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Abstract. The Minkowski complexity of a finite set of vectors is the minimum number of set-
theoretic union and Minkowski sum operations needed to create this set when starting from
single-element sets, each containing only one vector. We give an amazingly simple proof of a
general lower bound on this complexity.

1. INTRODUCTION. Let N = {0, 1, 2, . . .}. The Minkowski sum or sumset of two
sets X and Y of vectors in N

n is the set

X + Y = {x + y : x ∈ X and y ∈ Y }
of vectors in N

n , where x + y = (x1 + y1, . . . , xn + yn) is the componentwise sum of
vectors x and y. That is, we add every vector of X to every vector of Y .

Given a finite set A ⊂ N
n of vectors, how difficult is it to create this set when

starting from single-element sets {x}with x ∈ N
n , and using set-theoretic union X ∪ Y

and sumset X + Y operations?
Every such process for creating A is a sequence A1, . . . , Al of sets of vectors such

that Al = A and every set Ai is either the union Ai = X ∪ Y or the sumset Ai = X + Y
of two sets, each of which is either a single-element set {x} with x ∈ N

n or some
previously created set A j with j < i . We call the minimal number l of steps needed to
create A using such a process the Minkowski complexity of A, and denote it by L(A).

Example 1. It is clear that L(A) ≤ |A| − 1 holds for any set A, where |A| is the
cardinality of A: just take the union of all sets {x} with x ∈ A. However, the usage of
sumset operations can dramatically reduce the total number of operations. To give a
simple example, define the weight of a vector as the sum of its entries, and let A be the
set of all vectors in N

n of weight N = 2n . That is, A consists of all nonnegative integer
solutions of the equation x1 + x2 + · · · + xn = N . It is well known (and easy to show)
that this set has about (N/n)n vectors, more exactly, |A| = (N+n−1

n−1

)
(see, for example,

[1, Theorem 2.2]). On the other hand, the Minkowski complexity of this set is very
small: we can create A by using only 2n − 1 operations. First, we use n − 1 union
operations to create the set A0 = {e1, . . . , en}, where ei is the 0-1 unit vector of length
n with exactly one 1 in the i th position. Then we use n sumset operations to create sets
A1 = A0 + A0, A2 = A1 + A1, . . . , An = An−1 + An−1. Since each application of a
sumset operation duplicates the weight, each set Ai is the set of all vectors of weight
2i ; hence, An = A, as desired.

Motivation. Minkowski complexity of sets of vectors is related to the algebraic com-
plexity of multivariate polynomials f (z1, . . . , zn) =

∑
a∈A f

ca
∏n

i=1 zai
i , where A f ⊂

N
n is a finite set of exponent vectors, and all coefficients ca are positive integers. The

monotone algebraic complexity of a polynomial is the minimum number of sum and
product operations needed to compute this polynomial when starting from variables
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z1, . . . , zn and nonnegative integers; the word “monotone” stands here to stress that
subtraction operations are not allowed.

There is a natural homomorphism from the semiring of such polynomials to the
semiring (2N

n
,∪,+) of finite subsets of vectors that maps every polynomial f to the

set A f of its exponent vectors. In particular, every single variable zi is mapped to
Azi = {ei }. That this is indeed a homomorphism follows from easily verifiable equali-
ties A f+h = A f ∪ Ah and A f ·h = A f + Ah , the latter sum being the sumset of A f and
Ah . Thus, the Minkowski complexity of the set of exponent vectors of a polynomial is
a lower bound on the monotone algebraic complexity of this polynomial. In fact, all
known lower bounds on the monotone algebraic complexity of polynomials, including
those in [3, 5], were obtained by proving lower bounds on the Minkowski complexity
of their sets of exponent vectors.

2. SIDON SETS. Which sets A have high Minkowski complexity? It turns out that
such sets are the well-known Sidon sets. These are the sets A ⊆ N

n with the following
property: if we know the sum of two vectors of A, then we know which vectors were
added. More formally, A is a Sidon set if for any vectors a, b, c, d in A, a + b = c+ d
implies {c, d} = {a, b}. For example, in the case n = 1, both sets A = {1, 2, 5, 7} and
B = {1, 3, 6, 7} are Sidon sets, but C = {1, 2, 4, 5, 7} is not a Sidon set because, for
example, 2 + 4 = 1 + 5. The term “Sidon set” was coined by Erdős and Turán [2]
in honor of Simon Sidon who introduced these sets in order to solve a problem in
harmonic analysis.

