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Abstract

We show that recognizing the K3-freeness and Ky-freeness of graphs is hard,
respectively, for two-player nondeterministic communication protocols using
exponentially many partitions and for nondeterministic syntactic read-r times
branching programs.

The key ingredient is a generalization of a coloring lemma, due to Papadim-
itriou and Sipser, which says that for every balanced red-blue coloring of the
edges of the complete n-vertex graph there is a set of en? triangles, none of
which is monochromatic and no triangle can be formed by picking edges from
different triangles. We extend this lemma to ezponentially many colorings and
to partial colorings.

1 Introduction

Triangle-freeness is a major property of graphs and its communicational as well com-
putational complexity deserves attention. One of the first results in this direction
was obtained almost 20 years ago by Papadimitriou and Sipser [11] who proved that

!Universitiit Frankfurt, Institut fiir Informatik, Robert-Mayer-Str. 11-15, D-60054 Frankfurt,
Germany.Email: {georg,jukna}@thi.informatik.uni-frankfurt.de
2Institute of Mathematics and Informatics, Akademijos 4, LT-2600 Vilnius, Lithuania

3Work partly supported by a DFG grant SCHN 503/2-1.
*The title of the submitted version was: On Multi-Partition Communication Complexity of

Triangle-Freeness



recognizing the triangle-freeness of graphs on n vertices requires €(n?) bits of commu-
nication in nondeterministic best-partition two-party communication games. Since
nondeterministically, graphs that contain a triangle can be recognized by commu-
nicating only O(logn) bits (just guess a potential triangle), this first showed that
NP#co—NP in the context of best partition communication protocols.

The main step in Papadimitriou—Sipser’s proof was a combinatorial lemma about
the number of mixed (non-monochromatic) triangles under balanced red-blue color-
ings of edges of a complete n-vertex graph K. Given such a coloring y, one looks for
a large set A of triangles such that: (i) each triangle in A is mized under x (not all
edges of the same color), and (ii) A is collision-free (no new triangle can be formed
by picking edges from different triangles in A).

The first condition (i) is easy to ensure: if 7; is the number of red edges incident to
the i-th vertex then % > ri(n—1—r;) triangles will be mixed under x. If x is strongly
balanced in that the number of red edges is equal to the number of blue edges +1
then at least 2(n?) of the triangles will be mixed. More interesting (and important
for applications) is condition (ii). An easy argument shows (see, for example, the
first paragraph of the next section) that no collision-free set can have more that (g)
triangles. What Papadimitriou and Sipser proved is that for any strongly balanced
coloring x of K, there exists a collision-free set A, of 2(n?) triangles, all of which
are mixed under this coloring.

A natural question is whether a similar result holds for more than one coloring.
That is, given a set C of balanced colorings of K, the problem is to find a large
collision-free set A of triangles, a constant fraction of which is mixed under each
x € C. For different colorings x the sets A, of mixed triangles, guaranteed by
Papadimitriou and Sipser, may be (and, actually, are) rather different, and taking
just their union might produce a lot of collisions. So, in the case of more than one
coloring, the choice of a large collision-free set of triangles is a far more subtle task.

In [8] this task was solved under the additional requirement that all the colorings
in C are balanced on a fized bipartition K, , of Ky,. Although the number of allowed
colorings in [8] is 2¢"* the requirement itself is crucial and forbids a lot of colorings:
for every bipartition K, ,, almost all balanced colorings of Ky, are not balanced on
it.

In this paper we solve this problem in the case of arbitrary balanced colorings of
K, as well as in the case of partial colorings; moreover, we allow the colorings to



be only weakly balanced (Lemmas 2.1, 2.2 and 2.3). This is the main combinatorial
contribution of this paper. Then we present several applications of the extended
coloring lemmas: we show that detecting the absence of t-cliques for ¢ = 3,4 is hard
for nondeterministic communication protocols with exponentially many partitions
and for nondeterministic syntactic read-s times branching programs.

The model of nondeterministic multi-partition communication protocols is a strength-
ening of Papadimitriou—Sipser’s model where instead of just one partition of input
variables we allow the players to use different partitions for different inputs. The
cost of such an extended protocol is the maximum over all inputs of the number of
communicated bits plus the number of binary bits required to specify a particular
partition used for this input. The multi-partition communication complexity of a
boolean function f is the minimum cost of a multi-partition protocol for f; hence,
as in the case of one partition, the communication complexity of any function does
not exceed the number of its variables (see Section 3.2 for more precise definitions).
As shown in [8], using more partitions may drastically decrease the communication
complexity: for every k = k(N) there exist (rather artificial but explicit) boolean
functions f in N variables whose multi-partition communication complexity with &
partitions drops from Q(N) to O(logk) by taking just one more partition. On the
other hand, in this paper we show that for some natural graph-theoretic functions,
using many partitions does not help much.

Next, we consider the usual model of branching programs. This model captures
in a natural way the deterministic space whereas nondeterministic branching pro-
grams do the same for the nondeterministic mode of computation (see, e.g., [13] for
more information). The model of nondeterministic syntactic read-r times branch-
ing programs (r-n.b.p.) was introduced in [6]. These are the usual nondeterministic
branching programs with the restriction that along each path (be it consistent or not)
each variable can be tested at most r times. (In non-syntactic read-r times branching
programs this restriction concerns only consistent paths.) The size of such a program
is the number of edges in its underlying graph.

Given a set A of triangles in K,,, let A-FREE,, be a boolean function in (g) variables
(corresponding to edges of K,) which, given a subgraph G of K, outputs 1 if and
only if none of the triangles from A is present in G. Let also K;-FREE,, be a boolean
function which, given a subgraph of K, outputs 1 if and only if it contains no clique
on t vertices. Our main results are the following.



1. The multi-partition communication complexity of K3-FREE, is (n®?), and is
O(n?) if the number of partitions does not exceed k = 29 (Theorem 3.2).

2. There exists a set A of triangles in K, such that the multi-partition communication
complexity of A-FREE, is ©(n?) (Theorem 3.1).

3. If » = o(logn/loglogn), then the 4-clique-freeness function K,-FREE, requires
r-n.b.p. of size exponential' in (n/r)? (Theorem 3.3).

The first result extends the lower bound of Papadimitriou and Sipser to the case
of exponentially many partitions. The second gives a truly linear (in the number of
variables) lower bound on the nondeterministic multi-partition communication com-
plexity. The third result also gives the first truly exponential (in the number of vari-
ables) lower bounds for nondeterministic syntactic read-r times branching programs
computing a natural combinatorial function. In the case of deterministic read-once
branching programs (r = 1) such a (truly exponential) lower bound was earlier ob-
tained in [2] for the @ CLIQUE, 5 function which, given a graph G, outputs the parity
of triangles in GG. In the case of nondeterministic read-once branching programs such
lower bounds for @ CLIQUE, 3, as well as for K3-FREE,, were proved in [8]. In the
case of larger values of r, the only known truly exponential lower bounds were ob-
tained in [6, 4, 1, 5] for boolean functions based on some special quadratic forms; the
proofs employ non-trivial probabilistic and algebraic arguments. Our method for the
K,-FREE,, function is different, and requires only simple probabilistic reasoning. Of
course, being syntactic is a severe restriction on the computational power of r-n.b.p.
On the other hand, this model is nondeterministic and, so far, no lower bounds are
known for non-syntactic r-n.b.p. even for constant r > 2. Recent lower bounds for
the non-syntactic model, proved by Ajtai [1], hold only for deterministic branching
programs. As shown in [5], Ajtai’s method can be extended to yield lower bounds
also for randomized branching programs if the error probability is small enough. But
the case of nondeterministic non-syntactic r-n.b.p.’s remains open, even for r = 2.

