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Abstract

Given an assignment of real weights to the ground elements of a matroid, the min-max weight of
a ground element e is the minimum, over all circuits containing e, of the maximum weight of an
element in that circuit with the element e removed. We use this concept to answer the following
structural questions for the minimum weight basis problem. Which elements are persistent under
a given weighting (belong to all or to none of the optimal bases)? What changes of the weights
are allowed while preserving optimality of optimal bases? How does the minimum weight of a
basis change when the weight of a single ground element is changed, or when a ground element is
contracted or deleted? Our answer to this latter question gives the tropical (min,+,−) analogue of
Kirchhoff’s arithmetic (+,×,/) effective conductance formula for electrical networks.

Keywords: Weighted matroid, optimization, sensitivity, persistency, postoptimality

1. Introduction

The minimum weight basis problem on a matroid M = (E,I ) is, given an assignment x : E→ R
of real weights to the ground elements, to compute the minimum weight τM (x) of a basis, the latter
being the sum of weights of the basis elements. Thanks to classical results of Rado [10], Gale [6]
and Edmonds [4], the algorithmic aspect of this problem is well understood: the minimum weight
basis problem on a downward closed set system I can be solved by the greedy algorithm precisely
when the system I forms the family of independent sets of a matroid.

In this paper, we are interested in structural aspects of the minimum weight basis problem. Given
a weighting x : E→ R of ground elements, the following questions naturally arise.

1. How does the optimal value τM (x) change when an element e ∈ E is contracted or deleted?

2. How does the optimal value τM (x) change when the weight of an element e ∈ E is changed?

3. By how much can the weight of a single element e ∈ E be changed without changing optimal
bases?

4. What simultaneous changes of the weights preserve optimality of optimal bases?

5. What ground elements belong to all, to none or to some but not to all of the optimal bases?

Question 3 is a special case of Question 4 and was already answered by Tarjan [11] (for graphic
matroids) and by Libura [8] (for general matroids) in terms of fundamental circuits and cuts relative
to a given optimal basis. Question 5 was answered by Cechlárova and Lacko [3] in terms of the
rank function of the underlying matroid. But to our best knowledge, no answers (in any terms) to
Questions 1, 2 and 4 were known so far.
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It turns out that all five questions can be answered using the concept of min-max weight x[e]
of a ground element e, which we define as the minimum, over all circuits C containing e, of the
maximum weight of an element in the independent set C − e:

x[e] := min
C circuit

e∈C

max
f ∈C−e

x( f ) .

Further, we call

x{e} :=min{x(e), x[e]}

the bottleneck weight of e. The answers to the aforementioned questions 1–5 are given by the
corresponding Theorems 1 to 5 in the next section. All necessary matroid concepts are recalled in
Section 3.

2. Results

Let M = (E,I ) be a loopless matroid, that is, no element e ∈ E belongs to all bases and no
singleton set {e} is dependent. All our results concern the minimum weight basis problem on M .
Given a weighting x : E→ R, a basis B is x-optimal (or simply optimal if the weighting is clear from
the context) if its x-weight x(B) =

∑

e∈B x(e) is minimal among all bases. The weight of such a basis,
that is, the number τM (x), is the optimal value under the weighting x .

Contraction and deletion. Given a ground element e ∈ E, the independent sets of the matroid M/e,
obtained by contracting the element e, are all sets I − e with I ∈ I and e ∈ I , while those of the
matroid M\e, obtained by deleting the element e, are all sets I ∈ I with e 6∈ I . Since the matroid M
is loopless, each of these two matroids contains at least one nonempty independent set. Note that
the set of ground elements of both matroids M\e and M/e is E − e. For every basis B of M , either
B − e is a basis of M/e (if e ∈ B), or B is a basis of M\e (if e 6∈ B). This gives us a known recursion

τM (x) =min
�

τM/e(x) + x(e), τM\e(x)
	

.

But what about the opposite direction: if we already know the optimal value τM (x) in the matroid
M , what are the optimal values τM/e(x) and τM\e(x) in the two submatroids M/e and M\e? Our
main result (Theorem 1) gives the answer.

Theorem 1 (Tropical Kirchhoff’s formula). Let M = (E,I ) be a loopless matroid, and e ∈ E be a
ground element. For every weighting x : E→ R, the following equalities hold:

(a) τM/e(x) = τM (x)− x{e};
(b) τM\e(x) = τM (x)− x{e}+ x[e].

In particular, (a) and (b) yield the equality τM\e(x)−τM/e(x) = x[e]. Thus, the min-max weight
of an element e in the matroid M is determined by the minimum weights of bases in the submatroids
M\e and M/e.

