exactly the Markov theorem:
in this case l(f) is the minimum size of a minterm, and c(f) the minimum size of a maxterm
of f . What we win is that over some other semirings, including the (min,+) semiring, the
length l(f) of a polynomial f may be much larger than over the boolean semiring.

Observation 2. The length of every polynomial f(x1, . . . , xn) over the (min,+) semiring is
l(f) = f(1, . . . , 1).

Proof. Over the (min,+) semiring, a monomial p =
∏n
i=1 x

ai
i turns into the sum p =

∑n
i=1 aixi.

Hence, the degree a1 + · · · + an of p is then just its value p(~1) on the all-1 input vector
~1 = (1, . . . , 1). Since the value of f over the (min,+) semiring is the minimum of these
sums p, we have that f(~1) is exactly the minimum degree of a monomial of f . If some other
polynomial g defines the same function over (min,+), then g(~1) = f(~1) holds as well. So,
l(f) = f(~1), as desired.

4. Optimality of Bellman–Ford–Moore

The k-walk polynomial has one variable xi,j for each edge {i, j} of the complete graph Kn

on [n] = {1, . . . , n}. Each of its monomials corresponds to a 1-to-n walk of length k, and has
the form

x1,i1xi1,i2 · · ·xik−2,ik−1
xik−1,n

for not necessarily distinct nodes i1, . . . , ik−1 in {2, . . . , n− 1}. In particular, we assume that
each node, except 1 and n, has a loop.
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Bellman–Ford–Moore Lemma (Bellman [2], Ford [1], Moore [3]). Over any semiring, the
k-walk polynomial can be computed by a switching network of depth k with at most kn nodes
and at most kn2 edges.

Proof. The Bellman–Ford–Moore dynamic programming algorithm is amazingly simple. It

computes the k-walk polynomial by recursively computing the polynomials f
(l)
j whose mono-

mials correspond to walks of length l from node 1 to node j. It first sets f
(1)
j = x1,j for all

j = 2, . . . , n− 1, and uses the recursion

f
(l+1)
j =

n−1∑
i=2

f
(l)
i × xi,j .

To construct the desired switching network, arrange the nodes of the network into k+1 layers
of nodes V0, V1, . . . , Vk, where V0 = {s}, Vk = {t} and |V1| = . . . = |Vk−1| = n − 2; each Vi
for i = 1, . . . , k − 1 is a disjoint copy of the set of nodes {2, . . . , n − 1}. Edges go only from
one layer to the next layer. For every i, j ∈ {2, . . . , n − 1}, the j-th node on the (l + 1)-th
layer is entered by a switch labeled by xi,j from the i-th node on the previous l-th layer. The
network has (k − 1)(n − 2) + 2 6 kn nodes, (k − 2)(n − 2)2 + 2(n − 2) 6 kn2 edges, and its
depth is k.

Remark 3. Two widely considered versions of switching networks are contact schemes and
series-parallel contact schemes. The only difference of contact schemes from switching net-
works is that their underlying graphs are undirected. Series-parallel schemes have an addi-
tional restriction that these graphs (also undirected) must be series-parallel (this model coin-
cides with that of formulas, i.e. fanout-1 circuits). Results of Karchmer and Wigderson [17]
imply that monotone boolean parallel-sequential contact schemes computing the k-walk poly-
nomial f must have nΩ(log k) edges. Potechin [18] has proved that the directed version of f (for
directed graphs) requires this number of edges in monotone contact schemes. It is also known
that f requires bounded-depth (even non-monotone) circuits of super-polynomial size; see
Rossman’s paper [19] and the literature therein. On the other hand, the switching network of
Bellman–Ford–Moore computes both directed and undirected versions of f using only O(kn2)
edges. This shows that both features of switching networks arising from dynamic program-
ming algorithms—directed edges and overlap of sub-networks—are essential.

We now use Theorem 1 to show that, over the (min,+) semiring, the upper bound given
by the Bellman–Ford–Moore lemma cannot be substantially improved. To show that the
k-walk polynomial has large cover number, we will use the following classical result proved
by Erdős and Gallai [4] using a method due to Dirac [20]: for l > 1, every graph of average
degree more than l − 1 contains a path of length l. Since

(
m
2

)
− (l − 1)m/2 = m(m − l)/2,

this result can be re-stated as:

Erdős–Gallai Theorem (Erdős and Gallai [4]). For l > 1, at least m(m− l)/2 edges must
be removed from Km in order to destroy all paths of length l.

