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ABSTRACT A @choral upprox~laat~on tec]%n~que £o gel 1o~er bounds 
/or tJ%e comp~ex~tt; o/ comb~ncxt~onaL c~rcu~ts ouez" a;% urb~tr=r~ 
u~gebrus o/ operations ~s presented. The technique @enera1~=es recent 
meZhods )cot monotone c~rcu~s end y~elds some ne%~ res~Its, rh~s report 
contu~ns un expCf)C[o@=nDD toy;or bound for the complexity of 
rea1~zuZ~on o~ non-~%onotone Boo~eun /unctions by c~rcu~ts o~)e~" ~l%e 
b=s~s C~,V,-%5 co~apu~n@ su/)C~c~ent1~ laan~ pr~ae ~lap~cc~n~s , und o/ 
thPee-~=~ued /unctions b~; c~l-cu~ts o~;er solne ~ncomp~efe ~%ree-~cz[ued 
extensions o/ C&,V,"~. 

INTRODUCTION 
The general idea of approximation technique in the theory of lower 

bounds for Boolean circuits is to approximate the circuits by more 

restricted ones. Various refinements of such an approach have already 

been used in a great many of lower bounds proofs. At present we have 

three main refinements. These are : 

- probub~L~st~c approximations, by Furst,Saxe and Sipser [5], Ajtal 

[I], Ha~tad [T], Yao [17], H~jnal et al. [6] , etc. 

- /unct£onal approxirnut~ons, by Andreev [3,4], Razborov [13-15], 

Alon and Boppana [~], P~terson [le], Smolensky [18]. Ugol'nikov 

Jig], etc. ; 

- -  tOpO~O@~CaL approx~mcz~ons, [8-10]. 

The aim of this report is to develope the functional 

approximation technique in order to obtain lower bounds for circuits 

over an arbitrary algebras of operations. The technique generalizes 

the methods of [~-4,1R-1B] and yields some new results. 

The first result concerns Boolean circuits over the basis (~,V,-D 

with ~ -gates on the top of circuit. Any such circuit S computes some 

Boolean function fS and also some disjunctive normal form CDNF for 

short3 D E of fS Csee Section 3 for detailsg. A circuit S is called 

to be a 6-c~rcu~t CO S 6 S 13 iff 

[ DE ~ ImpCfs 3 [ > ~ impCfs 3 [6 _ I . 

where ImpCf9 denotes the set of all prime implicants of f of 

minimal length ; S is ~-c~rcu~£ if D S = ImpEfs3 For 6 E [0,1] 

0 (W) and a Boolean function f , let C6Cf3 denote the minimum 
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number of gates in a 6-circult computing f ; in case of monotone 

basis (&,V> we will write C6+ff) . Notice that C6Cf) s C cf9 

C~Cf) for any 0 ~ 6 ~ y s I, a n d  that CoCf9 = CCfD is the usual 

combinational complexity of f . Moreover, if f is monotone then 

C6+Cf) = C +cf) = C+CF) since ImpCfs9 ~ D S For any monotone S . 

These functlonals have been considered by many authors. Probably, 

the First non-trivial result in this direction is an exponential 

trade-off between ~-circuits and Cmonotone9 l-clrcuits proved by 

Okol'nishnikova in [Ii]. Namelly, she proved the bound C~Cfn3 

expC~]Cnl/4D For a single sequence of monotone canonical functions f 
n 

such that Cl+Cfn 9 ~ Rn . cA Function f is canon~cat if ImpCf9 

coincides with the set PICF) of all prime implicants of f 9. 

Latter, Andreev [3,¢]0 Razborov [13,14] and A l o n  and Soppana JR] have 

considered the Functional C+CF9 and obtained super-polynomial Cup 

to expCC~Cnl/~-°Cl~9} in [49 lower bounds for some sequences of 

monotone canonical functions f with u f -ICI9 e NP. These bounds 
n n 

hold also For CIcf n9 . This is becouse any minimal circuit over 

(~,V,-O computing a positive DNF Ci.e. a DNF without negatlons9 has 

no nul[-ch=~ns. However, it is known [8-I0,13,14] that the presence of 

null-chains may substantlaly reduce the circuit size. For example, in 

[13] a sequence of montone canonical functions f n is given such that 

C+Cfn 9 Z n ~fl°gn9 and C6Cfn9 S n 0C19 For some 0 S 6 < I .  Thus we 

need a technique to prove lower bounds For non-posZt~e DNFs, and, in 

particular, For C6CFD with a non-~onotone f . 

