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ABSTRACT 4 general approximation technique to get lower bounds
for the complexity of combinational circuits over an arbitrary
algebras of operations is presented. The technigue generalizes recent
methods for monotone cirguiﬁs and yields some new resulis. This report
contains an expClog ™Ml lower bound for the complexity of
realization of non—-monotone Boolean functions by circuits over the
basis (&,V,= compuling sufficiently many prime implicantis , and of
three-valued functions by circuits over some incomplete three—valusd
extensions of (&%,V,D.

INTRODUCTION

The general idea of approximation technigue in the theory of lower
beunds for Boelean circuits is to approximate the circuits by more
restricted ones. Various refinements of such an approach have already
been used in a great many cof lower bounds proofs. At present we have
three main refinements. These are :
~ probabilistic approximations, by Furst,Saxe and Sipser (81, Ajtai

{11, Hastad {71, Yaoc [17], Hajnal et al. 8] , etc.

- Ffunciional approximaiions, by Andreev [3,41], Razborov [13-181],
Alon and Boppana [2]1, FPaterson I[12], Smolensky I[16], Ugol‘'nikov
{183, ete. ;

- topological approximations, [8-101.

The aim of this report is +to develope the functional
approximation technique in order to obtain lower bounds for circuits
over an arbitrary algebras of operations. The technique generalizes
the methods of [2~4,12-16] and yields some new resultis.

The first result concerns Boclean circuits over the basis {(&,V,-0
with = -~gates on the top of circuit. Any such circuit € computes some
Boolean functicon f and alsc some disjunctive normal form (DNF for

s
shortd DS of fs (see Section 3 for detaillsd. A circuit S is called
to be a S-circuit (0 £ & < 13 iff
&
| g nImpcf D> | 2 | Impcrd |7 -1,
where ImpC(f) denotes the set of all prime implicants of by of
minimal length ; & is ®-gircuit if DS = ImpCfSD . For &6 € 10,1}

U (%> and a Boolean function £, let CSCfD dencte the minimum
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number of gates in a &—circuit computing f ; in case of monotone
basis {&,V> we will write cé+cr> . Notice that C6Cf3 < Cny) =
C*ij for any 0 £ 8 £ y £ 1, and that CDCfD = Gf3 is the usual
combinational complexity of f . Moreaver, if f is monotone then
C5+Cf) = C},+Cf3 = C+Cf3 zince Impcrs) < DS for any monotone S .

These functionals have been considered by many authors. Probably,
the first non-trivial result in this direction is an exponential
trade-off between -circuits and (monotone? 1-circuits proved by
Okol'nishnikova in [11l. Namelly, she proved the bound C*Cf’n) 2
expCQCn"“D for a single sequence of monotone canonical functions f‘n
such that C1+Cfn> £ 2n . CA function f is canconical if ImpCfD
coincides with the set PICED of all prime implicants of £ 2.
Latter, Andreev (3,41, Razborov [13,14] and Alon and Boppana [2] have
considered the functional C+Cf‘) and obtained super-polynomial Cup
to expCQCny:‘oCi))) in [41> lower bounds for some sequences of
monotone canonical functions f'n with U fn—‘c:l.) e NP. These bounds
held alsc for 01Cfn3 . This is becouse any minimal circuit over
{&,V,> computing a postitive DNF {(i.e. a DNF without negations) has
noe null-chains. However, it is known [8-10,13,14] that the presence of
null-chains may substantialy reduce the circuit =size. For example, in
[13] a sequence of monione canonical functions f is given such that

+ £XClognd oc1d n
C Cfn) Zn and C:SCfnJ £n for some O £ 6 < 1. Thus we
need a technique to prove lower bounds for non-positive DNFs, and, in
particular, for C¢5Cf) with a non-monotone f .