Note that this bound cannot be improved. Indeed, if m = ql is a multiple of l, then we can
split the nodes ofKm into q disjoint sets of size l, and remove all edges lying between these sets.
The resulting graph has no paths of length l, and we have removed only

(
q
2

)
l2 = m(m− l)/2

edges.
To spare parenthesis, we say that a function f(n) is at least about g(n), if f(n) = Ω(g(n)).
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Theorem 2. Every switching network computing the k-walk polynomial over the (min,+)
semiring requires at least about kn(n− k) switches.

Proof. Set to 0 all variables xi,j such that {i, j}∩{1, n} 6= ∅. That is, we set to 0 all variables
incident with the start node 1, or with the target node n of Kn. Let f be the resulting
(tropical) polynomial. Its variables correspond to the edges of the complete graph Kn−2 on
{2, . . . , n− 1} and, over the (min,+) semiring, the polynomial computes the function

f(x) = min
{
xi1,i2 + xi2,i3 + · · ·+ xik−2,ik−1

}
, (3)

where i1, . . . , ik−1 are not necessarily distinct nodes in {2, . . . , n− 1}. that is, each sum of f
corresponds to a walk in Kn−2 of length k−2. Observation 2 implies that l(f) = f(1, . . . , 1) >
k − 2.

To lower bound the cover number c(f) of f , let Y be a set of |Y | = c(f) variables of f
such that every sum of f contains at least one of these variables. For every path of length
k − 2 in Kn−2 (no loops and no repeated edges), there is a corresponding sum in (3) whose
variables correspond to the edges of that path. This sum must contain at least one variable in
Y . Thus, removal from Kn−2 of all edges corresponding to variables in Y destroys all paths
of length k − 2 in Kn−2. When applied with m = n − 2 and l = k − 2, the Erdős–Gallai
theorem gives c(f) = |Y | > m(m − l)/2 = (n − 2)(n − k)/2. Since l(f) > k − 2, Theorem 1
implies that every switching network computing f over the (min,+) semiring must have at
least l(f) · c(f) switches, which is at least about kn(n− k).

5. Matrix multiplication

We now consider the problem of computing the sum of all entries of the product of two
matrices over the tropical semiring:

Mn(x, y) =
∑
i,j∈[n]

min
k∈[n]
{xi,k + yk,j} .

Theorem 3. The minimum number of switches in a switching network computing Mn over
the (min,+) semiring is 2n3.

Proof. The upper bound 2n3 is trivial, since each minimum gi,j = mink{xi,k + yk,j} can be
computed using a bunch of 2n switches. To prove the lower bound, we will directly apply
Theorem 1 to the (tropical) polynomial f = Mn itself.

Since f(1, 1, . . . , 1) = 2n2, the length of f is l(f) > 2n2. On the other hand, in order
to force f to output +∞ (recall that +∞ is the “zero element” 0 in the tropical semiring),
there must be at least one pair i, j ∈ [n] such that the minimum gi,j outputs +∞. Thus, at
least n variables must be set to +∞, implying that c(f) > n. By Theorem 1, any switching
network computing f = Mn over the (min,+) semiring must have at least l(f) · c(f) > 2n3

switches.

6. Can Markov’s theorem be improved?

Markov’s theorem (as well as its extension given in Theorem 1) can give a nontrivial lower
bound only if all chains (s-t paths) in a switching network are long enough; by the length of
a chain we mean the number of its switches (labeled edges). So, a natural question is: can
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Markov’s theorem be modified so that it works also when networks have short chains? The
next lemma shows that, in general, this is not possible. That is, there exists no analogue of
Markov’s theorem when short paths are present.

Define an l-cut in a switching network G to be a set of its switches whose removal destroys
all chains in G with l or more switches; shorter chains may survive! Let cl(G) denote the
minimum size of an l-cut in G. Let also e(G) denote the total number of switches in G. In
these terms, Markov’s theorem states:

• If all chains in G have at least l switches , then e(G) > l · cl(G).

But what if G has some short chains, shorter than l (we do not need to destroy them)—will
then the total number of switches always be at least about l times cl(G)?