The paper is organized as follows. In Section 2 we state our main combinatorial
results—the coloring lemmas for triangles and 4-cliques. In Section 3 we use them
to prove lower bounds for multi-partition communication complexity and for nonde-
terministic read-r times branching programs of the corresponding boolean functions.

LA function f(z) is exponential in g(z) if log f(z) = Q(g(x)).



The rest is devoted to the proof of the coloring lemmas. We conclude the paper with
several remarks and open problems.

2 Coloring lemmas

Given a (partial) red-blue coloring of some set of points, we will say that it is -
balanced if at least a A-fraction of points are colored red and at least A-fraction of
points are colored blue. If not stated otherwise, the balance parameter A = A(n)
may be an arbitrary function such that 0 < A(n) < 1/2. A coloring is balanced
if it is y-balanced for some (arbitrary small, but fixed through the paper) constant
0 <y <1/2. We will assume that the number n of vertices in the considered graphs
is sufficiently large.

A triangle is just a set T = {u,v,w} of three mutually adjacent vertices. A
set. A of triangles is collision-free if no triangle outside A can be formed by taking
edges from three triangles in A. The reason why the collision-freeness property is
important is roughly as follows. Distinguish one edge in each of the triangles from A,
and construct a set G of graphs by taking from each triangle its distinguished edge
and precisely one of the remaining two edges. Since A is collision-free, we obtain
|G| = 214! graphs, none of which contains a triangle, but the union of any two of them
already has a triangle. This, in particular, implies that no collision-free set can have
more that (g) triangles. On the other hand, it is easy to construct a collision-free
set A of Q(n?) triangles in K,, by taking a matching on n/2 vertices, and joining the
endpoints of its edges with all the remaining vertices. However, we need the triangles
in A to be mixed under given colorings of K, which requires extra efforts.

For the ease of counting, it will be convenient to specify a triangle 7' = {u, w, v}
by a pair (e, v) where e = uw is the fized edge and v the top vertezr of the triangle; the
two edges uv and wv joining v with the endpoints of e are the free edges. A triangle
(e,v) is mized under a given coloring if its free edges receive different colors.

For a set E of edges in K, let Ag be the set of all |E|(n — 2) triangles whose
fixed edges belong to E, that is,

Ag :={(e,v) : e€ E, v ¢e}.

Given a set of edges E, we say that a pair of triangles in Ag locally collide if either
they share a free edge, or they share an edge which is free in one of them and fixed in



the other, or these two triangles together with an edge from E produce a new triangle
(see Fig. 1).

Say that a set E of edges in K, is sparse if |E| = O(n), the edges in E form
no triangles, and at most O(n) paths of length two or three in E. If not stated
otherwise, ¢ > 0 will stand for a sufficiently small constant depending only on the
balance parameter.

Lemma 2.1 There exists a sparse set E of edges in K, with the following property.
For every set of at most 2 balanced colorings of K,, there is a subset A C Ap of
|A| = ©(n?) triangles such that A has no local collisions, and a constant fraction of
triangles in A is mized under each of the given colorings.

In this lemma the sets A are large, but they may be not collision-free. That is,
they may have some global collisions: a triangle can be formed by taking edges from
some three triangles in this set. The next lemma gives us collision-free sets.

Lemma 2.2 There exists a sparse set E of edges in K, with the following property.
For every set of k balanced colorings of K,, there exists a collision-free set A C Ap
of triangles such that a constant fraction of them is mired under each of the given
colorings, and

i) |A]=Q@0?) if k < 27,
(i) |A|=Q(n?) if k < 2.

We postpone the proof of these lemmas to Sections 4.3—4.4.

In the lemmas above the colorings are “total”—each edge receives one of the two
colors. In applications, however, we often have colorings which are only “partial”—
some edges may be left uncolored. To obtain a similar result also in the case of partial
colorings, we will consider 4-cliques instead of triangles.

Fix a partition V = V; U V5 of the vertex set V of K,, into two disjoint parts of
the same size £1. By a square in K,, we will mean a 4-clique with one edge e; drawn
in Vi, and the second edge e; drawn in V5. These two edges are the fized edges of
the square; the four remaining edges joining the endpoints of e; and ey lie in V; x V5,
and we call them bipartite. For each square (e, e5) we fix two of its disjoint bipartite
edges and call them free edges of the square. A square is mized under a coloring of
K, if its free edges receive different colors.



A set S of squares is collision-free if no two of them share a common bipartite edge.
As in the case of triangles, the reason why this property is important for applications
is the following. If S is collision-free then we can form a set of 2/ graphs, by picking
from each of the squares all its edges, except precisely one of the two free ones. None
of these graphs contains a 4-clique (because of their bipartite structure), but the
union of any two of them already contains at least one 4-clique.

Lemma 2.3 If n <« A< 1/2 then there exists an absolute constant ¢ > 0 and a
collision-free set S of squares in K, with the following property. For every set of at
most 2°2°"* \-balanced partial colorings of Vi x Vs, at least Q(M\8n?) squares in S are
mized under each of them.

We postpone the proof of this lemma to Section 4.5. Here we only mention that the
lemma does not hold if we take triangles instead of squares: if we consider triangles
whose free edges belong to V; x V5, then there exists a partial coloring x of V; x Vj
which is A-balanced for A = 1/4 but none of the triangles is mixed. To see this, just
split both sets Vi and V5 into subsets V{, V" and Vi, VJ' of size n/4, and color all
edges of V! x VJ in red and all edges of V' x V' in blue.

3 Applications

In this section we apply the coloring lemmas to prove lower bound on the nonde-
terministic multi-partition communication complexity of the K;-FREE,, functions for
t = 3,4. As a consequence we derive lower bounds for r-n.b.p. recognizing the
K -freeness of graphs.

3.1 Multi-partition communication

Perhaps, the best way to view a nondeterministic communication protocol between
two parties, Alice and Bob, wishing to compute a boolean function f, is a scheme
by which a third party, Carole (a “superior being”), knowing the whole input a, can
convince Alice and Bob what the value of f(a) is (see, e.g., Sect. 2.1 in [10]). Hence,
we have three players, Alice, Bob and Carole. Before the game starts, Carole chooses
some partition of the set X of variables into disjoint blocks X4 and Xp; the partition
must be strongly balanced in that both blocks have the same size +1. After that the



first two players have only partial information about the input: Alice can see only
the bits in X4, and Bob can see only the bits in Xp. Given an input a € f!(1),
Carole’s goal is to convince Alice and Bob that f(a) = 1. For this purpose, she
announces to both players some binary string W,, a certificate for (or a proof of) the
fact that “f(a) = 1.” Having this certificate, Alice and Bob verify it independently
and respond with either Yes or No. Alice and Bob agree that f(a) = 1 (and accept
the input a) if and only if they both replied with Yes. If f(a) = 0 then Alice and
Bob must be able to detect that the certificate is wrong no matter what Carole says.
The protocol is correct if, for every input a, Alice and Bob accept it if and only if
f(a) = 1. The communication complexity of this game is the length of the certificate
W, in the worst case.