Such a technique is described in Section 1. In Secticon 2 the
technique is demonstrated by a general lower bound on the complexiiy
of realization of sets by circuits over basises consisting of
so~called H-operations. This general bound yield all the known bounds
{2,3,132,141 and some new lower bounds. In Section 2 a sequence of
non-monotone Boolean functions L. is given and it is proved that for

any constant & e (0,11 it holds that

X1in nd In n
n

< Céﬁrnj £n
In section 4 we prove that circuits over some three-valued extensions
of {&,V.,m require super-polynomial number of gates to compute a

single sequence of three-valued functions.
1 CIRcUITS AND METRIC CRITERIONS OF THER COMPLEXITY

Fix some n 2 1 and let F be a collection of n-ary operations [ :

Y ~——> Y over some set WU . A circuit over the algebra U, Fd with
input $ £ Y is an ordered sequence S = {51""'51.} £ M such that
¥ i=1,..,t s, = f(bl.....bnb for some f € F and bi’”"bn
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e H U {51"“'51-1}' The number t of elements in 8 is the size of S,
We say S computes a vector A e ‘Ilk iff A € $H U S, (Here and in
what follows we shall often identify a vector with the set of its
elements). The circuit-size complexity of A e ‘).Ik over an algebra
CM;FY with respect to % £ WM , denoted by LFCA,g). iz the size of a
minimal circuit over CMF> with input & , computing A . Notice
that LF-CA-§3 = 0 for any A S%H .

We say an algebra (B8 is a Q-image of an algebra C(UFD,
where Q < MAR , iff for each f € F there is some g € G such that
for all vectors A = (a .....an) e W and B = Cbi""'bn> e B we

i

have that {Cai.bil : d=1,...,n3 € Q implies (fCAD,g(BX> e Q. For

S S U put QY = { beB : Ca,bdeQ for some aehH .
THEOREM 1 IFf (B;6D is a Q-image of CU;FD then for any aeW and $
€U we have :

Lp€a:®> = inf [ Cb.QCHD .
beQCad

Proof : straightforward. B

For numbers k.n 2 1, let ‘Ltkm denote the set of zll
k¥m~matrices over 9% . Thus, e.g., ﬂk‘ = ‘llk, the k-th cartesian
degree of U . A semimetric over U is a functional

o :uU RIS ~——=> R
+
k21
satisfying the usual "triangle rule’: lx,yd € plx,2d + plz,yD.

For A e % and a subset % € U , put oCA,B = inf{oCA,B>: Be®" >.

For a kXm-matrix A, let A denote the vector CAi""'Ak3 1= *u""’ R
where AJ. stands for the i-th row of A . Given a vector of
operations f = Cfi,....f'kD e Fk and a matrix A e ‘ltk’m s we denote
by fCAd the vector Cf1CA13.....kaAkD) € ‘le . Put  fOB = { £CBD

B e 3)““ > and define the “one-step-closure” F(B of B s Y by
FCB> = U { fCUBD ¢ f « F . A semimetric p is called toc be

F-contractible on B € W iff for any Ae‘nkn and fe F¥ it holds

PLECAD,LCBOY £ pCAB.

The following theorem generalizes the standard approach of proving
circuit-size lower bound - demonstrating that a certain amount of
progress must be made, and that no step makes more than & progress,
for some small & .

TuEoREM 2. Let (MO be an algebra, Aeﬁl" be o vector and % £ .
Then for any subset B YU and any F-contractible on B semimetric g

we have that LF-CA-§3 > oXABD st -1,

where 6= sup { XC,B : C e H U FCBO™, m21 > .
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Proof: We proceed by inductiion on t = LFCA,gb LIf Lt =0 then A €
% , and hence pCA,B> £ & . For the induction step assume that A =
£CC> for some f € F‘k and C & Q”kn with chg.ga £ t-1 .By the

triangle rule we have, for any B € ‘).lkh . that

SCAB = ofCCI,B £ ofCCO,L£CBID + oCfCBO,BO .
Since e is F-contractible on B, we have by the induction
hypothesis that for some B € ’Bk,n PLECCO,£CBY) € oXC,B = L& .
Therefore, LA £ L& + oLLCBI,BY S t& + & = (L+1D6 . »

Let us now introduce an algebraic definition of contractible
semimetrics, generalizing the methods of [2-4,12-16]

Let CU;® be a semigroup with a unit element 1, and let « <& ‘uz
be some reflexive and transitive relation. A triple & = (¥,8,& 2, |is
an approximation structure iff @ is monotone with respect to « and
1€ ® €<% . Define “linear covers” Covtcm of & by :

Covt+1cm =<{ adh : a e Covtcm and b € & > where Covocm = {P.

