
On the P versus NP intersected with co-NP

question in communication complexity

Stasys Jukna

Abstract
We consider the analog of the P versus NP∩ co-NP question for the clas-

sical two-party communication protocols where polynomial time is replaced by
poly-logarithmic communication: if both a boolean function f and its negation
¬f have small (poly-logarithmic in the number of variables) nondeterministic
communication complexity, what is then its deterministic and/or probabilistic
communication complexity? In the �xed (worst) partition model of communica-
tion this question was answered by Aho, Ullman and Yannakakis in 1983: here
P = NP∩ co-NP.

We show that in the best partition model of communication the situation
is entirely di�erent: here P is a proper subset even of RP∩ co-RP. This, in
particular, resolves an open question raised by Papadimitriou and Sipser in 1982.

1 Introduction

Understanding the relative power of determinism, nondeterminism, and randomiza-
tion is fundamental in any model of computation. In the Turing machine model this
leads to the well-known P versus NP versus BPP and similar questions. While in
this model such questions remain widely open, some progress was made in several
much simpler (but still important) models, like decision trees, restricted branching
programs or communication protocols.

In the decision tree model when the complexity measure is the depth of a tree we
have that P = NP∩ co-NP [3, 5, 19]: if both f and ¬f can be computed nondeter-
ministic decision trees of depth at most d then f can be computed by a deterministic

1Current address: Universität Frankfurt, Institut für Informatik Robert-Mayer-Str. 11-15, D-
60054 Frankfurt, Germany. Email: jukna@thi.informatik.uni-frankfurt.de

2Institute of Mathematics and Informatics, Akademijos 4, LT-08663 Vilnius, Lithuania.
3Research supported by a DFG grant SCHN 503/2-2.

1



decision tree of depth at most d2. Nisan [14] has shown that in this case also P = BPP
holds: if f can be computed by a probabilistic bounded error decision tree of depth
d then f can be computed by a deterministic decision tree of depth O(d3).

Interestingly, the situation is di�erent if we measure the size of (the total number
of vertices in) a tree instead of its depth�then P 6= NP∩ co-NP [8]: there are explicit
boolean functions f such that both f and ¬f can be computed by nondeterministic
decision trees of size at most N but any deterministic decision tree for f has size
NΩ(log N). A similar situation is when the complexity measure of a decision tree is
the number of its non-isomorphic subtrees (this model corresponds to so called read-
once branching programs�just merge isomorphic subtrees): here we also have that
P 6= NP∩ co-NP [8], BPP 6⊆ NP [17] and NP∩ co-NP 6⊆ BPP [18].

In this note we consider the classical model of two-party communication protocols
introduced by Yao [21] (see [10] for more information). There are two main types of
such protocols: the �xed partition type where the protocol must use some prescribed
(by an adversary) �bad� partition of input variables between the players, and best
partition type where the protocol is allowed to choose the �most suitable� for a given
function partition of its variables.

Although historically the best partition model of communication has reveived
less attention than the �xed partition model, the former one has larger applicability.
This model naturally arises when dealing with time-space trade-o�s of VLSI chips
(see, e.g., [12]). It (also naturally) arises in the context of branching programs. In
fact, most of lower bounds for various restricted models of branching programs were
obtained by proving (more or less explicitely) the corresponding lower bounds on the
communication complexity of di�erent types of best partition protocols (see [20] for
a comprehensive description of such applications).

As in other models of computation, there are three natural modes of communi-
cation: deterministic, nondeterministic and probabilistic. Having these modes and
having the (admittedly far-fetched) analogy with the P versus NP question, it is nat-
ural to consider the relations between the corresponding complexity classes. Here
for convenience (and added thrill, just like in [2]) we use the common names for the
analogs of the complexity classes:

Let P, NP, RP, and BPP consist, respectively, of all boolean functions in n
variables whose deterministic, nondeterministic, probabilistic one-sided error
and probabilistic bounded error communication complexity is polynomial in
log n.