Remark 1. In the special case of graphic matroids (see Example 1 in Section 3), Theorem 1(a) gives
us the tropical (min,+,−) version of the classical arithmetic (+,×,/) effective conductance formula
for electrical networks proved by Kirchhoff [7] already in 1847. The spanning tree polynomial of an
undirected connected graph G is κG(x) =

∑

T

∏

e∈T xe, where the sum is over all spanning trees T
of G. Kirchhoff’s formula (see also [12, Theorem 8] for a detailed exposition) states that, when the
edges e of G are interpreted as electrical resistors and their weights xe as electrical conductances
(reciprocals of electrical resistances), then the effective conductance between the endpoints of any
edge e is exactly the ratio κG(x)/κG/e(x), where G/e is the graph obtained from G by contracting
the edge e.
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In the tropical semifield (R, min,+,−) “addition” means taking the minimum, “multiplication”
means adding the numbers, and “division” turns into subtraction. In particular, the spanning tree
polynomial κG(x) of a graph G turns into the tropical polynomial τG(x) = minT

∑

e∈T xe. The
function computed by τG(x) is the well-known minimum weight spanning tree problem. The ratio
κG(x)/κG/e(x) of polynomials in Kirchhoff’s formula turns into the difference τG(x)− τG/e(x) of
their tropical versions. So, a natural question arises: what is the tropical analogue of the effective
conductance between the endpoints of an edge e? Theorem 1(a) gives the answer (even in general
matroids): this is exactly the bottleneck weight x{e}=min{x(e), x[e]} of e.

Postoptimality. If we change the weight of a single ground element e ∈ E, what is the optimal
value τM (x ′) under the new weighting x ′? We show that the difference (of the new and the old
optimal values) is determined by the bottleneck weights of the element e under the old and the new
weighting.

Theorem 2 (Postoptimality). Let e ∈ E and let x , x ′ : E → R be weightings that differ only in the
weights given to the element e. Then

τM (x
′)−τM (x) = x ′{e} − x{e} .

Since the min-max weight x[e] does not depend on the weight of the element e itself, we have
x ′[e] = x[e] and, hence, x ′{e} = min{x ′(e), x[e]}. Thus, when a weighting x : E → R and an
element e ∈ E are fixed, and a new weighting x ′ gives weight x ′(e) = θ ∈ R to the element e, then
the behavior of the function

f (θ ) := τM (x
′)−τM (x) = x ′{e} − x{e}=min{θ , x[e]} −min{x(e), x[e]}

only depends on whether θ 6 x[e] or not. If θ 6 x[e], then f (θ) = θ − c for the constant
c =min{x(e), x[e]}. If θ > x[e], then f (θ ) is constant 0 or constant x[e]− x(e), whichever of these
two numbers is larger.

If all weights are nonnegative, and if the new weighting x ′ gives weight 0 to the element e,
then x ′{e} = min{x ′(e), x ′[e]} = min{0, x ′[e]} = 0, and Theorem 2 directly yields the following
consequence.

Corollary 1. If the weights are nonnegative, and if the weight of a single ground element is dropped
down to zero, then the minimum weight of a basis decreases by exactly the bottleneck weight of this
element.

Corollary 1 allows us to compute the optimal value τM (x) under an arbitrary nonnegative
weighting x : E→ R+ by computing the bottleneck weights of the elements of any (fixed in advance)
basis.

Corollary 2. Let B = {e1, . . . , er} be a basis. Given a nonnegative weighting x : E→ R+, consider the
sequence of weightings x0, x1, . . . , xr , where x0 = x, and each next weighting x i is obtained from x by
setting the weights of the elements e1, . . . , ei to zero. Then

τM (x) = x0{e1}+ x1{e2}+ · · ·+ xr−1{er} .

Proof. Corollary 1 gives us the recursion τM (x i) = τM (x i+1)+ x i{ei+1} which rolls out into τM (x) =
τM (xr) + xr−1{er}+ · · ·+ x1{e2}+ x0{e1}. Since the weighting xr gives weight 0 to all elements
e1, . . . , er of the basis B, we have xr(B) = 0. Since the weights are nonnegative, the basis B is of
minimum weight under the weighting xr . Hence, τM (xr) = xr(B) = 0.
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Sensitivity. Given a weighting x : E → R the sensitivity question is: what changes of the weights
preserve optimality of optimal bases. That is, if x ′ : E→ R is a new weighting, under what conditions
do x-optimal bases remain x ′-optimal? In the case when x ′ only changes the weight of a single
element e ∈ E, this question was answered by Libura [8] in terms of fundamental circuits and
cuts relative to an x-optimal basis (see Remark 7 in Section 7); in the case of graphic matroids
(where bases are spanning trees, see Example 1 in Section 3), the same answer was given earlier by
Tarjan [11]. We answer this question in terms of the min-max weight x[e] of e. Namely, we associate
with every element e ∈ E its tolerance under the (old) weighting:

t x(e) := |x[e]− x(e)| .