A structure induces the following natural measure of accurancy
£KA,B> Cwith which a vector A is approximated by a vector B D
KLABY iz the minimum number m20 for which Cc\rmcm contains an
element e such that ¥id a, « biee Notice that plx,x> = O,
since « is reflexive, but plx,y) # oLy,x> on the whole.

A structure @ = (®,®, O is compatible with an algebra CWUFD
iff each operation feF is both " «-monotone® and "(®, « d-idempotent”,
i.e. if for any A,B & % and c e YU : a, « bl""' a « bn implies
fCAD « £fCB>, and fCA@c) « fCAdec ,where Aec = Ca16 Coeenrd @ cd.
LEMMA 1 Let & be an approximation structure and let p be the
induced measure of accurancy. If & is compatible with an algebra

CM;F> then p is a semimetric F-contractible on any subsel B <.

Proof : Since « is transitive and reflexive and @ is monotone
with respect to « , we have that p 1is a semimetric. To show that
o iz F-contractive on a2 subset 8 U , let f € F and A € 'ukm
with XAR = LABY) = m for some B e ﬁ3km, i.e. a, « bia e for
some e € Cov‘mcm and all i = 1,...,nk. Since & 1is compatible with
CU;F> , we have :

¥i=1,..k fFCADKF(Beaed KT LBD & e .
J=t SAP «EBy@ e « (B,

Therefore, CLCADLCB) S nm = pCABY . =

Given a subsets B,E < Y and a pair of semimetrics Po and X
we shall write [po.pilcts.m < d if for any ¢ € & there exists
an b e B such that poCc,bJ <d and p1Cb,c3 <d

THEOREM 3. Let C(M,F> be an algebra, a € W and B.GH s WU . Let also
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Pg and ey be a pair of accurancy measures induced by a pair of
approximation structures 60 and 61 . If these structures both are
compatible with C(U;F> and tpo.prlcg UFB,B2=sd (d>0> then

-4

LF.Ca,,%) 2 d° inf max <{ poCa.bD, pICb,aD >

be®
Procf : Follows directly from Thecorem 2 and Lemma 1 . ®

2. Tve GENErRAL LOWER BOUND

Let E be some finite set, |[E] 2 2 and n 2 1. Points are
elements of E™ and figures are elements of the power set PCE™Y of
g"
x by NCxD> = j{i : xCid # % | , where x(id> is the i-th coordinate

. Fix some element % € E and define the weight N(x2 of a point

of %. We say x covers ¥y (x e Y for shortd if Vi y(id e {xCid,%>,
Hence, if x L.,y then Nx32NCy3> . Thus, for any distinguished point
»eE, C(E™, 4, is an upper semilattice with the maximal element % =
C%,... %> and the join supix,y) defined as the C(unigued point z of
minimal weight such that {x,y> £y, Zz . For a point x and figures X.,Y
we shall write x A* Y if x Ly Y for some ye¥, and X £ *Y if xz*Y

for all xeX . For a figure X, set 27 = € xeE" : xe.x >
and [X] = =€ xeX : W¥WyeX Cx £,y » y=xD27
An operation f : PCE™™ -~-> PCE™> is an 3-operation if there
is a system ﬂr € PC{1,....m>3 such that for any peoint x and figures
xi,...,xm it holds that
X Ly fCXi,...,XDD irf CHw le)CVi ewd x £, Xi.

Let ¥ denote the set of all S-operations. Notice that, for example,
the union U and the concatenation ©, given by
— n v
XeY = |{ xeE" : x £, X and xA*Y}J.
both are 3~operations with QU = {{1>.,{23> and ﬂo = {€1,83>.

LEMMA 2. for any F £ 8 and &< PCE™ containing E”, the structure
CG.U.A*D is an approximation siructure compatible with the algebra of
Figures CPCE'D;F>.