In the �xed partition case most of these problems are already solved (of course,
this has nothing to do with the relations between Turing machine classes). The
separation NP 6= co-NP, and hence, P 6= NP can be easily shown using the equality
function eq(x, y) which tests whether two given binary strings x and y of length n

2



are equal. A less obvious separations P 6= RP and BPP 6⊆ NP was shown by Rabin
and Yao (see [22]): ¬eq(x, y) can be computed by a probabilistic (even one-sided
1/n-error) protocol with only O(log n) bits of communication. The incomparability
of NP and BPP was shown by Babai, Frankl, and Simon [2] using the set-disjointness
function disj(x, y), which outputs 1 i�

∑n
i=1 xiyi = 0. They proved that this function

has probabilistic bounded error communication complexity Ω(
√

n). This was later
improved to Ω(n) by Kalyanasundaram and Schnitger [9]; a simpler proof was found
by Razborov [16].

Interestingly, the analog of the P versus NP∩ co-NP question in the �xed partition
case has a positive answer. This is a direct consequence of the following well-known
result of Aho, Ullman, and Yannakakis [1]: if f and ¬f have nondeterministic commu-
nication complexities nf and n¬f , then the deterministic communication complexity
of f does not exceed O (max{nf , n¬f}2). Hence, in the �xed partition case we have

P = ZPP = RP∩ co-RP = NP∩ co-NP $ BPP. (1)

The best partition model is more di�cult to analyze, and here the situation was
less clear. In particular, such �clean� functions like eq(x, y) or disj(x, y) cannot be
used (at least directly) for separations anymore just because even the deterministic
communication complexity of these functions is constant. On the other hand (as we
already mentioned above), this model is important because it is closely related to
the area/time complexity of VLSI circuits and to the width of branching programs.
Thus, it is worthwhile to investigate the relationship among complexity classes in the
best partition model.

The �rst separation in this model was given by Papadimitriou and Sipser in [15] by
proving an earlier conjecture of Lipton and Sedgewick [13] that the triangle-freeness
property of graphs is hard for nondeterministic best partition protocols. This �rst
showed that NP 6= co-NP, and hence, also P 6= NP in this model. The proof was via a
reduction to computing disj(x, y) in the �xed-partition case. The result was further
extended in [4, 7] to the case where a protocol is allowed to use di�erent partitions
for di�erent inputs.

Using shifted versions of eq(x, y) and disj(x, y), Ja'Ja', Prasanna Kumar and
Simon [6] showed that P $ RP $ NP holds in the best partition case. Using similar
techniques, Lam and Ruzzo [11] have proved that NP and BPP remain incomparable
also in the best partition case.

In the same paper [15], Papadimitriou and Sipser asked whether P 6= NP∩ co-NP
for the best partition protocols. As noted in [1], the question is important because
it exposes something about the power of lower bound arguments. We can prove
a lower bound on the deterministic communication complexity of a function f by
arguing about either f or ¬f . But if both the function and its negation have low

3



nondeterministic complexity under some partitions of variables, other arguments are
needed to show that the deterministic communication complexity must be large for
any partition.

That an appropriate modi�cation of the triangle-freeness function could separate
P from NP∩ co-NP in the best partition case was claimed in [1]. Unfortunately, the
proof�which should (apparently) involve the argument of [15] for the triangle-freeness
function�was never given, and the question remained open (cf., e.g., [11]).

2 Our results

In this note we prove that P 6= NP∩ co-NP for best partition protocols. Actually,
we establish even stronger separations showing that in the best partition case the
situation is entirely di�erent: the possibility to use di�erent partitions for f and ¬f
can exponentially increase the power of randomness as well as of nondeterminism.
Namely, in the best partition case we have the following separations (cf. (1)):

P $ RP∩ co-RP $ NP∩ co-NP 6⊆ BPP. (2)

All this is a direct consequence of the following theorem. We adopt the follow-
ing convention for discussing di�erent communication complexity measures of f in
the best partition case: D(f) for the deterministic, N(f) for the nondeterministic,
R(f) for the probabilistic bounded error, and R1(f) for probabilistic one-sided error
communication complexity.

Theorem 2.1. There are explicit boolean functions f and g in n2 variables such that:

(i) both R1(f) and R1(¬f) are O(log n) but D(f) = Ω(n);

(ii) both N(g) and N(¬g) are O(log n) but R(g) = Ω(n).

Moreover, the upper bounds hold for one-round protocols.