Example 2. The following combinatorial construction of large Sidon sets A ⊂ {0, 1}n
is due to Schnorr [5]. Let n = (m

2

)
, and let A be the set of all |A| = (m

k

)
characteristic

0-1 vectors of k-cliques, viewed as sets of their edges in a complete graph Km on m
nodes; a k-clique is obtained by taking any k-element subset of nodes and drawing
edges between all

(k
2

)
pairs of these nodes. It is easy to verify that no union of two

k-cliques can contain some third k-clique. Indeed, the latter clique must then have a
node u not in the first clique and a node v not in the second clique. If u = v then the
node u is not covered, and if u �= v then the edge {u, v} is not covered by the first two
cliques, a contradiction. Thus, the set A has an even stronger property (than just being
a Sidon set): if a + b ≥ c for some vectors a, b, c ∈ A, then c ∈ {a, b}. Such sets are
also known as cover-free sets.

Example 3. The following algebraic construction of large Sidon sets is due to Lind-
ström [4]. Let A ⊂ {0, 1}2n be the set of all |A| = 2n vectors (x, x3) with x in {0, 1}n ,
where we view vectors x as elements of GF(2n)—that is, as coefficient vectors of
polynomials of degree at most n − 1 over GF(2)—when raising them to a power.
To show that A is a Sidon set, fix any two vectors c, d ∈ {0, 1}n , and consider the
equation (x, x3)+ (y, y3) = (c, c3)+ (d, d3). It is enough to show that this equation
has at most one unordered pair {x, y} of 0-1 solutions over the semigroup (N2n,+).
If c = d, then there is only one solution x = y = c. So, assume that c �= d. It is
enough to show that then the equation cannot have more than one solution {x, y}
even over the field GF(22n). The equation is equivalent to the system of two equa-
tions x + y = a and x3 + y3 = b with a = c + d �= 0 and b = c3 + d3. Since we are
working over a field of characteristic 2, we have −x = x and 3x = x . So, the identity
3xy(x + y) = (x + y)3 − (x3 + y3) = a3 − b turns into xy = a2 + b/a. Thus, x and
y must satisfy x + y = a �= 0 and xy = a2 + b/a. By Vieta’s formulas, x and y are
then the solutions of the quadratic equation aX 2 + a2 X + (a3 + b) = 0, and there can
be only one pair of them.
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3. THE THEOREM. Our goal is to present an amazingly simple proof of a gen-
eral lower bound on the Minkowski complexity, implying that Sidon sets have almost
maximal complexity.

To do this, we associate with every finite set X ⊂ N
n of vectors its nonnegative real

cost µ(X). Such a cost measure is legal if the following three natural conditions are
fulfilled: µ({x}) ≤ 1 for every vector x ∈ N

n , µ(X ∪ Y ) ≤ µ(X)+ µ(Y ), and µ(X +
Y ) ≤ µ(X) · µ(Y ). For example, a trivial cost measure µ(X) = |X |, the cardinality of
X , is legal.

A set A is k-free (k ≥ 1) with respect to a given cost measure if X + Y ⊆ A implies
that at least one of the sets X and Y must have cost at most k. Note that there is no
restriction on the cost of the other set: it may be arbitrarily expensive. The restriction
is that they cannot both be expensive.

Theorem. If a set A ⊂ N
n is k-free with respect to some cost measure µ, then

L(A) ≥ µ(A)/2k3.

Corollary. If A ⊂ N
n is a Sidon set, then L(A) ≥ |A|/2.