Theorem 3 (Sensitivity, local change). Let e ∈ E and let x , x ′ : E→ R be weightings that only differ in
the weights given to the element e, and B be an x-optimal basis.

(a) If e ∈ B, then B is x ′-optimal if and only if x ′(e)6 x[e].

(b) If e 6∈ B, then B is x ′-optimal if and only if x ′(e)> x[e].

(c) If |x ′(e)− x(e)|6 t x(e), then B is x ′-optimal.

By Theorem 3(c), the weight of a single element e can be changed by t x(e) while preserving
optimality. In contrast, if we allow the weights of two or more elements to be changed, then only
changes by at most 1

2 t x(e) preserve optimality.

Theorem 4 (Sensitivity, global change). Let x : E→ R be a weighting, and B be an x-optimal basis.

(a) If a weighting x ′ : E → R satisfies |x ′(e) − x(e)| 6 1
2 t x(e) for all e ∈ E, then the basis B is

x ′-optimal.

(b) For every ε > 0 there is a weighting x ′ : E→ R such that |x ′(e)− x(e)|6 1
2 t x(e) + ε holds for

all elements e ∈ E but the basis B is not x ′-optimal.

Claim (b) shows that the upper bound in claim (a) is tight.

Persistency. Given a weighting x : E → R, the set E of ground elements is split into three (not
necessarily nonempty) subsets:

Eall(x) = elements belonging to all x-optimal bases;

Enone(x) = elements not belonging to any x-optimal basis;

Esome(x) = elements that belong to some but not to all x-optimal bases.

The persistency problem is to determine this partition. Elements e ∈ Eall(x) ∪ Enone(x) are called
persistent. Knowing which ground elements belong to which of these three subsets may be helpful
when constructing an optimal basis. Namely, we can contract all elements of Eall(x) (that is, include
them into the solution), remove all elements of Enone(x), and try to extend our partial solution Eall(x)
to an optimal basis by only treating the elements of Esome(x).

Cechlárová and Lacko [3] characterized the sets Eall(x) and Enone(x) in terms of the rank function
of the underlying matroid: e ∈ Eall(x) iff removing e from the set of all elements not heavier than e
decreases the rank of this set, and e ∈ Enone(x) iff adding e to the set of all elements lighter than e
leaves the rank of this set unchanged. We characterize these sets in terms of min-max weights of
ground elements.

Theorem 5 (Persistency). Let x : E→ R be a weighting, and e ∈ E be a ground element.

(1) e ∈ Eall(x) if and only if x[e]> x(e);

(2) e ∈ Enone(x) if and only if x[e]< x(e);

(3) e ∈ Esome(x) if and only if x[e] = x(e).

(4) If all weights are distinct, then B = {e ∈ E : x[e]> x(e)} is the unique optimal basis.
4



Organization. In Section 3, we briefly recall main matroid concepts and results used in this paper.
Section 4 is devoted to the proof of our main technical tool (Lemma 1). Given Lemma 1, the proofs
of Theorems 1 to 5 are fairly simple, and are given in the subsequent Sections 5 to 9.

3. Preliminaries

We use standard matroid terminology as, for example, in Oxley’s book [9]. A matroid on a
finite set E of ground elements is a pair M = (E,I ), where I ⊆ 2E is a nonempty downward closed
collection of subsets of E, called independent sets, with the augmentation property: whenever I and J
are independent sets of cardinalities |I |< |J |, there is an element e ∈ J \ I such that the set I + e is
independent; as customary, we abbreviate I ∪ {e} to I + e and write J − e for J \ {e}.

Bases and circuits. An independent set is a basis if it is contained in no other independent set. The
augmentation property implies that all bases have the same cardinality. This property also yields the
basis exchange axiom: if A and B are bases, then for every element e ∈ A there is an element f ∈ B
such that A− e+ f is a basis. The following two important refinements of the basis exchange axiom
are known as the symmetric basis exchange and the bijective basis exchange.

Proposition 1 (Brualdi [1], Brylawski [2]). Let A and B be bases.

(a) For every e ∈ A there is an f ∈ B such that both A− e+ f and B − f + e are bases.

(b) There is a bijection φ : A→ B such that the set A− e+φ(e) is a basis for every e ∈ A.