For example, Carole can easily convince Alice and Bob that a graph G has a
triangle: using only 3[log, n| bits she announces the binary code of a triangle in G}
Alice and Bob can locally check whether the edges of this triangle she/he should see
are indeed present. On the other hand, Papadimitriou and Sipser [11] show that to
convince the players that a graph has no triangles, Carole must announce almost
entire graph. Let us stress that in this game Carole can choose an arbitrary balanced
partition of the variables X, but after that she must use this partition for all inputs.

In this paper we consider the generalization of this game where Carole is allowed
to change her opinion and use “most appropriate” partitions for different inputs. Such
a strengthening of Papadimitriou-Sipser’s model was (more or less explicitly) used
by several authors as a tool of proving lower bounds on different types of branching
programs (see, e.g., [6]).

More formally, in the multi-partition communication game the players act as fol-
lows. Given an input a € f~%(1), Carole announces a pair (W,, P,) of binary strings
where, as before, W, is a certificate for the input a, and P, is the binary code of a
partition of input variables to be used by Alice and Bob on this input. The partition
does not need to be strongly balanced—we only require that each block contains a
v-fraction of all variables where 0 < v < 1/2 may be an arbitrarily small (but fixed)
constant; for ease of notation we don’t show v explicitly. The multi-partition com-
munication complexity C(f) of f is the sum |W,| + | P,| of the lengths of strings W,
and P, on the worst case input a. In the case when Carole can use at most & differ-
ent partitions, the corresponding measure is denoted by £-C (f). In these terms, the
result from [11] says that 1-C (K3-FREE,) = (n?) in the case of strongly balanced



partitions. In the next section we will prove that k-C (K3-FREE,) = 2(n?) as long as
k <2 and C(K3-FREE,) = Q(n%?).

3.2 Communication complexity of triangle-freeness

Recall that, given a set A of triangles in K, A-FREE is a boolean function which,
given a graph G, outputs 1 if and only if none of the triangles from A is present in G.
In the communication game for A-FREE,, the set A of triangles is known to all three
players, and Carole’s goal is to convince Alice and Bob that none of the triangles
from A is present in a given graph G.

Theorem 3.1 There exists a set Ao of triangles in K, such that C(Ay-FREE) =
O(n?).

Proof. Let E be a set of edges guaranteed by Lemma 2.1. The set Ap has ©(n?)
triangles. Say that a triangle is chordal if all its three vertices belong to some path
of length three in £. Remove from Ag all such triangles, and let Ay be the resulting
set. Since the set of edges E is sparse, we only have a linear number (in n) paths
of length three, and hence, we have removed at most O(n) triangles. Our goal is to
show that Ay is the desired set of “hard” triangles.

Consider the communication game for f = Ag-FREE,. If Carole uses k = 2*)
partitions, we are done. So, assume that she uses k < 2°("*) partitions. Our goal is
to show that then Carole must use a certificate of length Q(n?).

To show this, let C be the set of |C| = k£ balanced colorings of K,,, corresponding
to the partitions used by Carole. Since A, was obtained from Ag by removing a
negligible number of triangles, Lemma 2.1 gives us a subset A C Ag of ¢ := |A| =
©(n?) triangles such that A has no local collisions, has no chordal triangles, and for
every coloring x € C there exists a subset A, C A of h := |A, | = Q(n?) triangles, all
of which are mixed under .

Let x;y;2; be the triple of variables where z;y; correspond to the free edges and
z; to the fixed edge of the ¢-th triangle in A, 7 = 1,...,¢t. Since A has no local
collisions, no two triangles from A share a free edge, implying that all the variables
X1,Y1, T2, Yo, - - - Ty, Yy are distinct. Moreover, no two triangles in A share an edge
which is free in one of them and fixed in the other, implying that these variables are
different from the variables z, ..., z; (although z;’s themselves may be not distinct).



Hence, we can form a set G of |G| = 2! graphs by picking from each of the triangles
in A its fixed edge and precisely one of its free edges. That is, in the binary code of
every graph in G each of the triples x;;2; has one of the two values 011 or 101; all
the remaining variables are set to zero.

We claim that none of the graphs in G has a triangle from Ay, and hence, must
be accepted. To see this, take a graph in G, and suppose that it contains a triangle
T = {u,v,w}. If this triangle does not belong to Ag, there is nothing to prove. If it
belongs to Ag then it must have at least one edge from E and, since F is triangle-free,
at most two such edges. If only one edge of T would belong to F, then the remaining
two edges of T" would be free edges of some two triangles from A, and we would have a
local collision between these two triangles (cf. the last three situations in Fig. 1(C)).
So, the only possibility is that some two edges of T, say, uv and vw belong to E (cf.
the first two situations in Fig. 1(C)). In this case the edge uw must be a free edge
of some triangle (e, w') from A, implying that w' must be an endpoint of uw, say,
w' = w. But then the edges e, uv and vw form a path of length three in E, meaning
that the triangle 7" is chordal, and hence, cannot belong to A,.

Thus, all the graphs from G must be accepted. Since we only have k colorings
(partitions), Carole must use some one coloring x for a set G’ C G of |G'| > |G|/k >
2!/k graphs from G. We know that there is a subset A, C A of h = Q(n?) triangles,
all of which are mixed under y. Assume w.l.o.g. that these are the first A triangles
T1Y121, - - - » ThYnZn, hence, x(z;) # x(y;) for all i = 1,...  h. That is, for each of the
first h triangles z;y;2;, each of its two free edges x; and y; is seen by precisely one of
the players, Alice and Bob. Since the graphs in G’ can take at most 2/~" different
values on the variables ©p11, Ynt1,-- . , Zt, Ui, there exists a subset G, C G’ of

G > 1G]/2h > 2t k2t~ = 21k

graphs having the same values on these variables.

We claim that for every graph from G,, Carole must use a different certificate.
Since h = Q(n?) and k = 2°0*")| this will imply that the binary length of a certificate
must be at least log, |A, | = Q(n?).

To show this, assume that Carole uses the same certificate for two different graphs
G1 and Gy in G,. By the construction of G, , the union G'= G; U G, of these graphs
contains at least one triangle 7" € A, C Aj. Let z;,y; be the free edges of T.
We may assume w.l.o.g. that z; is seen by Alice, y; is seen by Bob, and that x; is
present (z; = 1) in the first graph Gy; hence, y; is present (y; = 1) in Go. Let G be
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the union of the part of G; seen by Alice with the part of G5 seen by Bob. Both
players replied with Yes on both G; and (5. Since the players have to verify the
certificate independently, the players are forced to reply with Yes also on GG. But this
is impossible because GG contains the triangle 7" and this triangle belongs to Ay. O

In Theorem 3.1 the set A of triangles is not specified. However, using the second
coloring lemma, we can obtain the following lower bounds for the “pure” version
K3-FREE,, of the triangle-freeness property.