It turns out that the answer depends on how close is the “critical” length l to the depth
d of the network. The following lemma shows that no analogue of Markovs theorem exists, if
l� d.

Lemma 2. There exists a sequence of constant-degree directed acyclic graphs Gn on n nodes
with the following property: for every constant 0 6 a < 1 there is a constant b > 0 such that
e(Gn) 6 b · cl(Gn) holds for l = na.

That is, even a constant portion of all edges must be removed in order to remove only
very long s-t paths.

Proof. Using expander graphs, the existence of a sequence of directed acyclic graphs Hn of
constant maximum degree d on n = m2m nodes is constructed in [21] with the following
property:

• For every constant 0 6 a < 1 there is a constant b > 0 such that, if any subset of at
most bn nodes is removed from Hn, the remaining graph contains a path of length at
least 2am.

Take now two new nodes s and t, and draw an edge from s to every node of Hn, and an edge
from every node of Hn to t. The resulting graph Gn still has at most 2n+ dn = O(n) edges,
and has the desired property:

Claim 1. For every constant 0 6 a < 1, there is a constant b′ > 0 such that, if any subset of
at most b′n edges is removed from Gn, the remaining graph contains an s-t path with l = 2am

or more edges.

To show this, call the nodes of Hn inner nodes of Gn. Remove any subset of at most
b′n edges from Gn, where b′ = b/2. After that, remove an inner node if it was incident to a
removed edge. Note that at most 2b′n = bn inner nodes are removed in this way. None of
the edges incident to surviving nodes was removed. In particular, each surviving inner node
is still connected to both nodes s and t. By the above property of Hn, there must remain a
path of length 2am consisting entirely of surviving inner nodes. Since the endpoints of this
path survived, the path can be extended to an s-t path in Gn.

By the previous lemma, no analogue of Markov’s theorem exists when l� d. Still, such an
analogue exists when the “critical” length l is indeed very close to the depth d of a network,
i.e. when l > d−O(1).
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Lemma 3. Let G be a switching network of depth d. Then, for every 1 6 l 6 d, we have that
e(G) > s · cl(G), where s is the maximal integer sucht that s 6 l/(d− l + 1).

Note that for l = d, the lower bound on e(G) is l · cl(G), as in Markov’s theorem. But
already for l 6 d/2, the lower bound is at most 2 · cl(G).

Proof. The lower bound clearly holds, if no chain has l switches because then cl(G) = 0. So,
assume that at least one chain contains l of more switches. Associate with every node u the
maximum number lu of switches in a path from the source node s to u; hence, ls = 0. For
the target node t we have lt = m for some l 6 m 6 d. Split the set of nodes of G into layers
V0, V1, . . . , Vm, where Vi = {u : lu = i}. Let (u, v) be an edge in G with u ∈ Vi for some i,
and let Vj be the layer containing the endpoint v. Then clearly j > i. If j = i, then the edge
(u, v) must be a rectifier, because otherwise we would have that lv > lu+1. So, only rectifiers
can lie within each of the sets Vi, and every switch must go from one layer Vi to another layer
Vj with j > i. We say that an edge e leaves a node u, if e = (u, v) for some node v. Set
r := d− l + 1, and let π be a chain with at least l switches.

Claim 2. For every subset of r layers, at least one switch of π must leave at least one of
these layers.

Proof. The chain π has at most d edges, at least l of which are switches. Each of these
switches must leave some of the m layers V0, . . . , Vm−1, and different switches of π must leave
different layers. So, if none of the r given layers is left by a switch of π, then π can have at
most m− r 6 d− r = d− (d− l + 1) = l − 1 switches in total, a contradiction.

Let s be the maximal integer such that sr 6 m, split the layers into s subsequent blocks,
and let Bj be the set of nodes of the j-th block. Let Cj be the set of all switches leaving the
nodes of the j-th block Bj . It is clear that the sets Cj are disjoint (one edge can leave only one
node). Moreover, by Claim 2, each Cj is an l-cut in G (contains at least one switch in every
chain with l of more switches). Hence, e(G) >

∑s
j=1 |Cj | > s · cl(G) > l/(d− l+ 1) · cl(G), as

desired.