Such a technique is described in Section I. In Section 2 the 

technique is demonstrated by a general lower bound on the complexity 

of realization of sets by circuits over basises consisting of 

so-called 3-operations. This general bound yield all the known bounds 

[R,3,13,14] and some new lower bounds. In Section 3 a sequence of 

non-monotone Boolean Functions n is given and it is proved that for 
n 

any constant 6 e CO,I] it holds that 
C~CIn n) In n 

n ~ C6C=n9 ~ n 

In section ~ we prove that circuits over some three-valued extenzions 

of {~,V,-O require super-polynomlal number of gates to compute a 

single sequence of three-valued functions. 

1. CIRCUITS AND METRIC CRITERIONS OF THEIR COHPLEXITY 

Fix some n ~ I and let F be a collection of n-ary operations f : 

- - - >  ~ o v e r  some  s e t  ~ , A c ~ r c ~ t  o u e r  ~ h e  a ~ g e b ~ a  C ~ ;  F )  ~ t h  

~ n p ~ t  ~ ~ ~ i s  a n  o r d e r e d  s e q u e n c e  S = { s  1 . . . . .  s t }  ~ ~ s u c h  t h a t  

V i = 1 .... ,t S i = fob I .... ,b n) for some f ~ F and b i .... ,b n 
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e ~ U {s I, .... si_l), The number t of elements in S is the s~ze of S. 

We say  S c o m p u t e s  a v e c t o r  A e %~ i f f  A _c ~ U S. CFIere and in  

what follows we shall often identify a vector with the set of its 

elements3. The c(Tcu~t-s(ze complexity of A e ~ over an aLgebPa 

C91;F3 ~)(th respect to ~ c_ 91 , denoted by LFCA,~3, iS the size of a 

minimal circuit over C91;F3 with input ~ , computing A Notice 

that LFCA,~) = O for any A _c ~ . 

We say an algebra C~;~) iS a Q-~muge of an algebra C91;F), 

where Q _c 9J~ , iff for each f e F there is some g e G such that 

for all vectors A = Cal,..°,a n) e ~ and B = Cb i ..... b n) e ~n we 

have that <Cai,bi3 : I=I, .... n> _c Q implies CfCAD,QCB)9 e Q. For 

_c 91, put QC~) = { bG~ : Ca,b)eQ for some ae~ ). 

THEOREM 1. I /  C~B;G3 ~$ ca. Q-~.m.aRe o ,  # C91;F) t . h e n  f o . r  a n y  aG91 a n d  

c 91 ~ e  ha,.~e : 

LFCa,~) z inf LGCb,QC~)) . 
bmQCa9 

P r ' o o /  : straightforward. II 

For numbers k,m -> I , let --91%m denote the set of all 

k~m-matrlces over 91 . Thus, e.g., %,I = ~' the k-th cartesian 

degree of 92 . A sem(r,%eLr(c over 91 is a functional 

p : u c ~  . . . .  > R+ 
kRi 

satisfying the usual "triangle rule": p(x,y9 -< ~(x,z9 + 6~z,y9. 

For A e ~ and a subset ~ _c 91 • put GCA,~ = inf{pCA,B): Be~ ). 

For a k~m-matrix A, let A denote the vector CA 1 ..... A k) e ~m • 

where A i stands for the i-th row of A Given a vector of 

operations f_ = Cf i, .... fk ) e F k and a matrix A e 91k,m ' we denote 

by f_CA3 the vector CfICA19 ..... fkCAk99 e ~ . Put f C~9 = ~ f CB9 : 

B G ~k ,n  } and define the "one-step-closure" FC~ of ~ _c 91 by 

FC~ = u { fC~D : f e F }. A semimetric 6) is called to be 

F-conZracZ~bLe on ~B ~- 91 iff for any AG91k, n and f e F k it holds 

~f__CA>, f_C~) D -< pCA.,~). 