The rest is devoted to the proof of this theorem. We do this by reductions to
known upper and lower bounds in the �xed partition models of functions such as
Equality eq(x, y) and Set Disjointness disj(x, y). The proofs themselves are quite
simple�as it often happens with the results of this type, most of the work is done by
a careful choice of a �right� separating function.

Recall that in the best partition case the players can choose di�erent (most suit-
able) partitions for a function and its negation. To visualize the e�ect of this choice,
in both cases we de�ne the corresponding separating function f(X) as boolean func-
tions in n2 variables, arranged into an n× n matrix (we assume that n is su�ciently

4



large). Hence, inputs for f are 0/1 matrices A : X → {0, 1}. We de�ne f(X) in such
a way that a partition of X according to columns is suitable for computing f , and
that according to rows is suitable for ¬f .

3 Proof of Theorem 2.1(i)

We de�ne the boolean function f(X), showing that P $ RP∩ co-RP in the best
partition case, as follows. Inputs for f are n× n matrices A : X → {0, 1}; this time
we require that n is even. Say that a row/column of such a matrix is odd (even) if it
contains an odd (even) number of 1's. Let f(A) = 1 if and only if A has at least one
odd row, and all columns of A are odd.

Lemma 3.1. Both R1(f) and R1(¬f) are O(log n).

Proof. In the protocol for f Alice takes the �rst half of columns whereas in the
protocol for ¬f she takes the �rst half of rows. After that the computation of f
and ¬f reduces to the computation of the non-equality function ¬eq(x, y), where
x is a string of parities of rows/columns seen by Alice and y is a string of parities
of rows/columns seen by Bob. Indeed, to compute f it is enough to decide whether
x 6= y (there is an odd row) whereas for ¬f it is enough to decide whether x 6= y ⊕ 1
(there is an even column). This completes the proof because, as we already mentioned
above, ¬eq(x, y) can be computed with a probabilistic one-sided error protocol by
communicating only O(log n) bits.

Lemma 3.2. D(f) = Ω(n).

Proof. Take an arbitrary deterministic protocol for f(X). The protocol uses some
balanced partition of the entries of X into two halves where the �rst half is seen by
Alice and the second by Bob. Say that a column is seen by Alice (resp., Bob) if Alice
(resp., Bob) can see all its entries. A column is mixed if it is seen by none of the two
players, that is, if each player can see at least one of its entries. Let m be the number
of mixed columns. We consider two cases depending on how large this number m is.
In both cases we describe a �hard� subset of inputs, i.e. a subset of input matrices on
which the players need to communicate many bits.
Case 1: m ≤ n/2− 1. Since each player can see at most n/2 columns, we have that
in this case each player will see at least n− (n/2+m) ≥ 1 columns. Take one column
seen by Alice and another column seen by Bob, and let Y be the (n−1)×2 submatrix
of X formed by these two columns without the last row r. We restrict the protocol
to input matrices A : X → {0, 1} de�ned as follows. We set to 1 all entries in the
last row r, and set to 0 all remaining entries of X outside Y . The columns x and y
of Y may take arbitrary values such that the resulting vectors are even. This way

5



we ensure that all columns of A are odd. Moreover, the last row r is even since n is
even. Thus, given such a matrix A, the players must determine whether some of the
remaining rows is odd. That is, they must determine whether x 6= y, which requires
Ω(n) bits of communication.
Case 2: m ≥ n/2. Let M be the n×m submatrix of X formed by the mixed columns.
Select from the i-th (i = 1, . . . ,m) column of M one entry xi seen by Alice and one
entry yi seen by Bob. Since m ≤ n and we select only 2m entries, there must be a
row r with t ≤ 2 selected entries. Let Y be the n× (m− t) submatrix of M consisting
of the mixed columns with no selected entries in this row r. We may assume that
m− t is odd (if not, then just include one column less in Y ).

Now restrict the protocol to input matrices A : X → {0, 1} de�ned as follows.
First we set the part of the row r lying in Y to 0's and the rest of r to 1's. Since n
is even and m− t is odd, this ensures that the obtained matrices will already contain
an odd row. After that we set to 0 all the remaining non-selected entries of X. Since
each obtained matrix A contains an odd row (the row r) and all columns outside
the submatrix Y are odd (each of them has a 1 in the row r and 0's elsewhere), the
players must determine whether all columns of A in Y are also odd. That is, they
must determine whether xi 6= yi for all i = 1, . . . ,m − t. Or equivalently, they must
decide whether x = y⊕1 for vectors x = (x1, . . . , xm−t) and y = (y1, . . . , ym−t), which
again requires Ω(m− t) = Ω(n) bits of communication.