A subset of E is dependent if it is not independent. A circuit is a dependent set whose proper
subsets are all independent. For a ground element e, an e-circuit is a circuit containing e. An element
e is a loop if the set {e} is dependent, and is a coloop if e belongs to all bases. To avoid pathological
situations, we assume that our matroid is loopless: no ground element is a loop or a coloop. We only
need this assumption to ensure two properties: every circuit contains at least two elements, and for
every ground element e at least one e-circuit exists.

Fundamental paths and cuts. Let B be a basis, and e ∈ E a ground element. If e 6∈ B, then the set B+ e
must contain at least one e-circuit, because B is independent but B + e is dependent. An important
fact, shown by Brualdi [1, Lemma 1] (see also Oxley [9, Proposition 1.1.4]) and known as the unique
circuit property, is that the set B+ e contains a unique circuit C . Since B is independent, this circuit C
is an e-circuit (that is, C contains e). This unique circuit C = C(e, B) is known as the fundamental
circuit of e relative to B. Motivated by graphic matroids (cf. Example 1), we call the independent set

Path(e, B) := C(e, B)− e ⊆ B

the fundamental path of e relative to B. If e ∈ B is a basis element, then the set

Cut(e, B) := { f ∈ E \ B : e ∈ C( f , B)}

is known as the fundamental cut of e relative to B. Note that e 6∈ Path(e, B) and f 6∈ Cut( f , B). Also
note the duality: if e 6∈ B and f ∈ B, then

e ∈ Cut( f , B) if and only if f ∈ Path(e, B).

The unique circuit property yields the following equivalent definition of Cut(e, B) and Path(e, B).

Proposition 2. Let B be a basis, and e ∈ E a ground element.

(a) If e ∈ B, then Cut(e, B) = { f ∈ E \ B : B − e+ f is a basis}.
(b) If e 6∈ B, then Path(e, B) = { f ∈ B : B − f + e is a basis}.
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That is, if e ∈ B, then Cut(e, B) consists of all elements f ∈ E \ B from outside the basis B that
can replace e in B. If e 6∈ B, then Path(e, B) consists of all basis elements f ∈ B that can be replaced by
e in B.

Proof. Claim (a) follows from claim (b) and the aforementioned duality. To show claim (b), let e 6∈ B
and P = Path(e, B); hence, P ⊆ B. Take an arbitrary element f ∈ B. If f 6∈ P, then B − f + e cannot
be a basis because it contains the circuit P + e. If f ∈ P, then A= B − f + e is a basis because f is
removed from the unique circuit P + e contained in B + e (the set A is independent and has the same
cardinality as B).

Remark 2. If e 6∈ B, then Path(e, B) is nonempty, because e is not a loop (the set {e} is independent).
If e ∈ B, then Proposition 2 implies that the set Cut(e, B) is also nonempty. Indeed, since e is not a
coloop (does not belong to all bases), e 6∈ A holds for some basis A 6= B. By the basis exchange axiom,
there is some element f ∈ A\ B such that B − e+ f is a basis. By Proposition 2(b), the element f
belongs to the set Cut(e, B); hence, Cut(e, B) 6= ;.

Proposition 3. Let B be a basis, e ∈ B and C an e-circuit. Then (C − e)∩Cut(e, B) 6= ;.

Proof. Let C be an e-circuit. Since the set I = C − e is independent, it lies in some basis A, and
e 6∈ A holds since I + e = C is already dependent. By Proposition 1(a), there is an f ∈ A such that
both sets B − e + f and A− f + e are bases. By Proposition 2, this is equivalent to f ∈ Cut(e, B)
and f ∈ Path(e, A). Thus, Cut(e, B) ∩ Path(e, A) 6= ;. Since A is a basis, and both circuits C and
Path(e, A) + e lie in A+ e, the uniqueness of fundamental circuits yields Path(e, A) = C − e. Hence,
Cut(e, B)∩ (C − e) 6= ;, as claimed.

Min-max and bottleneck weights of elements. A weighting is an assignment x : E→ R of real weights
to the ground elements. The weight of a set F ⊆ E is the sum x(F) :=

∑

f ∈F x( f ) of the weights
of its elements. The minimum weight basis problem on a matroid M = (E,I ) is, given a weighting
x : E→ R, to determine the minimum weight of a basis:

τM (x) := min
B basis

∑

f ∈B

x( f ) .

We call the number τM (x) the optimal value (under the weighting x), and call a basis B x-optimal
(or just optimal, if the weighting is clear from the context) if x(B) = τM (x) holds, that is, if the basis
B is of minimal x-weight.