The following theorem generalizes the standard approach of proving 

clrcult-size lower bound - demonstrating that a certain amount of 

progress must be made, and that no step makes more than 6 progress, 

for some small 6 . 

THEOREM 2. ieZ 691;YD be an e Z@eb~=, AG%~ be = ~ector und ~ ~_ 91. 

Then lop any su~$e~ ~ ~ 91 Gnd any F-contractibLe on ~ sem~met~c p 

~ae I~aue that LFCA ,~3 -> ~CA,~BO 6 -~ - i , 

~hez'e 45 = sup C ~CC,~ : C e C~ tJ FC~K)9 m, m>_i > . 
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P~'oo/: We proceed by induction on t = LFCA,~3 ~ I f  t = O then A 

, and hence pCA,~D < 45 . For the induction step assume that A = 

f_CC) for some f_ e F k and C ~ %[k.n with LFcc.~ < t-I .By the 

triangle rule we have, for any B E %[k,n ' that 

pfA,~9 = pCf_CC),~9 -< 6~f_CCD,f_CB)) + pCf_CBg,~D . 

Since p is F-contractlble on ~, we have by the induction 

hypothesis that for some B G ~k,n 6~f--(CD'f--CB)) -< 6~C--'~ -< t6 . 

Therefore, ~A,~ -< L6 + pCf_CBg,~D < t6 + 6 = Ct+I)6 . 1 

Let us now introduce an algebraic definition of contractible 

semlmetrics, generalizing the methods of [2-4,12-1•]. 

Let C%[;e9 be a semigroup with a unit element I , and let << _c 

be some reflexive and transitive relation. A triple ~ = C~,e,<< 9, is 

an appDox~matfon struct%/re Iff e is monotone with respect to << and 

I e ~ ~-- %[ . Define "linear covers" CovtC(~ of ~ by : 

Covt+iC~D = { aeb : a ~ Covtf@ID and b ~ {~ ) where COVoC{~D = (I)- 

A structure induces the following natural ~eusure o/ accu~anc~ 

6~A,B) fwith which a vector A is approximated by a vector B ) : 

pfA,B) is the minimum number m_>O for which COVmC~9 contains an 

element e such that CWI9 a i << biee .Notice that pCx,x9 = O, 

since << is reflexive, but pCx,y9 M pCy,x9 on the whole. 

A structure ~ = C~,O, << ) is compatible ~£h an algebra C%[;F) 

iff each operation f~F is both " <<-monotone" and "Ce, << )-~deTapotenf", 

i.e. if for any A,B 6 ~n and c 6 %[ : a I ¢< b I ..... a n << b n implies 

TCA) << fCBg, and fCAec9 << fCA)ec ,where Aec = Cale c,...,ane cD. 

LEMMA I. ieZ ~ be an approximation stDuc~Ire and ~eZ p be the 

~nduced rAe,~e%~2"e o/ ,~cc%~2"~,nc3;. I/ ~ ~e comp(xZ~5~e u ~ , t A  ~n ~Z@etra 

C%[;FD t~en p ~s a sem~met~'~c F-cont~'acttb~e on an~ s~bset ~ c_ %[. 

Proo/ : Since << is transitive and reflexive and • is monotone 

with respect to << , we have that p is a semimetrlc. To show that 

p is F-contractive on a subset ~ E %[ let f ~ F and A ~ %[k 

with ~A_,~ = pCA,B9 = m for some B e ~k,n' i.e. a i << hie e for 

some e e Coy C(~O and all i = i .... ,nk. Since ~ is compatible with 
m 

Cg, I;F) , we have : 

Vj=i .... k f jCAj)  << f jCBje e9 << f jCBj)  e, e . 

Therefore, ~fCA),f_C~) -< m = ~A_,~ . m 

Slven a subsets ~,~ _c %[ and a pair of semimetrics PO and 6)I' 

we shall write [pO,pl]f~,~SD < d if for any c ~ ~ there exists 

an b e ~ such that Po(C,b) < d and p~Cb,c3 < d . 