Proof. Let A ⊆ N
n be a Sidon set. It is enough to show that then A must be 1-free

with respect to a trivial cost measure µ(X) = |X |, the cardinality of X .
Indeed, were A not 1-free, then we would have {x, x ′} + {y, y′} ⊆ A for some vec-

tors x �= x ′ and y �= y′. The sum a + b of the two vectors a = x + y and b = x ′ + y′

of A is then equal to the sum c+ d of the two vectors c = x + y′ and d = x ′ + y of A.
Since A is a Sidon set, at least one of x + y′ = x + y or x + y′ = x ′ + y′ must hold,
contradicting that x �= x ′ and y �= y′.

This latter result is not quite new: by improving a classical result of Schnorr [5,
Theorem 3.2], Gashkov and Sergeev [3, Theorem 1] have shown that Sidon sets
A have Minkowski complexity at least |A| when only n + 1 single-element sets
{0}, {e1}, . . . , {en} are allowed as initial sets; here 0 ∈ N

n is the all-0 vector. Recall
that we allow any sets {x} with x ∈ N

n to start with, and hence, L(A) ≤ |A| − 1 is a
trivial upper bound in our (more general) setting.

The proofs in [3, 5] are ingenious but rather technical. Our contribution is the sim-
plicity of the proof.

4. SUMSET NETWORKS. It will be convenient to view legal processes of creating
a given set as graphs. Recall that a digraph (directed graph) is a pair G = (V, E),
where V is a finite set of nodes, and E ⊆ V × V is a set of edges e = (u, v); node u is
the tail, and node v is the head of e. We say that the edge e leaves its tail u and enters
its head v. The indegree (resp., outdegree) of a node is the number of edges entering
(resp., leaving) this node. A graph is acyclic if there are no closed walks in it.

Define a sumset network to be an acyclic digraph with one zero outdegree node (the
output node), and some number of zero indegree nodes (source nodes), each holding
some single-element set {x} with x ∈ N

n . Every other node, a gate,1 has indegree two,
and performs either the union or the sumset operation on its two inputs.

At each node v of such a network, some set Xv ⊆ N
n of vectors is created in a

natural way. If v is a source node holding a single-element set {x}, then Xv = {x}. If

1The term “gate” comes from electrical engineering, and is only used to stress that a node has its associated
operation.
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v is a gate entered by nodes u and w, then Xv = Xu ∪ Xw if v is a union gate, and
Xv = Xu + Xw if v is a sumset gate. The set created by the entire network is the set
created at the output gate. Thus, the Minkowski complexity of a given set A ⊂ N

n is
exactly the minimum number of gates in a sumset network producing this set. Note
that we only count gates: source nodes are given “for free.”

Fix a sumset network, and let A ⊂ N
n be the set of vectors created by this network.

We associate with every gate v the following three sets of vectors:

• Xv is the set of vectors created at gate v (as defined above);
• Yv = {y ∈ N

n : x + y ∈ A for all x ∈ Xv} is the residue of Xv (within A);
• Zv = Xv + Yv is the content of gate v.

Note that Xv need not lie in A, but at least one of its translates Xv + y must already
lie in A; the residue Yv collects all such vectors y. For example, if v is the output gate,
then Xv = A and Yv = {0}. If v is a source node holding a set {x} with x ∈ N

n , then
Xv = {x} and Yv consists of all vectors y ∈ N

n such that x + y ∈ A.
We define the content Ze of an edge e = (u, v) to be the content Zv = Xv + Yv of

its head v if v is a sumset gate. But if v is a union gate, then we define the content Ze

of edge e as the sumset Xu + Yv. The reason for the asymmetry in this definition is
explained by the following content propagation property. Let v be a gate and a ∈ Zv

be a vector in its content.

• If v is a union gate, then vector a belongs to the content of at least one edge
entering v, as well as to the content of the tail of this edge.

• If v is a sumset gate, then vector a belongs to the contents of both edges entering v,
as well as to the contents of the tails of these edges.

Proof. The gate v is entered by edges from some two gates u and w. First let v be a
union gate. Since vector a belongs to the content Xv + Yv = (Xu ∪ Xw)+ Yv of gate v,
the vector a must belong to at least one of the contents Xu + Yv or Xw + Yv of the edges
entering gate v. Assume without loss of generality. that a belongs to Xu + Yv. Since
in the case of a union gate we have that Yv = Yu ∩ Yw, vector a belongs to the content
Xu + Yu of the tail u of edge (u, v) as well.

