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In this report some quantitative observations on the effect of in- 

formation-flow restrictions to the width of branching programs are 

given. 

A branching program over the sew oZ Boolean variables X =~Xl,..., 

xn~ is a labeled acyclic digraph G with the followLng properties: 

(i) There is exactly one source. 

(ii) Every vertex has outdegree at most 2. 

(iii) Every edge is labelled by a contact x a, where x ~X and a ~ {O,l~. 

(iv) For every edge of outdegree 2, one of the leaving edges is label- 

led by a variable x and the other by its complement u x. 

The branching program computes a Boolean function defined by the dis- 

junct~[on of all the monoms associated with the paths from the source 

to leaves . The length of a path is the number of distinct variables 

in it. The height of a vertex v in G is the maximal length of a path 

to v. Pot k ~ O, let G(k) = [vgG :height(v) = k~and put Width(G) = 

max [IG(k)I : 0 ~k ~n}. A path is a null path if it contains some 

pair of contrary contacts. Let Inf(G,v) denote the number of vari- 

ables x g X such that for some a 6[0,13 the following holds: there are 

two non-null paths P1 and P2 from the source of G to v and a path 

P3 from v to a leaf of G such that xa~p! ' 7x a E P3 and paths P2P3 

and (P1 - ~xa})P3 are both non-null. Informally, Inf(G,v) expresses 

the amount of information which is necessary to determine the value 

of the function when computation is started in v. Let G denote the 
v 

subprogram of G generated by all the paths from v to the leaves 

of G.(Thus v is a source of G v ). For 0 ~ r,k ~ n, let 

Inf(G,r,k) = min max In£(Gv,U)~ 

where "min" is over all v e G(k) and "max" is over all u E Gv(r). 

Put also Inf(G,r) = Inf(G~r,O). Note that for all i,j ~ O, 

0 ~ Inf(G,r - i,k + j) ~ Inf(G,r,k) ~ Inf(G,r) ! Inf(G,n) ~ n. 

In what follows the term "almost all" refers to a (1 - o(1)) ~raction. 

The method of synthesis by O.B. Lupanov [8] implies the following. 
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Pagt: For almost any n-ary Boolean function, the set of its minimal 

branching programs contains a program G with Inf(G,r) = 0 for 

any r ~ n(1 - o(n-I/2)). 

Thus almost all Boolean functions have minimal programs with a 

small information flow. However, for some concrete functions the in- 

formation flaw is rather complicated in all their minimal programs. 

An assignment is a function w: X ~ X kJ{0,1~ such that for 

every x eX, w(x) E {0,1,x ~ ; dom(w) = w-1(O)kJ w-I(1) is a domain of 

w ; Idom(w) l is a rank of w. ?or a Boolean function f(X), set fw = 

f(W(Xl),...,w(xn)). Let Q(f,p) denote the minimal number q such 

that there exists a set W of q assignments of rank p, with ~{dom(w) : 

w E W ~ ~ ~ ,possessing the representation f = k~ { fw : w e W~. 

A Boolean function f(X) is (weakly) m-mixed ([6,7]) if for any Y ~ X, 

with IYI ~ m, and any two assignments w,z over the domain Y, it holds 

that (either fw = fz = 0 or) fw ~ fz. The class of mixed functions 

is sufficiently rich: for any & > 0 and m ~ n - (I + £)log2n, almost 

all n-ary Boolean functions are m-mixed. 

Theorem: Pot any branching program G computing a weakly m-mixed func- 

tion f and any integers r,k ~ 0, v~th k + 2r ~ m, it holds that 

log2Width(G) + 1.6 Inf(G,r,k) ~ b, 

where b = r if f is m-mixed and b = log2Q(f,r+k) otherwise. 

In [6,7] a uniform argument is given to generate concrete O(~)- 

mixed n-ary Boolean functions from NP (and even from P). In particu- 

lar, the following two n-ary Boolean functions fn and gn are ~/2- 

mixed and belong to P ([4,11]): for a (0,1)-matrix X of order ~, 

let fn(X) = 1 iff Per(X) > O, and gn(X) = Per(X) (mod 2), where 

Per(X) is the permanent of X.So, log2Width(G)~ ~-n/4 - 1.6 Inf(G,~/4) 

for any program G computing fn or gn" Next, the "exactly-half-clique" 

Boolean function h n (see, e.g.[6]) is computable by a polynomial size 

branching program and Q(h n, ~/4) ~ 2 c~, c ~ O. Thus, Inf(G, ~/4) 

n I/2 - g for any minimal program G computing ~. 

On the other hand, width restrictions do not increase the size of 

programs drastically. A branching program is called stratified if all 

the edges leaving the vertexes of any given height are labelled by 

contacts of the same variable. From [2,10] it follows that for any 

sequence IF n ] of Boolean formulae over the basis {&,V,7] there is a 

sequence {G n ] of stratified branching programs of width ~ 5 such 

that: size(Gn) ~ size(Fn)0(1). 

Although the transition from the (unrestricted) formulae to con- 
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stant width branching programs (and vice versa) does not increse the 

size drastically, the information flow may become more complicated. 

Corollar~ Let G be a stratified branching program of width ~_ d. 

If G computes an m-mixed Boolean function then for any r,k ~_0, with 

k + r _< m , it holds that r - log2d _< Inf(G,r,k) _< r . 

Thus, to prove non-trivial lower bounds for the complexity, a new 

insight into the information flow is desirable. One of the possible 

ways is to use Ramsey-like arguments. Some work in this direction was 

done in ~1,3,9] , where an /~ (n log2n) lower bounds for symme- 

tric n-variable Boolean functions were proved. Another way (proposed 

in [5-7] ) is to look for appropriate measures of "distance" for 

subfunctions° We conjecture that the functions with "highly distant" 

subfunctions have minimal networks with a small information flow. 
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