THEOREM 3. Let.  C%[;F) b e  a n  u ~ g e b r a ,  a ~ 92 a n d  ~,~ c 92 . Let.  , ' ,Lso 
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PO and Pl be a pa~ of accu~ancN n~easu~es ~nduced by a patr of 

appz~ox~aZ~on stI'ucZu~'es ~0 and ~f . If these st~'uc~l~'es both ape 

co~np~Z~b[e ~ :£h  C ~ ; F )  and [pO,pl]C~ U FC~),~ D -< d Cd>OD Zhen 

LFCa,~9 _> d -~ in/ max { pOfa,b), pfCb,a3 > . 
be~ 

Proof : Follows directly from Theorem ~ and Lemma i . I 

2. THE GENERAL LOWER BOUND 

Let E be some finite set, ~E~ > 2 and n > i. Points are 

elements of E n and /~g1~res are elements of the power met pCEn) of 

E n . Fix some element N 6 E and define the weight NCxD of a point 

x by NCx~ = }{i : xCi~ ~ ~ >I , where xfi~ is the i-th coordinate 

of x. We say x couers y fx Z~ y for short9 if Vi yCi9 e {xCi9,~}. 

Hence, if x z W y then NCxD_>NCy9 . Thus, for any distinguished point 

~GE, CE n, Z~) is an upper semilattice with the maximal element N_ = 

C~ .... ,~9 and the jo~n supCx,y3 defined as the Cunique3 point z of 

minimal weight such that {x,y} z~ z . For a point x and figures X,Y 

we shall write x Z~ Y if x Z~ y for some yGY, and X z wY if xL~Y 

for all xeX . For a figure X, set X v = £ xeE n : xz~X > 

and [xJ = ={ xeX : WyEX C X Z W y ~ y = x 9 } 

An operation f : PcEn9 m ---> PcEn9 Is an ~-opemat~on if there 

is a system Of _c Pf{1,...,m}) such that for any point x and figures 

X 1 ..... X m it holds that 

x L~ rEX I .... ,Xn9 iff C3~ e~f~CVi ~9 x L~ X i. 

Let ~ denote the set of all R-operations. Notice that, for example, 

the union U and the concatenation ~), given by 

XOY = [( xeE n : x Z~ X and x Z~ Y }J, 

both are ~-operatlons with % = <{l}.{e}} and ~) = {{1,2}}. 

LEMHA 2. For ann F c_ ~ and ~ _c pEEn9 con ta~n~ng E n , the s t~'uctuz'e 

C~,U,Z~) ~.s an czppz'ox~ma~.on s~l'ucZ%LI, e co~paZ~.b~e ~f. Zh Zhe ,~Z@e52"a o/ 

/ ~@~'es CPCEn3 ; F ) .  

To apply Theorem S, we shall make use of the concept of closed 

figure similar to that of closed system of sets introducd in [2,1~]. 

Let p>l and r_>~ be numbers to be choosen later, and let E n denote 
P 

the set of all points of weight at most p. The closure of a figure 

X~E; , denoted by X ©, is the smallest figure Y~_X such that for any 

r Cnot necessarily distlnct9 points x i .... ,x r of Y, the figure Y 

contains all the points yeE; such that y z~ supCxi,xj9 for all 

l<i<jSr. A figure X is closed if X © = X . Let ~p~r denote the 

set of all closed figures. 
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LEMMA 3. F o r  a n y  f f . g ~ r e  X c E n ~t A o t d s  t h a ~  
P 

c ~  i / x e j  - x v l  _< 2 r p  ~ n d  
n c ~  ~y x ~s c l o s e d  t h e n  I [XJ  n E~ I  -< c r - l D  k f o r  an~, o~k_<p. 

Proof: Similar to that of lemmas 2.3 and 2,5 in [23. • 

For an m-ary ~-operation f and a sequence of figures X_ = 

CX I ,...XmD, set 

f~x_] = U N x i .  