This completes the proof of Lemma 3.2, and thus, the proof of the �rst claim of
Theorem 2.1.

4 Proof of Theorem 2.1(ii)

We de�ne the boolean function g(X), showing that NP∩ co-NP 6⊆ BPP, and hence,
RP∩ co-RP $ NP∩ co-NP in the best partition case, as follows. Say that a row/column
x of a 0/1 matrix is good if it contains precisely two 1's, and bad otherwise. Let
g(A) = 1 if and only if at least one row of A is good, and all columns of A are bad.

Lemma 4.1. Both N(g) and N(¬g) are O(log n).

Proof. To compute g and ¬g the players use the same partitions of the input matrix
as in the proof of Lemma 3.1.

To compute g(A) for a given matrix A : X → {0, 1}, the protocol �rst guesses
a row r (a candidate for a good row). Then, using 3 bits, Alice tells Bob whether
all her columns are bad, and whether the �rst half of the row r contains none, one,
two or more than two 1's. After that Bob has the whole information about the value
g(A), and can announce the answer. The negation ¬g(A) can be computed in the
same manner by replacing the roles of rows and columns.

6



Lemma 4.2. R(g) = Ω(n).

Proof. The proof is almost the same as that of Lemma 3.2�the only di�erence is
that now we use the set disjointness function disj(x, y) instead of eq(x, y).

Take an arbitrary probabilistic bounded error protocol for g(X) using some bal-
anced partition of the n× n matrix of variables X. Let (as before) m be the number
of mixed columns.
Case 1: m ≤ n/2− 1. In this case each player can see at least one column. Take one
column seen by Alice and another column seen by Bob, and let Y be the (n− 3)× 2
submatrix of X formed by these two columns without the last three rows. We restrict
the protocol to input matrices A : X → {0, 1} de�ned as follows. We �rst set all
entries in the last three rows to 1. This way we ensure that all columns of A are
already bad. Then we set all remaining entries of X outside Y to 0. The columns x
and y of Y may take arbitrary values.

In each such matrix all columns are bad, and the last three all-1 rows are also bad
(for n ≥ 3). Thus, given such a matrix, the players must determine whether some
of the remaining rows is good. Since all these rows have 0's outside the columns x
and y, this means that the players must determine whether xi = yi = 1 for some
1 ≤ i < n − 3. That is, they must compute ¬disj(x, y) which (according to [9, 16])
requires Ω(n) bits of communication.
Case 2: m ≥ n/2. Let M be the n×m submatrix of X formed by the mixed columns.
Select from the i-th (i = 1, . . . ,m) column of M one entry xi seen by Alice and one
entry yi seen by Bob. As before, there must be a row r with t ≤ 2 selected entries.
Let Y be the n × (m − t) submatrix of M consisting of the mixed columns with no
selected entries in the row r. We may assume that m − t ≤ n − 2 (if not, then just
include in Y fewer columns).

Now restrict the protocol to input matrices A : X → {0, 1} de�ned as follows.
First we set to 1 some two entries of the row r lying outside Y , and set to 0 all the
remaining entries of r. This ensures that the obtained matrices will already contain
a good row. After that we set all the remaining non-selected entries of X to 0. Since
each obtained matrix A contains a good row (such is the row r) and all columns
outside the submatrix Y are bad (each of them can have a 1 only in the row r), the
players must determine whether all columns of A in Y are also bad. Since all non-
selected entries of Y are set to 0, the players must determine whether xi + yi ≤ 1 for
all i = 1, . . . ,m−t. Hence, the players must decide whether

∑m−t
i=1 xiyi = 0, that is, to

compute the set-disjointness function disj(x, y), which again requires Ω(m−t) = Ω(n)
bits of communication.

This completes the proof of Lemma 4.2, and thus, the proof of the second claim
of Theorem 2.1.