Theorem 3.2 Let f = K3-FREE,. Then C(f) = Q(n*?). Moreover, there is a
constant ¢ > 0 such that k-C (f) = ©(n?) as long as k < 2.

Proof. The proof is precisely the same as that of Theorem 3.1 with only one
difference: this time we take the set A of triangles, guaranteed by Lemma 2.2. The
fact that this set is free not only from local collisions but also from global ones, implies
that the graphs in the constructed set G have no triangles at all, and hence, must be
accepted by K3-FREE,. O

In the proof of Theorem 3.1 it was sufficient to work with local collisions only. The
absence of such collisions in A C A, guarantees that no new triangle from Ay can be
formed by triangles in A. However, triangles outside of Ay may be formed, because
of possible global collisions. Demanding the absence of such collisions is a severe
requirement and reduces the lower bound from Q(n?) to Q(n%?). At the moment
we don’t know whether such a drastic jump is an inherent property of the triangle-
freeness function K3-FREE,, itself, or it is just a weakness of our argument. Although
we cannot refute the second, it may well be that the former is true. Triangle-free
graphs have many specific structural properties which Carole could try to encode in
her certificates. In particular, in every triangle-free graph the neighborhoods of their
vertices span at least n?/4 non-edges, and Carole could try, say, to encode a large
fraction of non-edges using much fewer than n? bits (see Section 5 for a discussion).

3.3 Branching programs for K,-freeness

The model of nondeterministic syntactic read-r times branching programs (r-n.b.p.)
was introduced in [6]. These are the usual nondeterministic branching programs with
the restriction that along each path (be it consistent or not) each variable can be
tested at most 7 times. The size of a branching program is the number of edges in the

11



underlying graph. Using the coloring lemma for 4-cliques one can prove the following
lower bound on the size of r-n.b.p. recognizing the K,-freeness of graphs.

Theorem 3.3 If r = o(logn/loglogn) then the 4-clique-freeness function K4-FREE,,
requires T-n.b.p. of size exponential in (n/r)2.

To prove Theorem 3.3, we first relate the size of an r-n.b.p. computing a boolean
function f with the so-called overlapping multi-partition communication complexity
Cx (f) of f. This measure is an extension of C (f) where the blocks of input variables
X4 and X g Carole gives to Alice and Bob need not be disjoint: we only require that
both | X4 —Xpg| and | Xp— X 4| are at least A\-| X |. Put otherwise, instead of partitions
of X into disjoint blocks, Carole chooses a balanced partial coloring of X in red and
blue. Having such a coloring, the restriction is that Alice cannot see red variables,
and Bob cannot see blue variables; the uncolored variables are seen by both players.

The following lemma gives a general lower bound on the size of an r-n.b.p. for a
boolean function f in terms of the overlapping multi-partition communication com-

plexity of f.

Lemma 3.4 If r = o(logn/loglogn) then every boolean function f on n variables
ofr).

requires an r-n.b.p. of size exponential in Cy (f) /r* where X\ = r~

We give the proof of this lemma in Appendix A; here we only mention that the
proof is based on a general result from [6] saying that if a boolean function can be
computed by a small r-n.b.p. then it can be represented as an OR of a small number
of boolean functions of a very special form.

Proof of Theorem 3.3. By Lemma 3.4, it is enough to show that there exists a
subfunction f of K;-FREE, such that Cy (f) = Q(A%n?) for some constant d > 0. To
define the desired subfunction, fix a partition of the vertex set of K, into two parts
Vi, Vs of size |Vi| = |Va| = n/2, and let S be a collision-free set of squares, guaranteed
by Lemma 2.3. Set all fixed edges of these squares (i.e., the variables corresponding
to these edges) to the constant 1, and set to 0 all the remaining edges in V; and
in V5. The obtained subfunction f of K,-FREE, depends only on n?/4 variables,
corresponding to bipartite edges in V; x V5.

Consider a A-overlapping multi-partition communication game for this subfunc-
tion, and let C be the set of A-balanced partial colorings of Vi x V5 used by Carole. If

12



C| > 290%%%) then C, (f) = Q(\®n?), and we are done. So assume that |C| < 200°%%)

0() is much larger than

Since r = o(logn/loglogn), the balance parameter A = r~
n~'/6, and Lemma 2.3 gives us a collision-free set S of squares, at least Q(A%n?) of
which are mixed under each of the given colorings. Since no two squares in S share a

S| graphs by picking from each of the squares

free edge, we can construct a set G of 2
all its edges, except precisely one of the two free ones. Since none of squares in &
share a bipartite edge, none of the graphs in G contains a square. But the union of
any two of them already has a square. Arguing as in the proof of Theorem 3.2 we

conclude that Carole must use a certificate of length at least log, |S| = Q(\¥n?). O

4 Proofs of coloring lemmas

The proofs of all three coloring lemmas follow the same general frame: we first use
so-called “joining lemma” to produce a large set of triangles (or 4-cliques) so that a
large fraction of them is mixed under every balanced coloring. After that we use so-
called “collision lemma” to remove possible collisions between triangles (or 4-cliques).
We first prove these two simple lemmas. In their proofs we use the following simplest
version of Chernoff’s inequality: if X is the sum of n independent Bernoulli random
variables each with success probability p then X < np/2 with probability at most
e P8 and X > 2pn with probability at most e=?"/12.

4.1 Joining and collision lemmas

Given two subsets of vertices A and B, we say that an edge joins this pair if one its
endpoint belongs to A and the other to B; in particular, both endpoints may belong
to AN B. We say that a set E of edges in K,, is an e-expander with expansion D
if every two sets of at least en vertices are joined by at least Dn edges from FE; an
e-expander is an expander with expansion D > 1. (Note that our definition of an
expander is slightly different from the standard notion where instead of pairs of sets
one is interested in the number of edges joining a set with its complement.) An e-
expander E is sparse if |E| = ©(n/€*), the edges in E form no triangles and at most
O(n/e*) paths of length | = 2, 3.

~1/6

Lemma 4.1 (Joining Lemma) If n <L € < 1 then sparse e-expanders with

arbitrary constant expansion erist.
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Proof. Let D > 1 be an arbitrary constant, and n be sufficiently large, n > 40D /¢?
is enough. Consider a random subset E of edges in K,,, each edge in which appears
independently and with equal probability p := 40D/e’>n. Chernoff’s and Markov’s
inequalities imply that, with probability > 1/2, the set E has ©(n/e?) edges, at
most p'n!™! = O(n/e?) paths of any constant length /, and at most p*n® = O(1/¢°)
triangles. We also claim that Prob [E is an e-expander with expansion 2D] > 1/2.

