
INFOPJ~TION FLOW AND WIDTH OF BRANCHING PROGIKA~S

(Extended Abstract)

S.P. Jukna

Institute of Mathematics

Lithuanian Academy of Sciences
Vilnius, 232021, USSR

In this report some quantitative observations on the effect of in-

formation-flow restrictions to the width of branching programs are

given.

A branching program over the sew oZ Boolean variables X =~Xl,...,

xn~ is a labeled acyclic digraph G with the followLng properties:

(i) There is exactly one source.

(ii) Every vertex has outdegree at most 2.

(iii) Every edge is labelled by a contact x a, where x ~X and a ~ {O,l~.

(iv) For every edge of outdegree 2, one of the leaving edges is label-

led by a variable x and the other by its complement u x.

The branching program computes a Boolean function defined by the dis-

junct~[on of all the monoms associated with the paths from the source

to leaves . The length of a path is the number of distinct variables

in it. The height of a vertex v in G is the maximal length of a path

to v. Pot k ~ O, let G(k) = [vgG :height(v) = k~and put Width(G) =

max [IG(k)I : 0 ~k ~n}. A path is a null path if it contains some

pair of contrary contacts. Let Inf(G,v) denote the number of vari-

ables x g X such that for some a 6[0,13 the following holds: there are

two non-null paths P1 and P2 from the source of G to v and a path

P3 from v to a leaf of G such that xa~p! ' 7x a E P3 and paths P2P3

and (P1 - ~xa})P3 are both non-null. Informally, Inf(G,v) expresses

the amount of information which is necessary to determine the value

of the function when computation is started in v. Let G denote the
v

subprogram of G generated by all the paths from v to the leaves

of G.(Thus v is a source of G v). For 0 ~ r,k ~ n, let

Inf(G,r,k) = min max In£(Gv,U)~

where "min" is over all v e G(k) and "max" is over all u E Gv(r).

Put also Inf(G,r) = Inf(G~r,O). Note that for all i,j ~ O,

0 ~ Inf(G,r - i,k + j) ~ Inf(G,r,k) ~ Inf(G,r) ! Inf(G,n) ~ n.

In what follows the term "almost all" refers to a (1 - o(1)) ~raction.

The method of synthesis by O.B. Lupanov [8] implies the following.

229

Pagt: For almost any n-ary Boolean function, the set of its minimal

branching programs contains a program G with Inf(G,r) = 0 for

any r ~ n(1 - o(n-I/2)).

Thus almost all Boolean functions have minimal programs with a

small information flow. However, for some concrete functions the in-

formation flaw is rather complicated in all their minimal programs.

An assignment is a function w: X ~ X kJ{0,1~ such that for

every x eX, w(x) E {0,1,x ~ ; dom(w) = w-1(O)kJ w-I(1) is a domain of

w ; Idom(w) l is a rank of w. ?or a Boolean function f(X), set fw =

f(W(Xl),...,w(xn)). Let Q(f,p) denote the minimal number q such

that there exists a set W of q assignments of rank p, with ~{dom(w) :

w E W ~ ~ ~ ,possessing the representation f = k~ { fw : w e W~.

A Boolean function f(X) is (weakly) m-mixed ([6,7]) if for any Y ~ X,

with IYI ~ m, and any two assignments w,z over the domain Y, it holds

that (either fw = fz = 0 or) fw ~ fz. The class of mixed functions

is sufficiently rich: for any & > 0 and m ~ n - (I + £)log2n, almost

all n-ary Boolean functions are m-mixed.

Theorem: Pot any branching program G computing a weakly m-mixed func-

tion f and any integers r,k ~ 0, v~th k + 2r ~ m, it holds that

log2Width(G) + 1.6 Inf(G,r,k) ~ b,

where b = r if f is m-mixed and b = log2Q(f,r+k) otherwise.

In [6,7] a uniform argument is given to generate concrete O(~)-

mixed n-ary Boolean functions from NP (and even from P). In particu-

lar, the following two n-ary Boolean functions fn and gn are ~/2-

mixed and belong to P ([4,11]): for a (0,1)-matrix X of order ~,

let fn(X) = 1 iff Per(X) > O, and gn(X) = Per(X) (mod 2), where

Per(X) is the permanent of X.So, log2Width(G)~ ~-n/4 - 1.6 Inf(G,~/4)

for any program G computing fn or gn" Next, the "exactly-half-clique"

Boolean function h n (see, e.g.[6]) is computable by a polynomial size

branching program and Q(h n, ~/4) ~ 2 c~, c ~ O. Thus, Inf(G, ~/4)

n I/2 - g for any minimal program G computing ~.

On the other hand, width restrictions do not increase the size of

programs drastically. A branching program is called stratified if all

the edges leaving the vertexes of any given height are labelled by

contacts of the same variable. From [2,10] it follows that for any

sequence IF n] of Boolean formulae over the basis {&,V,7] there is a

sequence {G n] of stratified branching programs of width ~ 5 such

that: size(Gn) ~ size(Fn)0(1).

Although the transition from the (unrestricted) formulae to con-

230

stant width branching programs (and vice versa) does not increse the

size drastically, the information flow may become more complicated.

Corollar~ Let G be a stratified branching program of width ~_ d.

If G computes an m-mixed Boolean function then for any r,k ~_0, with

k + r _< m , it holds that r - log2d _< Inf(G,r,k) _< r .

Thus, to prove non-trivial lower bounds for the complexity, a new

insight into the information flow is desirable. One of the possible

ways is to use Ramsey-like arguments. Some work in this direction was

done in ~1,3,9] , where an /~ (n log2n) lower bounds for symme-

tric n-variable Boolean functions were proved. Another way (proposed

in [5-7]) is to look for appropriate measures of "distance" for

subfunctions° We conjecture that the functions with "highly distant"

subfunctions have minimal networks with a small information flow.

References

1. N. Ajtai, L. Babai, P. Hajnal, J. Koml6s, P. Pudl~k, V. RSdl,
E. Szemere~di and G. Tur~u, Two lower bounds for branching prog-

rams, Proc. 18-th AC~I STOC (1986) 30-38.

2. D.A. Barrington, Bounded-width polynomial size branching programs

recognize exactly those languages in NC l, Proc. 18-th ACM STOC

(1986) 1-5

3. A.E. Chandra, N.L. Furst and R.J. Lipton, ~ultiparty protocols,

Proc. 15-th ACN STOC (1983) 94-99.

4. J.E. Hapcroft and R.N. Harp, An n 5/2 algorithm for maximum

roaching in bipartite graphs, SIA~ J. Comput. 2_ (1973) 225-231.

5- S.P. Jukna, An entropic method of obtaining lower bounds for the

complexity of Boolean functions, to appear in Dokl. Akad. Nauk

SSSR (1987).
6. - , Lower bounds on the complexity of local circuits, Proc.

12-th Int. Syrup. ~CS, LNCS 233 (1986) 440-448.

7. - , Entropy of Boolean networks and lower bounds on their com-

plexity, to appear in Theoretical Computer Science.

8. 0.B. Lupanov, On the synthesis of switching networks, Dokl. Akad.

Nauk SSSR l l~, n.1 (1958) 23-26.

9. P. Pudl~k, A lower bound on the complexity of branching programs,

Proc. ll-th Int. Symp. ~CS, LNCS 1~6 (1984) 480-489.

10. P.~. Spira, On time-hardware tradeoffs for Boolean functions,

Proc. 4-th Hawaii Int. Symp. on System Sciences (1971) 525-527.

ll. L.G. Valiant, The complexity of computing the permanent, Theor-

etical Computer Science 21 (1982) 181- 201.