7



Acknowledgments

I would like to thank Hartmut Klauck and Martin Sauerho� for helpful comments on
an early version of this paper, and Georg Schnitger for motivating discussions. I am
also thankful to anonymous referees for useful suggestions.

References

[1] Aho, A., Ullman, J. and Yannakakis, M. (1983): On notions of information transfer in VLSI
circuits. In Proc. of 15th Ann. ACM Symp. on the Theory of Computing, 133�139.

[2] Babai, L., Frankl, P. and Simon, J. (1986): Complexity classes in communication complexity
theory. In Proc. of 27th Ann. IEEE Symp. on Foundations of Comput. Sci., 337�347.

[3] Blum, M. and Impagliazzo, R. (1987): Generic oracles and oracle classes. In Proc. of 28th Ann.
IEEE Symp. on Foundations of Comput. Sci., 118�126.

[4] �uri², P., Hromkovi£, J., Jukna, S., Sauerho�, M. and Schnitger, G. (2004): On multipartition
communication complexity, Information and Computation 194:1, 49�75.

[5] Hartmanis, J. and Hemachandra, L. A. (1987): One-way functions, robustness and non-
isomorphism of NP-complete classes. Tech. Rep. DCS TR86-796, Cornell University.

[6] Ja'Ja,' J., Prasanna Kummar, V. K. and Simon, J. (1984): Information transfer under di�erent
sets of protocols, SIAM J. Comput. 13, 840�849.

[7] Jukna, S. and Schnitger, G. (2002): Triangle-freeness is hard to detect, Combinatorics, Proba-
bility and Computing 11, 549�569.

[8] Jukna, S., Razborov, A., Savický, P. and Wegener, I. (1999): On P versus NP∩co-NP for decision
trees and read-once branching programs, Computational Complexity 8:4, 357�370.

[9] Kalyanasundaram, B. and Schnitger, G. (1992): The probabilistic communication complexity
of set intersection, SIAM J. Discrete Math. 5:4 (1992), 545�557.

[10] Kushilevitz, E. and Nisan, N. (1997): Communication Complexity. Cambridge University Press.

[11] Lam, T.W. and Ruzzo, W. L. (1992): Results on communication complexity classes,
J. Comp. Syst. Sci. 44, 324�342.

[12] Lengauer, T. (1990): VLSI Theory. In: Handbook of Theoretical Computer Science, Vol. A,
pp. 835�868.

[13] Lipton, R. J. and Sedgewick, R. (1981): Lower bounds for VLSI. In Proc. of 13th Ann. ACM
Symp. on the Theory of Computing, 300�307.

[14] Nisan, N. (1991): CREW PRAMs and decision trees, SIAM J. Comput. 20:6, 999�1007.

[15] Papadimitriou Ch. H. and Sipser M. (1982): Communication complexity. In Proc. of 14th Ann.
ACM Symp. on the Theory of Computing, pp. 196�200. Journal version in: J. Comput. Syst.
Sci., 28:2 (1984), 260�269.

[16] Razborov, A. (1992): On the distributional complexity of disjointness, Theoretical Comput. Sci.
106:2, 385�390.

8



[17] Sauerho�, M. (1999): Lower bounds for randomized read-k-times branching programs. In Proc.
of 15th Symp. on Theoretical Aspects in Comput. Sci., Springer Lecture Notes in Computer
Science 1373, 105�115.

[18] Sauerho�, M. (2003): Randomness versus nondeterminism for read-once and read-k branching
programs. In Proc. of 20th Symp. on Theoretical Aspects in Comput. Sci., Springer Lecture
Notes in Computer Science 2607, 307�318.

[19] Tardos, G. (1989) Query complexity, or why is it di�cult to separate NPA ∩ co-NPA from PA

by a random oracle A? Combinatorica 9, 385-392.

[20] Wegener, I. (2000): Branching programs and Binary Decision Diagrams: Theory and Applica-
tions. SIAM Series in Discrete Mathematics and Applications.

[21] Yao, A.C. (1979): Some complexity questions related to distributed computing. In Proc. of
11th Ann. ACM Symp. on the Theory of Computing, 209�213.

[22] Yao, A.C. (1983): Lower bounds by probabilistic arguments. In Proc. of 24th Ann. IEEE Symp.
on Foundations of Comput. Sci., 420�428.

9