To show this, let A and B be two sets of at least m = en vertices, and F be
the set of all edges joining these two sets. If |[A N B| < 2m/3 then we have at least
(m/3)? > 0.1m? bipartite edges in (A — B) x (B — A), and if |AN B| > 2m/3 then
at least least 0.2m? edges join the vertices in A N B. Hence, |F| > 0.1¢2n* and the
expected number of edges in EN F is p - |F| > 4Dn. By Chernoff’s inequality, the
actual number of edges in this intersection is smaller than 2Dn with probability at
most e PFI/8 < e=4Pn < =4 Gince the total number of large pairs A, B does not
exceed 2%" we conclude that, with probability at least 1 — 22" - ¢™*" > 1/2, E is an
e-expander with expansion 2D.

Thus, there exists a set E of edges with both properties. That is, £ is an e-
expander with expansion 2D, has |E| = O(n/€?) edges, at most O(n/e?) paths of
length [ = 2,3, and at most O(1/¢%) triangles. Since € > n~'/6, the number of trian-
gles is o(n) and we can safely remove one edge from each of them without destroying
any of the remaining properties. In particular, the expansion of the obtained set of
edges is still at least 2D — o(1) > D. O

To remove the possible collisions between cliques we need the following property
of independent sets in sparse hypergraphs. Recall that a hypergraph over a set V' of
vertices is a family F of subsets of V| called hyperedges. The rank of the hypergraph
is the minimum cardinality of its hyperedge. As in the case of graphs, a set of vertices
is independent if it contains no hyperedge of F. We will consider hypergraph whose
vertices are some configurations (edges, triangles, squares, etc.) and each hyperedge
corresponds to a “collision” between these configurations. Hence, being independent
in such a hypergraph is equivalent to being collision-free.

A hypergraph is sparse if the number of its hyperedges is linear in the number of
vertices.

Lemma 4.2 (Collision Lemma) Let F be a sparse hypergraph of rank r > 2 over
a set V of N wvertices. For every constant ¢ > 0 there exists a constant co > 0 such

14



that for every family of up to 2N subsets of V of size at least c;N there ewists an
independent set which contains at least co N vertices in each of these sets.

This lemma is a very special (but handy) version of the following more general
fact.

Lemma 4.3 Let F be a hypergraph of rank r > 2 over a set V of N wertices. Let

©w>0 and
1/(r—1)
uN
=p(F) = | — )

Then, for any family Vi, ..., Vi of k < 2MPN/8 subsets of V of size at least uN there
exists an independent set S CV such that |V; N S| > upN/4 for alli=1,... k.

Proof. Ifp > 1 then |F| < uN/8, and the desired independent set S can be obtained
by deleting one vertex from each hyperedge. So, assume that p < 1, and let S be
a random set of vertices where each vertex is picked independently and with equal
probability p. For every i = 1,... ,k, the expected number of vertices in V; N S is
p-|Vi| > ppN. By Chernoff’s inequality, the probability that |V; N'S| > upN/2 for
all i =1,...,k, is at least 1 — k - e #PN/8 which is > 1/2 because k < 2#PN/8, On
the other hand, the expected number of hyperedges of F lying entirely in S does not
exceed p"|F|, and by Markov’s inequality, the actual number of such hyperedges does
not exceed 2p”|F| with probability greater than 1/2.

Fix a set satisfying both these conditions, and remove one vertex from each hy-
peredge lying within this set. The resulting set S is independent and

H — 2p’r71 @

. > upN/2 — 297 | F| = pN
Vin S| > upN/ P |F|=p (2 ~

) = upN/4

forevery i =1,... k. O

4.2 Many mixed triangles under each coloring

Let 0 < v < 1/2 be the balance parameter of the considered colorings, and apply
the Joining Lemma with ¢ := 42/5. This gives us a sparse e-expander E. Being an
expander means that at least n edges of E join each pair of vertex sets of size at
least en. We first use this property to show that a constant fraction of triangles in
Ap ={(e,v) : e€ E, v ¢ e} is mixed under every y-balanced coloring of K.
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Claim 4.4 At least en? of triangles in Ay are mized under every balanced coloring of
K,.

Proof. Take an arbitrary such coloring, and call a vertex red (blue) if more that cin
of its incident edges are red (blue) where ¢; := 1—+/3 and 7 is the balance parameter
of x. A vertex is mized if it is neither red nor blue.

Our first goal is to prove that at least en vertices must be mixed (a similar fact
was proved in [11] for the case v = 1/2). To show this, let R, B and M be the sets of
red, blue and mixed vertices, respectively. Let r be the sum over all vertices v € R,
of the number of red edges incident to v. By Euler’s theorem, 7 is at most two times
the total number of red edges, implying that r < 2(1 —v)(}) < (1 — y)n® Since
r > c¢in - |R|, this implies that |R| < (1 — y)n?/cin = con where ¢y = (1 — 7)/cy.
The same argument yields that |B| < con. Now suppose to the contrary that we have
fewer than dn mixed vertices where d := 2¢; — 1 — ¢, = 279%/(9 — 37) > +%/5 = e.
As ¢; > 1/2, all three sets B, R and M are disjoint, and cover all n vertices. Since
|B|, |R| < con this, together with our assumption |M| < dn, implies that |B|, |R| >
csn where ¢3 ;== 1 — (d+ ¢3) > 2(1 — ¢;). Hence, for every vertex v € R we have
{v} x B| = |B| > c3n edges going to the vertices in B. As v is red, fewer than (1—c;)n
of these edges can be blue; hence, more than |B| — (1 — ¢;)n > |B|/2 of these edges
must be red. Thus, more than half of edges in R x B must be red. Symmetrically,
more than half of edges in R x B must be blue, a contradiction.

Thus, at least en vertices are mixed. For each such vertex, at least (1 —c;) = yn/3
of its incident edges are blue and at least (1 — ¢;) = yn/3 of its incident edges are
red. Select |en| of these mixed vertices and call them top vertices. As 2e < /6,
each top vertex v has at least en red edges and en blue edges to bottom (non-top)
vertices. Since F is an e-expander, the pair of sets of bottom vertices, connected to
v by red and blued edges, are large enough to be joined by at least n edges from F.
Together with v, every such edge e € E produces the triangle (e,v) in Ag which is
mixed under . Since we have en top vertices, the total number of mixed triangles in
Apg is at least en?. O

4.3 Removing the collisions: proof of Lemma 2.1 and 2.2(i)

To prove Lemma 2.1 we have to remove all possible local collisions between the tri-
angles in the set Ag given by Claim 4.5. Recall that a local collision between two
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Figure 1: All types of local collisions; bold lines correspond to fixed edges

triangles occurs if either:

(A) the triangles share an edge which is free in one of them and fixed in the other,
or

(B) the triangles share a common free edge, or

(C) a triangle can be formed by taking a free edge from the first triangle, an edge
from the second triangle and an edge from E.

To eliminate such collisions, we first estimate their number. Let P, be the number
of paths of length [ in E. Since the expander F is sparse, P, = O(n) for [ = 1,2, 3.

Claim 4.5 There are at most O(n?) local collisions in Ag.

Proof. Let (e;,v;) and (eg, v2) be two triangles in Ag. Fig. 1 depicts all possible
local collisions between these triangles.  For a collision of type (A) to occur, the
fixed edges e;, es must form a path of length two, and the top vertex of at least one
triangle must be an endpoint of the fixed edge of the other one. In this case we have
at most O(n - P,) = O(n?) possibilities.