Now let v be a sumset gate. In this case, the contents of both edges (u, v) and
(w, v) coincide with the content Xv + Yv of gate v. So, vector a belongs to the con-
tents of both of these edges. To show that a must also belong to the contents of the
tails u and w of these edges, we first show that we have an inclusion Xw + Yv ⊆ Yu .
Indeed, were there two vectors x ∈ Xw and y ∈ Yv for which x + y does not belong
to Yu , then, by the definition of the residue Yu , there should be an x ′ ∈ Xu for which
x ′ + (x + y) does not belong to A. But this is impossible because x ′ + x belongs to the
set Xv = Xu + Xw created at the gate v, and y belongs to the residue Yv of Xv. Now,
the inclusion yields Xv + Yv = (Xu + Xw)+ Yv = Xu + (Xw + Yv) ⊆ Xu + Yu , and
similarly, Xv + Yv ⊆ Xw + Yw. Thus, every vector in the content Xv + Yv of v (includ-
ing our vector a) belongs to the contents of both input gates u and w, as desired.

5. PROOF OF THE THEOREM. Let A ⊂ N
n be some k-free set of vectors. That

is, it contains no sumset X + Y such that both X and Y have cost larger than k. Fix an
arbitrary sumset network producing A. Our goal is to show that the number of gates in
this network must be at least the cost µ(A) of A divided by 2k3. Call an edge e in the
network cheap if the cost µ(Ze) of its content Ze is at most k3. We claim that every
vector of A belongs to the content of at least one cheap edge.
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Given this claim, the theorem follows easily. Indeed, if E is the set of all cheap
edges in the network, then the claim implies that A ⊆ ⋃e∈E Ze. Since µ(Ze) ≤ k3

holds for every edge e ∈ E , and since the cost of a union of two sets is at most the
sum of their costs, this implies µ(A) ≤ ∑e∈E µ(Ze) ≤ k3|E |. So, there must be at
least |E | ≥ µ(A)/k3 edges in the network. Since every gate (nonsource node) in the
network is entered by exactly two edges, and every edge must enter some gate, the
total number of edges in the network is twice the total number t of gates. Hence,
t ≥ |E |/2 ≥ µ(A)/2k3, as claimed.

So, it remains to prove the claim. Call a node u in the network cheap if µ(Xu) ≤ k,
and expensive otherwise. We can assume that the output gate is expensive because
otherwise the set A created by the network would be also cheap, and there would be
nothing to prove.

Fix a vector a ∈ A. Start at the output gate of the network, and construct a path
in the underlying directed acyclic graph by going backwards and using the following
rule, where v is the last previously reached node.

(a) If v is a union gate, then go to an input whose content contains a.
(b) If v is a sumset gate, then go to either of the two inputs if they are both expensive

or are both cheap, and go to the expensive input if the second input is cheap.

Every source node has cost at most 1 ≤ k, and hence, is cheap. Since the output
gate is expensive, we will eventually reach some source node. The content propagation
property ensures that the vector a must belong to the contents of all edges along the
corresponding source-to-output path. Since the first node of this path (a source node)
is cheap, and the last one (output gate) is expensive, there must be an edge e = (u, v)

such that µ(Xu) ≤ k but µ(Xv) > k. It remains to show that this edge e must be cheap.
Since Xv + Yv ⊆ A and µ(Xv) > k, the k-freeness of A implies that µ(Yv) ≤ k must
hold.

If v is a union gate, then µ(Ze) = µ(Xu + Yv) ≤ µ(Xu) · µ(Yv) ≤ k2 ≤ k3.
If v is a sumset gate, and w is its second input, then the content of e is the Minkowski

sum Ze = Xv + Yv = Xu + Xw + Yv of three sets. Since the node u is cheap, rule (b) in
the construction of the path implies that the second node w entering v must have also
been cheap, that is, µ(Xw) ≤ k must hold. We thus have µ(Ze) ≤ µ(Xu) · µ(Xw) ·
µ(Yv) ≤ k3, as desired.
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