Over the boolean semiring, the k-walk polynomial turns into a well-known distance-k
connectivity function. This is a monotone boolean function which, given a subgraph of Kn,
decides whether there is a 1-to-n path with at most k edges. By the Bellman–Ford–Moore
lemma, this function can be computed by a monotone boolean switching network with O(kn2)
edges. An additional feature of this network is that its depth is only k. Using Lemma 3, we
can show that any monotone boolean switching network of depth k must have almost this
number of switches.

Theorem 4. Every monotone boolean switching network of depth k for the distance-k con-
nectivity function must have at least about k(n− k)n switches.

Proof. Let G′ be a monotone boolean switching network computing the distance-k connec-
tivity function f . Since l(f) 6 3 holds over the boolean semiring, Markov’s theorem cannot
yield any lower larger than Ω(n2). So, we additionally assume that G′ has depth at most k.

Replace by rectifiers all switches labeled by variables xi,j such that {i, j} ∩ {1, n} 6= ∅,
and let G be the resulting network. Minterms of f correspond to 1-to-n paths with at most k
edges in Kn. By Lemma 1, for every such path, there must be a chain in G′ whose switches
are labeled exactly the by edges of this path. So, for every path (i1, i2, . . . , il) in {2, . . . , n−1},
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there must be a chain π in G′ whose set of labels is {x1,i1 , xi1,i2 , . . . , xil−1,il , xil,n}, with all
nodes ij ∈ {2, . . . , n − 1} distinct. In G, the set of labels of π is then {xi1,i2 , . . . , xil−1,il}.
Thus, for every path of length l = k − 2 in Km (for m = n− 2) there must be a chain with l
switches in the network G labeled by the edges of this path. Together with the Erdős–Gallai
theorem, this implies that cl(G) > (n− 2)(n− k)/2 for l = k − 2. Since, by our assumption,
the network G has depth d 6 k, Lemma 3 implies that e(G) > l/3 · cl(G), which is at least
about k(n− k)n.

7. Conclusion and open problems

We extended Markov’s theorem to arbitrary semirings of zero characteristic, including the
tropical (min,+) semiring. We then applied this extension to the k-walk problem f : given an
assignment of nonnegative weights to the edges of Kn, find the minimum weight of a walk of
length k from node 1 to node n. The Bellman–Ford–Moore dynamic programming algorithm
gives a switching network with O(kn2) switches solving this problem. Using the Erdős–Gallai
theorem about long paths in graphs, we showed that this network is optimal: about kn(n−k)
switches are necessary in any tropical (min,+) switching network solving this problem.

Note, however, that this lower bound degrades severely as k approaches n, just because
then the Erdős–Gallai lower bound on c(f) is only linear in n. So, an interesting problem
is to prove that also then Ω(n3) switches are necessary. Still, the most interesting in our
context problem is to prove an Ω(kn2) lower bound for switching networks computing f over
the boolean semiring. Our Markov-type argument fails here by another reason: over this
semiring, f has very small length l(f) 6 3. In this semiring, we were only able to prove
a lower bound Ω(kn2) for depth-k networks. In Lemma 2 we argued that, if the depth is
unbounded, then the presence of short chains is an inherent difficulty, and no analogue of
Markov’s theorem exists in this case.

The next open problem concerns a natural generalization of the model we considered. In
the tropical switching networks considered above, switches are labeled by single variables xi.
Thus, already a switches are necessary to compute the single term axi. One can extend the
model of (min,+) switching networks by allowing the labels of switches to be arbitrary linear
combinations

∑
i∈S aixi with integer coefficients. Albeit the Bellman–Ford–Moore (min,+)

switching network does not use this additional feature, it may be helpful for some other
minimization problems. Consider, for example, the problem

f(x1, . . . , xn) = min
a∈Nn

{ n∑
i=1

aixi :
n∑
i=1

ai = k
}
.

Since l(f) = f(1, . . . , 1) = k and c(f) = n (all n variables must be set to +∞ to force
f = +∞), every (ordinary) (min,+) switching network for f must have at least kn switches.
But since f(x) = min{kx1, . . . , kxn}, already n switches are enough for extended networks.
So, it would be interesting to know whether extended (min,+) switching networks for the k-
walk polynomial must still be of size Ω(kn2). Note that Theorem 1 fails for extended (min,+)
switching networks. The reason is that then the number of switches in a chain may be much
smaller than l(f).
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