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In this report some quantitative observgiions on the effect of in-
formation-flow restrictions to the width of branching programs gre
given.

A branching program over the set or Boolean variables X ={x1s---,
Xn} is a labeled gcyclic digrsph G with the following properties:

(i) There is exactly one source.
{ii) Bvery vertex has outdegree at most 2.
(iii) Every edge is labelled by a contact x®, where xeX and a¢{0,1].
(iv) Por every edge of outdegree 2, one of the leaving edges is label-
led by a varigble x and the other by its complement -1x.
The branching program compuies a Boolean function defined by the dis-
junction of all the monoms assoclated with the paths from the source
to leaves . The length of & path is the number of distinct variables
in it. The height of a vertex v in G is the maximal lengbth of a path
to v. For k 2 0, let G(k) = {veG :height(v) = k Jand put Width(G) =
max {iG{k){ : O sk:sn}. 4 path iz & null path if it contains some
pair of contrary contacts. Let Inf(G,v) denote the number of vari-
ables x ¢ X such that for some a €{0,l} the following holds: there are
two non-null paths Pl and P from the source of ¢ to v and a path
PB from v to a leaf of G such that xa‘EPl ,1x% e PB and paths PZPB
and (Pl - {X?}}?B are both non-null, Informelly, Inf(G,v) expresses
the amount of information which is necessary to determine the value
of the function when computation is starfed in v. Let Gv denote the
subprogram of G generated by all the paths from v to the leaves

of G.{(Thus v is a source of G, Y. Por 0 ¢ r,k ¢£n, let

Inf{G,r,k) = min max Inf(Gv,u),
where "min® is over all v € G{k) and "max" is over all u er(r).
Put also Inf(¢,r) = Inf(G,r,0). Note that for all i,j 2 O,

0 < Inf(G,r - i,k + j) ¢ Inf(G,r,k) < Inf(G,r) ¢ Inf(G,n} ¢ n.
In what follows the term ®"almost all® refers o a (1 - o{(1)) fraction.

The method of synthesis by 0.B. Lupanov {8] implies the following.
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Fact: For almost any n-ary Boolean function, the set of its minimal
branching programs contains a program G with Inf(G,r) = 0 for
any 1 < n{(1 - o(n'ﬁ/z)).

Thus almost all Boolean funciions have minimsl programs  with a
small information flow. However, for gsome concrete functions the in-
formation flaw is rather complicated in 8ll their minimal programs.

An assignment is a function w: X —s> X\ {0,1} such that for
every x€X, w(x)€ {0,1,x}; dom(w) = w’1(0)kj w‘1(1} is a domain of
w 3 Xdom(w)‘ is a rank of w. For a Boolean function £(X), set v =
f(w(x1),...,w(xn)). Let Q(f,p) denote the minimel number gq such
that there exists a set W of q assigmments of rank p, with r\{dom(w) :
weW } # @ ,possessing the representation f = \/ { t¥ s we W'}.
A Boolean function f(X) is (weakly) m-mixed ({6,7]) if for any Y ¢ X,
with |¥|<¢m, and any two assignments w,z over the domain Y, it holds
that (either £% = £Z2 = 0 or) f" # £%, The class of mixed functions
is sufficiently rich: for any é€>0 and m < n -~ (1 + £)1og2n, almost
all n-ary Boolean functions are memixed.

Theorem: For any branching program G computing a weakly m-mixed func-
tion f and any integers v,k 2 O, with k + 2r < m, it holds that

log2Width(G) + 1.6 Inf(G,r,k) = b,
where b =r if f is memixed and b = 1og2Q(f,r+k) otherwise.

In [6,7] a uniform argument is given to generate concrete o( o)~
mixed n-ary Boolean funections from NP (and even from P). In particu-
lar, the following two n-ary Boolean functions fn and g, are J§V2-
mixed and belong to P ([4,11]): for a (0,1)-matrix X of order {E‘,
let fn(X) = 1 1iff Per(X) > O, and gn(X) = Per(X) (mod 2), where
Per(X) is the permanent of X.So, logZWidth(G)z.{§/4 ~ 1.6 Inf(G,{0/4)
for any program G computing fn or g,. Hext, the "exactly-half-cligue"
Boolean function h, (see, e.g.l61) iz compuisble by a polynomial size
branching program and Q(hn,4574) > 2°Y8 & > 0, Thus, Inf (G, @/4)

= m?“"r2 = ¢ for any minimal progrem G computing hn’

On the other hand, width resgstrictions do not increase the size of
programs drastically. A branching program is called stratified if all
the edges leaving the vertexes of any given height are labelled by
contacts of the same variable. From [2,10] it follows that for any
sequence {Fn} of Booleen formulae over the basis §&,V,1] there is a
sequence {Gn} of stratified branching progrems of width < 5 such

that : size((}n) < size(Fn)O“).

Although the transition from the (unrestricted) formulae to con-~
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stant width branching programs (and vice versa) does not increse the
size drastically, the information flow may become more complicated.

Corollary: Let G Dbe a gtrgtified branching program of width £ d.

If ¢ computes an m-mixed Boolean function then for any r,k >0, with
¥+ r<m, it holds that T - 1og2d < Inf(G,r,k) ¢ » .

Thus, to prove non-trivial lower bounds for the complexity, a new
ingight into the information flow is desirable. One of the possible
ways is to use Ramsey-like arguments. Some work in this direction was
done in [1,3,9]1, where an (u(m logzn) lower bounds for symme-—
tric n-variable Boolean functions were proved. Anobther way (proposed
in [5-71) is %o look for appropriaste measures of "distance" for
subfunctions, We conjecture that the functiong with "highly distant®
subfunctions have minimal networks with s small information flow.
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