To apply Thecrem 23, we shall make use of the concept of closed
figure similar to that of closed system of sets introducd in [2,13]
Let p2l and r22 be numbers to be cheoosen later, and let E; dencte
the set of all points of weight at most p. The closure of a figure
XSE:: ,» denoted by Xg. is the smallest figure Y2X such that for any
r (not necessarily distinctd points XgveeesX of Y, the figure Y
contains all the points yeE: such that vy Lo supri.xJD for all
1Si<jSr. A figure X is closed if ¥° = X . Let ® denote the

P,r
set of all closed figures.
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LEMMA 3 For any figure X & E; it holds that

ce> |1x®) - xY| = 2rP ana
Cii> if X is closed then |[[X] n E:[ < cr-13¥ Ffor any 05k<p.

Proof. Similar to that of lemmas 2.3 and 2.8 in [2l. =

For an m-ary H-operation f and a sequence of figures X =

X X D, set
m

g0
T w‘ejnf 12m *i:
Notice that fIX] € £C¥> but fIX] # fCX> in general, For example,
UIX,Yl = XY but of[X,Y] = XNY # X0Y on the whole. Moreover, if fe¥
and all X, € E: then fIX] < E'; whereas = CfCXOS z-::: in general.
Given a collection of 3-operations F, let «° and !

i
p.r p.r

denote the sets of all figures of the form fCL’)V—Cf[x_]@DV and,

respectively, of the form Cftx_J@DV - fC&Dv, where feF and Xi@ ESP r
Let o and ey be the measures of accurancy induced by the
structures ce® , u, 20 and <
Pr * p.r
collection of "singular® figures
By = B UL OO xeE™ and NCx> <1 3
It is easy to see ithat then for any p2i and rz2, it holds that

log Py KBV FCB, O, B O =1

Uy z*). Fix the following

Therefore, by Theorem 3 and Lemma 2 we have, for any figure X, that

LFCX,E)O) = inf max ¢ pOCX.Y). p1CY.x.‘J > 1>
YeB
p.r
To bound pOand Py let us introduce some auxiliary parameters. For
figures X and Y, set RCX> = min { NCxD : xeX >, ;vxCYD = | xe 1x1 -
x £, Y 3|, and for k20, put r,C(k) = max {y C{y>> : yeE” and
NCyd=k>. A figure X is r-disjoint if ;VXCtD < ;VXCSDC3P"3DS“‘L for

all O=s=t.

THEOREM 4. Let X be a figure, § be a collection of figures,
1<p=RCXD, r22 and O £ ¢ = C|E|—1J—‘. Let also F be a colleciion of
J-operations of arity at most m and let £ = [Cp+1)/m'|. Then for any
r-disjoint figure Y and for any figure Z such that Y £ X £, 2, it
holds that

7€0> 1 - 7,C0 kc2o
LpCX.8> 2 min R S , mmmmmfe———— o= - L%
amCr-13“p zrPc1 - M
where
5.C9) = L.C¥.% 0.
F 2 weg o

Proof : By (12 it is sufficient to prove that for any closed figure B
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e B , it holds that poCX.BJ 2 u or p1CB.X) 2 v Cor bothl2, where u
and v stand for the first and second expressien in min{...>. There
are two possible cases, depending on B.
Case 1 : # & B . Then poCX..B) = pOCY,B) z u.

The first inequality holds for any Y Loy X. The idea of proof of
the second one is analogous to that of Theorem 4.2 in [2]. By the
definition of Py there exist t = poCY,B) figures Ui"”'ut in @°

p.r

such that [_Y_I £ (B U Ulu RV ULDV . Hence, pOCY.B) 2 C;VYCO‘.) -

rYCBDD/max yYCUi). Since % & B, we have that N(x2321 for all xe€B, and
since Y is r~disjoint, we have by Lemma 3Ciid that