If the collision is of type (B) but not of type (A) then either the fixed edges form
a path of length two and the top vertex is the same, or the fixed edges are disjoint
and the top vertex v; of the triangle (e;, v;) must be an endpoint of the second edge
e3_;. In the first case we have at most O(n - P,) = O(n?) possibilities, and in the
second at most 2P? = O(n?) possibilities.
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In the case of type (C) but neither (A) nor (B) collision, a triangle 7" is formed by
an edge e € E, and two edges of the colliding triangles. Since E has no triangles, at
least one of the edges e; or e; does not belong to T'; say, e; & T'. If the second edge
e1 belongs to T then the edges e, e; and ey form a path of length three, and the top
vertex vo of the second triangle (es, v2) belongs to this path. Hence, in this case we
have at most n - P; possibilities. If neither of the edges e;, es belongs to 7" then either
the edges e, €, e5 for a path of length three and v; = vy (at most n - P possibilities),
or each of the top vertices vy, vy is an endpoint of some of the edges e, e, ez, some
two of whom form a path of length two (at most O(P; - P,) possibilities). Hence, the
number of type (C) collisions is also at most O(n?). O

Now we are ready to finish the proof of Lemma 2.1. Fix an arbitrary set C of
at most 2°° balanced colorings of K, where ¢ > 0 is sufficiently small constant.
Claim 4.4 gives a family {A, : x € C} of large subsets of Ag such that all the
triangles in A, are mixed under x. Consider a “collision graph” graph F whose
vertices are triangles from Ag, and edges are pairs of triangles forming a local collision.
Since, by Claim 4.5, F is sparse, we can apply the Collision Lemma and obtain an
independent set A C Ag such that all the intersections ANA,, x € C, are still large.
Since independence of A in F is equivalent to having no local collisions, we are done.

Now we turn to the proof of Lemma 2.2(i). Let A C Apg be the set of triangles
guaranteed by Lemma 2.1. This set has ©(n?) triangles, and has no local collisions.
Still, at least potentially, the set A may have some global collisions: it may happen
that a triangle can be formed by taking edges from some three triangles in this set.
To prove Lemma 2.2(i), we have to remove all possible global collisions. Let us first

estimate their number.

Claim 4.6 There are at most O(n?) global collisions in A.

Proof. Suppose a triangle 7" can be formed by picking edges from some three
triangles (e;, v;), 7 = 1,2,31in A. Since E is triangle-free and A has no local collisions,
we only have two possibilities: either 71" contains precisely two of the fixed edges e; or
none of them (see Fig. 2).

If T contains precisely two fixed edges, say, e; and e; then T is formed by ey, e,
and and a free edge of the third triangle (es, v3). In this case the edges e, ey, e3 form
a path of length three, and the top vertex vs must be an endpoint of e; or e;. Since
we only have P; = O(n) paths of length three and at most n? possibilities for the
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Figure 2: Global collisions; bold lines correspond to fixed edges.

choice of the top vertices v; and vy, the total number of global collisions of this type
is at most O(P3n?) = O(n?).

If T contains no fixed edges then either: (a) some two of the edges ey, ey, €3, say,
e1 and es, form a path of length two, the top vertex vs coincides with one of the top
vertices vy or vy, say, v3 = vy, and vy € e3, or (b) the edges ey, ey, €3 are mutually
disjoint and the top vertices vy, vs, v3 of the corresponding triangles are the endpoints
of these edges. In the first case (a) we have P, possibilities to choose the path e;es,
P, possibilities for the edge e3, and at most n possibilities for the top vertex v; = vs.
Since the top vertex v, must belong to e3, we have at most O(n - P, - P») = O(n?)
global collisions of this type. In the second case (b) each triple ey, €9, e3 of edges in E
can form only a constant number of triangles, since in this case for each edge e; we
have at most 4 possibilities to chose the top vertex v;. Thus, in this case the number
of global collisions does not exceed O(P2) = O(n?). 0

To destroy the possible global collisions between the triangles in A, we will use
the assumption of Lemma 2.2(i) that the number & of given colorings x1,..., X is
at most 2"** where ¢ > 0 is a sufficiently small constant. By Lemma 2.1, we know
that |A| = ©(n?) and for each 7 = 1,... , k there is a set A; C A of Q(n?) triangles,
all of which are mixed under Y.

Consider the “collision hypergraph” (V, F) whose vertices are triangles in A, and
hyperedges are triples of triangles forming global collisions. This hypergraph has
N = |A| = O(n?) vertices, and by Claim 4.6, || = O(n?) hyperedges. Moreover, the
sets of vertices V; = A; are large enough, since |A;| = Q(n?) > uN for some constant
p > 0 independent of k. Since F has rank r = 3, this implies that p = p(F) =
(uN/8|F|)"/* = Q(n='/2). Hence, if the constant ¢ > 0 is small enough to ensure the
inequality cn®? < upN/8 then, by Lemma 4.3, there exists a subset A’ C A such
that there are no collisions between the triangles in A’, and for each i = 1,... , k, this
set contains a subset A} = A; N A/ of |A!| = Q(pN) = Q(n3/?) triangles, all of which
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are mixed under x;. This completes the proof of Lemma 2.2(i)

4.4 Proof of Lemma 2.2(ii)

In the case of relatively small number of (at most 2¢*) colorings we can find a large
set of triangles with an additional property that their fixed edges form a matching.

Claim 4.7 For every set x1,..., Xt of k < 2" balanced colorings of K, there exists
a matching M of size Q(n) such that a constant fraction of the triangles in Ay is
mized under each ;.

Proof. Let 0 <y < 1/2 be the balance parameter of the colorings considered, and
€ := 7?/5. Take a sparse e-expander E guaranteed by the Joining Lemma. When
proving Claim 4.4 we have shown that for every coloring x; there exists a set of en
top vertices and a sequence of en pairs of sets of bottom vertices of size at least en
such that every edge e joining any of these pairs, together with the corresponding top
vertex v, produces a triangle (e, v) which is mixed under ;. Hence, if E; ; denotes the
set of edges of E joining the j-th pair of sets of bottom vertices of the i-th coloring,
it is enough to show that some matching contains Q(n) edges in each of these sets.
For this purpose, consider a “collision graph” F whose vertices are edges from E, and
where e;,e, € E are joined by an edge if and only if e; N ey = (). This graph has
|E| = ©(n) vertices and, since the expander F is sparse, at most O(n) edges (at most
so many paths of length two in E). Hence, F is sparse. On the other hand, since E
is an e-expander, the sets F; ; are large, |E;;| > nforalll <i<kand1l<j<en.
Thus, if the constant ¢ > 0 (in the upper bound k£ < 2°) is sufficiently small, then
the Collision Lemma gives us an independent set M C E in F (a matching in K,)
such that all intersections M N E; ; have size {2(n), as desired. O

Now fix a matching, given by the previous claim, and consider the set A,; of
|Ap| = O(n?) induced triangles. We know that a constant fraction of these triangles
is mixed under each of the given 2" balanced colorings of K,,. To finish the proof of
Lemma 2.2(ii), it remains to remove possible collisions from Aj,.