Notice that fiX] --~ fOX_5 but f[X_] ~ fCX_9 in general. For example, 

U[X,Y] = XL~/ but O[X,Y] = XNY ~ X{)Y on the whole. Moreover, if f~ 

and all Xl c E n then fiX] c E n whereas ~ CfCXD_ c EnD in general. 
- p - - p - p 

Given a collection of B-operatlons F ,  let ~o and (E rl p,r p,r 

denote the sets of all figures of the form fCX_DV-Cf[X]@D V and, 

respectively, of the form Cf[X]©D V - fOX) V, where f~F and Xi~ %,r" 

Let 6~ 0 and P l  be the measures of accurancy induced by the 

structures C~°p,r , U, Z~D and C~p, r, U, Z~). Fix the following 

collection o f  "singular" figures 

~0 = {~} U { {x) : x~E n and NCx3 -< I } 

It is easy to see that then for any pZl and r>-2, it holds that 

c% "% Jc~o"' F c ~ , 2 '  % , 2  ~ 1 . 

Therefore, by Theorem 3 and Lemma ~. we have, for any figure X, that 

LFCX,~0) > inf max { PoCX,YD, PlCY,XD ) CiD 
YG~ p,r 

To bound Poand p l ,  let us introduce some auxiliary parameters. For 

figures X and Y, set RCXD = mln ( NCXD : xGX ), YxCYD = ]< xELX j : 

x L~ Y )~, and for k_>O, put ZxCk3 = max (ZxC{Y)D : yeE n and 

NCyD=k). A figure X is r-d~sjo£n£ if ZxCt9 _< ZxCSDCDr-D9 s-t for 

all O--<s-<t. 

THEOREM 4,. Let X be a f t S ~ r e ,  ~ be a c o l l e c t i o n  o f  /~g~ res ,  

i_<p<RCXD, r_>E and 0 -< ~ -< C]E'~]-ID-i. Let a l so  F be a c o l l e c t i o n  o f  

~-operat£ons of ar~t~ at most m and Let t = [Cp+ID/m]. Then for any 

r-d~sfo~nt f~ure Y and for an~ f~8~re Z s%ich that Y /~ X ~ Z, ~t 

holds t h a t  

LFCX.~D __ min , - 6FC~D 
~mCr-lD~,yC~9 ErPCI - ~PD r 

= t~cW,~o  D. 

P r o o f  : By C1D it is sufficient to prove that for any closed figure B 
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~ ~ it holds that PoCXoB3 -> u or plCB,X9 -> v Cor both9, where u 

and v stand for the first and second expression in min{...}. There 

are two possible cases, depending on B. 

Case i : ~_ ~ B . Then poCX,.B9 > poCY,B9 -> u. 

The first inequality holds for any Y Z~ X. The idea of proof of 

the second one is analogous to that of Theorem 4.3 in [2]. By the 

definition of P0" there exist t _< PoCY,B9 figures U I, .... U t in a~p,r 

such that [y] _c CB u UILJ ...U Ut 9V . Hence, PoCY,B9 _> C~,yCO9 - 

yyCBD>/max ~,yCUig. Since ~ ~ B, we have that NCx9_>I for all xEB, and 

since Y is r-disjoint, we have by Lemma 3CiiD that 

P 
i 

yyCB9 < E fr-lDk •yCk9 _< ~ ZyCO9 
k=i 

To bound zyCUi), recall that U i = fC_W9 v - Cf[W_]% v for some f~P and 

some sequence of closed figures W_ = CW i ..... Wm9. If xeU V then there 

is some ~ f  so that, for any jet0, the point x covers some point 

yj of [Wj]. Moreover, as no point of frw_] © is covered by x, we 

have that x Z~ ~ W k for no ~'G~f. Let z be the point of minimal 
kG(~" 

weight which covers all the points y j, je~. If NCz9 _< p then, since 

figures Wj are closed, the point z is in ~ W k , which is 
kG~ 

impossible since x - .  z .  T h ~  Nc:~  _> p + l  a n d  s o  Ney.t~ -> I ~ c : ~ ,  " t<~!1 

Z for some je~. Therefore, if xeUi v then x covers some point of 

[wlJu...UtWm] of weight at lea~t z. Hence, by "emma 3cli~ we have that 
P 

yyCUi~) < ~. mCr-I9 k ZyCkD -< mCr-I9 z ~.,yCZJ, 

C a s e  ~ -  : ~_ G B . Then PICB,X9 -> v . 