4
7 4B sk§1:r~1>" y 0 S Ly o
To bound ;VYCUi), recall that Ui = f‘Cij_}v - Cf[E!@)v for some feF and
some sequence of closed figures W = Cwl.....‘ﬂm). Ifr erZ then there
iz some we} so that, for any jew, the point x covers some point

f
b of ¥.]. Moreover, as no point of f[ﬁ)g) i= covered by x, we
3 J

have that x £ . n Wk for no w'eﬂr. Let z be the point of minimal
kew”
weight which covers all the points yJ. Jew. If NCz3 < p then, since

figures VIJ are closed, thes point z is in fa) Wk . which is
k€W
impossible since x £, z. Thus N(z> 2 p+1 and so NCij 2 N2/ fe ]

z ¢ for some jew. Therefore, if erv then x covers some point of

i
[ﬁfiju...utﬂmj of weight at least £ Hence, by Lemma 3(ii> we have that
P
r fUD = 1% mCr-i)k ¥ Lk3 < mCr-i)i ¥l
Y R R Y Y

Case 2 : % € B . Then p1CB.X3 2z v
Indeed, by the definition of Py there exist t = p1CB,X)
yr-Dye ®  such that BY € (X UDU .. UDD’ .Let ze
»
CE-¢n>d" be a random point in which each 21> e E-{%> appears
independently with probability &£ (0 £ & < C!El—i)“). Then Prob{ x
A*B}=1.since e B, and f, =Prob { x £, X > CProcb{xs, Z3 =
RCCD o * *
yzt()) & . Hernice t 2 (1 - 30)/{‘ where ¢ = max Prob { x £ Di x .

By Lemma 3Cid, § = 2rpnr where 7 = max { Prob{-(x Ly Yy y e E;}.

figures D

it remains to observe that n <1 - e . m

3. THe ComMpPLEMITY OF DisauncTive NorRMAL FORMS

Fix some alphabet of Boolean wvariables {u

let E” = {%,0,13>. We identify a monomial & ul
iel
xeE” such that ¥i=1i,....n, xC,}}=aJ if jel and x(jd=% otherwise.

So, DNFs are figures over E". A DNF X < gV

1----»Un}. and

with the point

realizes a Boolean
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function fCu,,.,ud iff 7> = xn <0,15™ . Let ImpCf> denote
the set of all prime implicants of minimal length of f, i.e. xelImpCfd
iff x is a prime implicant of £ and NCx> £ NCy> for any other
prime implicant ¥y of [,

For &el0,1]1 and a Boolean function f, let D(f,8 denote the set of
all DNFs X realizing f and such that |X n ImpCfd] 2 | ImpCf‘Dl6 -1 .
LEMMA 4. For any Boolean function f and & € [0,1] it holds that

c.ce 2 min L X.%.0 .
& AeDCE 8 e 0

Proof: Take Q = { (£,XD> : X realizes f > and apply Theorem 1. ®»

ExaMpLe 1 Let g be a prime number such that s = [é in g! 2 1 ,
and let GFC(qY) be the Galois field of order g with the addition +
Fix an element e # 0 of GF(g) and consider the following Boolean

function nnCUD of n = q2 variables U = {ua b - a,b e GFCgd 2.
’

Given a quadratic qlg-matrix & = Caa b) with a, be{o A1, let
fan.#) = 1 iff there is a polynomial p of degree at most s-1 over
GFC(q) such that for all aeGF(qgD, aa.pCa) = 1 and aa.pCa3+e = 0,

Notice that nn is non-monotone: nnc.:D = 0 if & contains more than

n-q or less than q ones. Set Yn = ImannL and let Zn = { K+ & K

P P

4 2
P, and p, are polynomials of degree atmost s-1 >, where a monomial
+ - —
Kp C Kp > consists of all the literals ua.pCa) (resp., ua.pCa)Qe)'

aeBGF(qd. Notice that Yn b= Zn and Xn £, Zn for any DNF Xn
= = = = s
realizing 7 . Moreover RCY 3 ECZnD gq . ¥y co2 [Ynl q

1]
7 CO> = q°% and y, O = g [Ck+13/2] ¢ a11 k21. Since U and

N n
© both are J-operations, Theorem 4 implies the following

COROLLARY 1. For any DNF X with anj = Y, we have that

Xin n>
>
Leu,o¥n %o = 1 ‘

"”31, p = [; In r} and & = ((ln 20*P  and

Proof : Take r = (g
apply Thecrem 4 B

Since Yn realizes T Lemma 4 and Corocllary 1 yield

COROLLARY 2. For any constant & € (0,11 it holds that

€Cin nd e In n
n

S CLm > <n , £ S 1/47.