Since M is a matching, the fixed edges of the triangles from A,; can form no path
of length two. This immediately implies that we can only have two types of possible
collisions between the triangles: type I depicted in Fig. 1(B) situation two, and type
IT depicted in Figure 2 situation three. Since fixed edges cannot form any path of
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length two, one triangle can participate in at most two collisions of type I. By the
same reason, each of the remaining triangles can participate in at most one triple of
triangles forming a collision of type II. Hence, the corresponding collision hypergraph
has |Ajy| vertices and at most 3|Aj,| hyperedges. By the Collision Lemma, there is a
collision-free subset A C Ay of |A| = Q(n?) triangles, a constant fraction of which is
mixed under each of the given colorings. This completes the proof of Lemma 2.2(ii).

4.5 Proof of Lemma 2.3

Let Vi, V5 be a fixed bipartition of the vertices of K, into two disjoint parts of equal
size 1. Each pair (ej,eq) of edges where e; is drawn between the vertices in Vj,
defines a square. Given a set F of such edges, let Sg be the set of squares defined by
the edges in F. Recall that two squares collide if they share an edge in V; x V5.

Claim 4.8 Let n /¢ < X\ < 1/2. There exists a set of ©(n?/\*) squares, at most
O(n?/)8) pairs of whom collide, and at least n?® of whom are mized under each \-
balanced partial coloring of Vi x V5.

Proof. Set e = A\/4, and let E = E; U F, where F; is a sparse e-expander in V; given
by the Joining Lemma. Take an arbitrary A-balanced partial coloring of V; x V;. For
a vertex v € V; let its red degree (blue degree) be the number of red (blue) edges
incident to it. Since the average red (blue) degree is at least An/2, there exists a
set R (B) of at least An/4 = en vertices in V] of red (resp., blue) degree at least
An/4 = en. That is, for every two vertices u € R and v € B there exists a pair ug, vp
of subsets in V5 of size en such that all edges joining u (resp., v) with the vertices in
up (resp., in vg) are red (resp., blue). Since E is an e-expander, the pair R, B as well
as each of the pairs vg, vg with v € R and v € B, are joined by at least n edges from
E. Since each edge between u and v, together with at least n edges of E joining the
sets ur and vg, induces n squares, all of which are mixed under Y, the total number
of mixed squares in Sg is at least n?.

Since both expanders E; and E, are sparse, each of them has P, = ©(n/)\?)
edges and at most P, = O(n/\*) paths of length 2. Hence, |Sg| = ©(n%/\*), and it
remains to show that at most O(n?/\®) pairs of squares in Sg can collide, i.e. share a
bipartite edge. If two squares share a bipartite edge, then either they share two such
edges, or they share only one such edge. In the first case we have at most O(P; - P,)
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possibilities, whereas in the second we have at most O(P, - P») possibilities. Hence,
at most O(n?/\?) pairs of squares can collide. 0

Now we are ready to finish the proof of Lemma 2.3. Fix an arbitrary set C of
at most 2¢2°"" balanced partial colorings of V; x V, where ¢ > 0 is sufficiently small
constant. Claim 4.8 gives us a family S of ©(n?/\*) squares such that at most
O(n?/)¥) pairs of then collide and, for each coloring x € C, S contains a subset
Sy C S of n? squares all of whom are mixed under x. It remains to destroy possible
collisions between the squares in S.

For this purpose, let us consider the “collision graph” (V,F) whose vertices are
squares in S, and two squares are joined by an edge iff these squares share a common
bipartite edge. By Claim 4.8 we know that the collision graph has N = ©(n?/\?)
vertices and at most |F| = O(n?/\%) = O(N/X*) edges. Moreover, the sets of vertices
Vi = S, are large enough: |S,| > n? > uN for p = Q(\*). Since F has rank r = 2,
this implies that p(F) = uN/(8|F|) = Q(\®). If ¢ > 0 is sufficiently small to ensure
cA®n? < upN/8, then k < 2#PN/8 and the Collision Lemma gives us a subset S' C S
such that no two squares in 8’ share a bipartite edge, and for each coloring y € C,
this set contains a subset §, NS’ of at least upN/4 = Q(A\®n?) squares, all of which
are mixed under x. This completes the proof of Lemma 2.3.

5 Concluding remarks

1.

Usually, a lower bound on the communication complexity of a given boolean function
f is obtained by choosing a large enough set F' C f~1(1) of inputs which is “hard” for
every partition of input variables. That is, given a partition of the input variables,

y

Carole cannot use one certificate for “too many” inputs from F' without forcing Alice
and Bob to (wrongly) accept an input from f~1(0). To our knowledge, all the lower
bounds on the communication complexity of explicit boolean functions, including the
highest ones proved in [6, 4, 1, 5], were obtained in this way. In the case of K3-FREE,,
and K4-FREE,, functions this approach does not work (at least directly). We are not
able to exhibit a large set F' of graphs which is hard for every partition—the set of
hard inputs F' in our proof depends on the given set of partitions used by Carole: we

are able to construct F' only after Carole has fixed her opinion about the partitions
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she would like to use. This (dependency of F' on the partitions) seems to be a new
aspect in understanding the communication complexity.

2.

Let us note that, although simple, the arguments we used are quite general and may
be also applied to other graph-theoretic problems. Just to mention an example, let
C,-FREE,, be a boolean function which, given a graph G on n vertices, accepts it if
and only if G has no cycle of length four. Kleitman and Winston [9]) proved that

(n**) " This immediately implies that already the

the number 4-cycle-free graphs is 2°
one-partition communication complexity of C4~-FREE,, does not exceed O(n3/ 2): given
a Cy-free graph G, Carole just announces the entire graph G to both players. On
the other hand, essentially the same argument as in the proof of the coloring lemma
for triangles can be used to show that there is a set C of ©(n?) 4-cycles, a constant
fraction of which is mixed under each balanced coloring of K,. Moreover, due the
“sparseness” of the underlying set of fixed edges given by the Joining Lemma, at most
O(n*) quartets of 4-cycles in C collide, i.e., form a new 4-cycle. Applying Lemma 4.3
in this situation, we have a hypergraph of rank r = 4 on |V| = Q(n?) vertices, and
with |F| = O(n*) edges. In this case, p(F) = Q ((N/|F|)'/3) = Q(n~%3), and we
obtain a collision-free subset C’ of [C| = Q(p - |V|) = Q(n*/3) 4-cycles. Arguing as in
the proof of Theorem 3.2, this implies that the multi-party communication complexity
of C4-FREE,, is Q(n*/3).

3.