Indeed, by the definition of 6> I, there exist t < pICB,X) 

figures Di,...,Dte ~p,r such that B V c CX U DIU ... u Dt 9V . Let ~ 

CE-{~>D n be a random point in which each ~i9 ~ E-{~} appears 

independently with probability m CO S ~ --< C~E~-i3-13. Then Prob{ 

Z~ B > = I, since ~_ ~ B, and ~0 = Prob f ~ Z~ X > < Prob { ~ z~ Z > -< 

7,zCO~ ) RCC9 Hence t > Ci - ~OD/~ where ~ = max Prob { ~ Z~ D i > 

By Lemma 3Ci), ~ -< erP~ r where D = max { Prob{-~ ~ y9} : y ~ En>. 
P 

It remains to observe that ~ S I - m p . • 

3. THE COMPLEXITY OF DISJU~TIVE NORMAL FORMS 

Fix some alphabet of Boolean variables {ui,...,Un), and 

let E n = (~,O,i}. We identify a monomial ~ ul i with the point 
leI 

xeE n such that Yj=i ..... n, xCJD=Gj if jeI and xfjD=~ otherwise. 

So, DNF$ are /~@ures ouem E n. A DNF X _c E n meaLAzes a Boolean 
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function ffu l,...,un9 iff f-~C19 = XVN (0,I) n . Let ImpCf9 denote 

the set of all prime implicants of minimal length of f, i.e. x~Impff3 

iff x is a prime impllcant of f and NCx9 -< NCy9 for any other 

prime Impllcant y of f. 

For 6e[O,i] and a Boolean function f ,  let DCf,6) denote the set of 

all DNFs X realizing f and such that IX N ImpCf91 > I ImpCf) 16 - I o 

LEMMA 4. For any Boolean /unc£(on f and 6 e [O,13 ( t  holds tha~ 

C6CfD _> mln L.cu.o>cX,~o ) . 
AeDCf ,6~) 

Proof: Take Q = { Cf,X) : X realizes f } and apply Theorem I. • 

i in q] Z I EXAMPLE 1. Let q be a prime number such that s = [ i2  

and let GFCq) be the Galois field of order q with the addition + 

Fix an element e ~ 0 of GFCq) and consider the following Boolean 

function ~nfU9 of n = q2 variables U = {Ua, b : a,b e SFCq9 ). 

Slven a quadratic q~q-matrlx J~ = C~a,b ) with ~a,bG.cO,l} , let 

C..~ = I iff there iS a polynomial p of degree at most s - i  over 
n 

®FCq3 such that for all aeGFCq), aa,pCa) = I and ~a,pCa3+e = O. 

Notice that ~ is non-monotone: n C~D = O if ~f contains more than 
n n - 

= ImpfnnD, and let Z = .C K + & Kp2 : n-q or less than q ones. Set Yn n Pl 

P+i and Pz are polynomials of degree atmost s - I  }, where a monomlal 

Kp C Kp ) c o n s i s t s  of all the llterals Ua,pCa9 Cresp., Ua,pfaDee9, 

c Z and X ~ Z for any DNF X aeGFCq). Notice that Yn - n n n n 

realizing ~n Moreover RCYnD = RCZnD = Eq , Zy COD = IYnl = qS 

~'Z COD = qRs and Zy Ck) -< qs-[Ck+l)/e] for all k~l. Since U and 

n n 

6) both are 3-operatlons, Theorem 4 implies the following 

COI:~31_I.ARY 1. For a n y  DNF X n u ) ~ : L h  [XnJ = Y~ we h a v e  t h a t  

C~CIn n) 
L.cu,o)CXn,~0 ) z n 

Proof : Take r = [ql/2], p = [i_ in r] and s = CCln rD2 / r )  I /P 
2 

apply Theorem 4 l 

Since Y realizes ;~ , Lemma 4 and Corollary I yield 
n n 

C~ORC~LLARV 2. For any constant 45 ~ CO,I] ~t. holds ZhaZ 

D~in n3 EIn n 
n _< C6C~ n) -< n , m -< 1/47. 