Therefore, we have that either CCnnJ 2 nQCIn nl or all the minimal

oCl)
circuits for m compute DNFs Xn such that |xn n Yn] < |Yn| .

4 Tve ComPLEXITY OF THREE-VALUED FUNCTIONS

Let ES = {0,1.,2> and let Wg denote the set of all n-ary
three-valued predicates f : Ej -—--> €0,1>.
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Frobably, the first non-trivial lower bound for circults over an

incomplete three-valued basises has been proved by Tkachev in [18]. He

considers circuits over the algebra (¢ mg; ~ , ® 2 with input HO“
{vi....,vn). where 3)2 is the set of all three-valued functions f: Eg
———2 Ea » X~y = minlx,yd, &y = xy(lmed 20 and LR Eg -—=> E3 is
the i-th projection, i.e. for oreEg , viCoD = ofiJ, the i-th

coordinate of o. In [18] the bhound

n
- -
Len,epCtnfg? 2 2[:':/8] 1

is proved for the sequence of three-valued predicates ’cn [ m‘; given
by : t €0 =1 iff o0e<1,2"7 and | : oC)=1>] 2 n/2 +1.

n
Set xwy = max(x,y> and H = {Li....,an.nl,...,nn} where for aeE,s

" 1 if eCid=1, . 1 if oCid=g2,

1403 = {O otherwise, 2Pd mled = {0 otherwise.

Notice that the predicate tn has polyvnomial-size circuits over the

algebra ¢ i e

3;v,s) even with input H :

5, 3
<
Leo,gStn B> 5 0™ % .

This follows from the representation

nl

L Cod = £,Cod8f (oD@ ... 8 ® MAJ Ci,Cod,....,1 (DD,

1
where EiCoO = LiCoo v niCoO, and from the result of Valiant [20] that
the monotcone Boolean formula-size complexity of Boolean majority
function MAJ  is o™ ™.

In thi= section we demonsirate Thecrem 4 by a super-polynomial
L{V.Q}C-.HD. To do this, let OeE3 be the distinguished
element of E3 Cie. O plays a role of 2, and let ‘:O be the
corresponding order relation on ED. Identify a predicate fem; with

3
the figure X, = %> ¢ Eg ;

LEMMA B, For any predicate f & m; it holds that
b4

lower bound for

Lo g©E2 Leu,on s 902

Prooy. Define Q < mg ® PCEg) by Q = €Cf,Y> : X.= cerg x4y Y 33
Then QCHY € §0 and the algebra of figures ( PCE‘.g); U, o3 is

Q-image of C !Bg; v, ®. It remains to apply Theorem 1. =

ExaMPLE 2. Let us consider the following three-valued extention ﬂneﬁg of

L (see Example 13.For a guadratic gfg-matrix M = Cma .b) with ma’beEs.

let I'InCMJ =1 iff there is a2 polynomial p of degree at most s-1 over
GF(q> such that YaeGF(gD m, .pCaD=1 and m_ .pCa3+e=2‘
Lemma 5 and Corellary 1 directly yield the following bound.

Xin nd Cinn
< <
n < }{ , }m JHY < n

COROLLARY 3: , CS1/47.
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Obviously we are just begining tec understand the power of functional
Cas well as probabilistic and topologicald approximations in lower
bounds proofs. The two examples given in this note, as well as
examples is [2-4,13,14], all concern the standard algebra of DNFs. Of
course, Theorems 1-3 admit further applications. For example, one may
consider more subtle representations of Boolean functions such as the
algebra of prime implicants, etc. Besides, a suitable combination of
functional, probabilistic and topological approximation techniques may
help.
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