Next, we mention that the construction of mixed triangles can be used to give a lower
bound on the number f(n) of maximal triangle-free graphs on n vertices. A triangle-
free graph is mazimal if no edge can be added without forming a triangle. Erdés asked
(see, e.g., [12], Problem 10.2 or [7], Problem 48) to determine or estimate f(n). It is
known (see [3]) that f(n) < 27°/%. On the other hand, the following simple argument
shows that f(n) > 2"’/8. Let n = 4m and fix a partition Vi, V5 of the vertex set into
two parts of equal size. Let M be a maximal matching in V5; |M| = m. Consider the
family of 2/VilIM| > 92m* — 9n*/8 graphs each of which is obtained by joining every
vertex in Vi with precisely one endpoint of each of the edges in M. Add to each of
these graphs all the edges from M. The obtained graphs are still triangle-free, and
“maximal” in a sense that the addition of any new bipartite edge from V; x V, creates
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a triangle. In each of these graphs draw edges between the vertices in V; and between
the vertices in V5 in an arbitrary way until the obtained graph becomes maximal
triangle-free. Since each pair of the obtained graphs differ in at least one edge from
Vi x V5, we are done.

4.

In the context of this paper, the most interesting open question certainly is whether
the lower bound C (K3-FREE,) = (n*?) given in Theorem 3.2 is far from the opti-
mum. Theorem 3.1 only says that C (A-FREE, ) = ©(n?) for some set A of triangles,
and its proof fails if A is the set of all triangles. Triangle-free graphs have many in-
teresting structural properties which (apparently) may help Carole to convince that
the input graph has no triangles at all. In particular, by Mantel-Turan’s theorem,
in every triangle-free graph the neighborhoods of its vertices span at least n?/4 non-
edges. Hence, to improve the trivial upper bound C (Kj3-FREE,) < n?, one could
try to encode a non-trivial fraction of non-edges using much fewer than n? bits. Let
D = D(n) be something much smaller than /n, say D = n¢ where ¢ < 1/2 is
a very small constant. In the case of A-balanced partitions with A — 0 the argu-
ment used in the proof of Lemma 2.2(i) and Theorem 3.2 yields the lower bound
C (K3-FREE,) = Q (A°n®?) where c is an absolute constant. Taking A = 1/D this
yields C (K3-FREE,) = Q (n%?/D¢), which is close to n*? if € is sufficiently small.

Problem 5.1 Does Dn3/? bits are enough to encode n?/D non-edges in every maxi-

3/2

mal triangle-free graph with more than Dn°/* edges?

It is interesting that in the case of t-cycle-free graphs with ¢ > 4, a similar question
has a positive answer in a very strong sense. For example, for ¢ € {4, 6, 8} it is possible
to encode all t-cycle-free graphs using only O(n'*?/*) bits (see [9, 14]).

A positive solution of Problem 5.1 would imply C (K3-FREE,,) is at most O(Dn3/? logn).
3/2

R

Indeed, triangle-free graphs G' with at most Dn®/* edges are “for free:” Carole can
announce to both players the entire graph using only O(Dn??logn) bits. If G has
more edges then Carole can use the partitions X 4, Xg with X 4’s being the sets of en-

3/2 edges, Carole

coded non-edges. Given a triangle-free graph G with more than Dn
can choose a maximal triangle-free graph containing G, and use the corresponding

partition X4, Xg. After that, Alice replies with Yes if and only if she does not see
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any edge of GG, and Bob replies with Yes if and only if the subgraph he can see is
triangle-free.

Appendix A

Here we prove Lemma 3.4 relating the size of an r-n.b.p. computing a boolean function
f with the overlapping multi-partition communication complexity of f.

First we recall from [6] the following result stating that functions computed by
nondeterministic syntactic read-r times programs (r-n.b.p.) can be represented in
some special form. Let X = {z1,...,x,} be the set of boolean variables. Say that a
boolean function ¢g(X) is an (r,t)-rectangle if it can be represented in the form

g1 (X1) A g2 (X2) Av - A g (Xim)

where m < rt; g; is a boolean function depending only on variables from X; C X,
|X;| < [n/t] and each variable belongs to at least one and to at most r of the sets
Xy, X,

Theorem 5.2 (Borodin—Razborov—Smolensky [6]) Let f be a Boolean function
and r,t be positive integers. If f can be computed by an r-n.b.p. of size L then f is
an OR of at most (2L)** (r,t)-rectangles.

Our next goal is to replace (r,t)-rectangles in this theorem by the ANDs of two
functions whose sets of variables do not overlap too much. Say that a boolean func-
tion R(X) in n variables X = {zy,...,z,} is a A-overlapping rectangle if it can be
represented in the form R(X) = R;(X;) A Re(X2), where R; is a Boolean function
depending only on variables from X; C X and |X; — X3_;| > An for both i = 1, 2.

Lemma 5.3 If a boolean function f can be computed by an r-n.b.p. of size L then f

is an OR of at most LOU") \-overlapping rectangles with A = r— 0.

Proof. Let f(X) be a boolean function in n variables, and suppose that it can be
computed by an r-n.b.p. of size L. Set ¢ := 3r and apply Theorem 5.2. This gives
us a covering of f by (2L)%” (r,t)-rectangles g = ¢1(X1) A g2(X2) A -+ A gm(Xi)
with m < rt = 3r2. Hence, it is enough to show that each such rectangle g is also a
A-overlapping rectangle with A = (),
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For this purpose, define the trace of a variable x in the sequence of sets X1, ... , X,
as the set T'(z) = {i : = € X;}. All what we need is to find a pair Y7, Y5 of subsets of
variables which is good in the sense that: (i) both Y; and Y, have size at least An, (ii)
for both i = 1,2 all the variables in ¥; have the same trace T}, and (iii) 7y N Ty = 0.
Having such a pair Y7, Y5 we can obtain a A-overlapping rectangle R = Ry A Ry by
taking R, (j = 1,2) to be the AND of all functions g;(X;) with i & T5_;.

To show that a good pair Y7, Y, exists, partite the set of variables according to
their traces. Since we have only K = Z;:o (Tj") < Z;':o (3;2) < 7O possible traces,
the average size of one block in this partition is at least n/K. Hence at least n/2 of the
variables belong to blocks of size at least n/(2K) > An, where A = 1/(2K) = r=9(),
Let Y be the union of these (large) blocks; hence, |Y| > n/2. Take any of large
blocks Y;. By the definition, |Y;| > An and all the variables in Y; have the same
trace T7. The union of the corresponding to this trace subsets X; can contain at most
r-[n/t] < n/2 < |Y| different variables. Hence, there must be a variable y € Y which
belongs to none of these subsets. This means that the trace T, = T'(y) of y is disjoint
from the trace T; of the variables in Y;. Let Y3 be the (unique) large block containing
y. Then |Y3| > An and all the variables in Y5 have the same trace T, which is disjoint
from the trace T; of the variables in the first block Y;. Hence, Y7, Y, is a good pair,
and we are done. a

Now we can finish the proof of Lemma 3.4 as follows. Suppose that a boolean
function f can be computed by an r-n.b.p. of size L. Then, by Lemma 5.3, f can
be written as an OR of k = LOU”) X-overlapping rectangles. All three players can
see this set of rectangles. Given an input a € f~!(1), Carole can take the first of
the rectangles R = R;(X;) A Re(X3) which accepts a, and announce that on this
input Alice must compute R; and Bob must compute Ry. That is, Carole has only
to announce the binary code of the overlapping rectangle to be used; the certificate
W, is always empty. This implies C, (f) < [log(k+1)] = O(r*log L), and hence, the
size L on the r-n.b.p. for f is exponential in Cy (f) /r?.
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