CJfln n9 
Therefore, we have t h a t ,  either CC•n3 > n 

circuits for ~n compute DNFs X n such that 

and 

or u lL the minimal 

IXn f~ Yn~ -< IYn IOC19 

4. THE ~ E X r r V  OF THREE-VALUED FtR,4CTIOI,,IS 

Let E 3 = .CO,I,2} and let ~3 denote the set of all n-ary 

n . . . .  > 'CO ,1}. three-valued predicates f : E 3 



379 

Probab ly .  t h e  f i r s t  n o n - t r l v l a l  lower  bound f o r  c i r c u i t s  ove r  an 

incomplete three-valued basises has been proved by Tkachev in [18]. He 
n 

considers circuits over the algebra C ~3; ^ ' ® ) with input HO= 
n 

(pl,...,;2n}, where ~ is the set of all three-valued functions f: E 3 
n 

---> E 3 , x^y = minCx,yD, x~y = xyCmod R) and ~i : E3 ---> E3 is 

the i-th projection, i .e. for GeE~ , ~iCoD = ~CiD, the i-th 

coordinate of o. In [18] the bound 

[o°I L< ,̂®>ct n ,H O )  -> ~ / 2  - I 

i s  p roved  f o r  t h e  sequence o f  t h r e e - v a l u e d  p r e d i c a t e s  t n G I~3 g i ven  

by : tnC~} = I i f f  ~ e { l , ~ }  n and I { I  : o~i}= l }~ ~ n / 2  +1. 

Set xvy = maxCx,y) and H = {Li .... ,an,~91 .... ,Dn} where for ~eE 3 

( i i f  ~C i )= l ,  and ~iCo3 = { I i f  ~Cl)=2,  
Lie°3 = 0 o t h e r w i s e ,  0 o t h e r w i s e .  

No t i ce  t h a t  t he  p r e d i c a t e  t has p o l y n o m i a l - m l z e  c i r c u i t s  over  the  n 
a l geb ra  C ~3 ~ v , @ ) even w i t h  i n p u t  H : 

Lcv,®>ct n.H:) -< OCn ~'33 . 

This  f o l l o w s  f rom t h e  r e p r e s e n t a t i o n  

tnC~3 = ~IC~)~2C~Z)® ... ~ n  ® MA3nCLlCo) . . . . . .  LnC~))0 

where ~iC~3 = LiC~) v ~iC~), and from the result of Valiant [20] that 

the monotone Boolean formula -size complexity of Boolean majority 

function MAJ is OCn s" sD. 
n 

In this section we demonstrate Theorem 4 by a super-polynomial 

lower bound for Lc~.e>c°,H). To do this, let OeE 3 be the distinguished 

element of E 3 Cl.e. 0 plays a role of ~.~, and let z 0 be the 

n Identify a predicate f~3 with co r respond ing  o rde r  r e l a t i o n  on E 3. 
n 

t h e  f i g u r e  Xf = f - IC l )  -~ E 3 . 

LEMMA 5. Fo r  any predicate f ~ ~ ~t h o l d s  t h a t  

Lc,., ,®>ct.H) > L ( u . e > c x f . ~ o  x 

Proo/. Define Q _c ~3 ~ PCE~) by Q = {(f,Y) : Xf= £xeE~ : x "0 Y })" 

Then QCH) ¢- ~O and the algebra of figures C PCE~); U, O) is 

Q-image of C ~; ~, ®). It remains to apply Theorem I. m 

EXAMPLE 2. Let us consider the following three-valued extention [Ine~ 3 of 

~n Csee Example 1).For a quadratic q~q-matrix M = Cma,b) with ma,bGE 3, 

let nnCMD = i iff there is a polynomial p of degree at most s-I over 

GFCq) such that WaGGFCq) ma,pCa)=i and ma,pCa)+e=R. 

Lemma 5 and Corollary I directly yield the following bound. 

COROLLARV 3: nCaCln n) < L(v,®}C[In,H ) < nCln n - . C-<1/¢7. 
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Obviously we are just beginlng to understand the power of functional 

CaB well as probabilistic and topologlcalD approximations in lower 

bounds proofs. The two examples given in this note, as well as 

examples is [2-¢,13,1~], all concern the standard algebra of DNFs. Of 

course, Theorems 1-3 admit further applications. For example, one may 

consider more subtle representations of Boolean functions such as the 

algebra of prime implicants, etc. Besides, a suitable combination of 

functional, probabilistic and topological approximation technlques may 

help. 
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