Remark 3. Note that in the context of the minimum weight basis problem our assumption that no
ground element e is a loop or a coloop is quite natural. If e is a loop, then it belongs to none of
the bases, and the element e contributes nothing to the optimal value τM (x). If e is a coloop, then
it belongs to all bases, and the contribution x(e) of the element e to the optimal value τM (x) is
predetermined.

The min-max weight x[e] of an element e ∈ E under a weighting x : E→ R is the minimum, over
all e-circuits C , of the maximum weight of an element in the (independent) set C − e:

x[e] := min
C e-circuit

max
f ∈C−e

x( f ) .

Since e is not a loop (the set {e} is independent), the set C − e is nonempty for every e-circuit C .
Moreover, since e is not a coloop, at least one e-circuit C exists. So, the min-max weight is well-
defined. Note that the min-max weight x[e] of e does not depend on the weight x(e) of the element
e itself: it only depends on the weights of the remaining elements. So, all three relations x[e]< x(e),
x[e] = x(e) and x[e]> x(e) are possible. We call

x{e} :=min{x(e), x[e]}

the bottleneck weight of e.
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Remark 4. Thanks to a classical “bottleneck extrema” result of Edmonds and Fulkerson [5], the
min-max weight x[e] of a ground element e ∈ E has an equivalent definition as the “max-min” weight
in terms of cocircuits:

x[e] = max
D e-cocircuit

min
f ∈D−e

x( f ) . (1)

A set D ⊆ E is a cocircuit if it intersects every basis, and no proper subset has this property. In other
words, cocircuits in a matroid M are circuits of the dual matroid M∗; bases in M∗ are complements
of the bases of M . An e-cocircuit is a cocircuit containing the element e. To obtain Eq. (1) from
the main theorem of Edmonds and Fulkerson [5], one has only to verify that the family De =
{D − e : D is an e-cocircuit} is a blocking family for the family Ce = {C − e : C is an e-circuit}, i.e.,
that members of De are minimal (under set inclusion) subsets of E intersecting all members of Ce.
This follows from a well-known fact that |C ∩ D| 6= 1 holds for every circuit C and every cocircuit D
(see, for example [9, Proposition 2.1.11]). In this paper, we will not use this equivalent “max-min”
definition Eq. (1) of x[e]: we only mention it for interested readers.

Example 1. The graphic matroid (or cycle matroid) M(G) determined by an undirected connected
graph G = (V, E) has edges of G as its ground elements. Independent sets are forests, bases are
spanning trees of G, and circuits are simple cycles in G. A loop is an edge with identical endpoints,
and a coloop is an edge e whose deletion destroys the connectivity of G (such edges are also called
bridges). The min-max weight x[e] of an edge e ∈ E is the minimum, over all simple paths in G
of length at least two between the endpoints of e, of the maximum weight of an edge in this path.
The bottleneck weight x{e}=min {x(e), x[e]} of an edge e is also known as the bottleneck distance
between the endpoints of e. If T is a spanning tree of G and e 6∈ T is an edge of G, then the set
Path(e, T) consists of all edges of the unique path in T between the endpoints of e. If f ∈ T , then
Cut( f , T ) consists of all edges of G lying between the two trees of T − f , except the edge f itself.

For the rest of the paper, let M = (E,I ) be an arbitrary loopless matroid.

4. Main lemma

The following lemma (illustrated in Figure 1) is our main technical tool.

Lemma 1 (Main lemma). Let x : E→ R be a weighting, e ∈ E a ground element, and B an x-optimal
basis.

(a) If e ∈ B, then

• x(e)6 x[e] = the minimum weight of an element in Cut(e, B);

• the minimum weight of a basis avoiding the element e is x(B)− x(e) + x[e].

(b) If e 6∈ B, then

• x(e)> x[e] = the maximum weight of an element in Path(e, B);

• the minimum weight of a basis containing the element e is x(B)− x[e] + x(e).

Given a weighting x : E→ R and an element e ∈ E, by an e-circuit witnessing the min-max weight
x[e] of an element e we will mean an e-circuit C on which the min-max weight of the element e is
achieved, that is, for which x[e] is the maximum weight x( f ) of an element f ∈ C − e.

Proof of Lemma 1(a). Let x : E→ R be a weighting, e ∈ E a ground element, and B an optimal basis.
Assume that e ∈ B, and let c0 be a lightest element in Cut(e, B). Our goal is to show that

(i) x(e)6 x[e] = x(c0), and
7



c0

e p0

e

Cut(e, B)

x-optimal basis B

Path(e, B)

x{e}= x(e)6 x(c0) = x[e]

c0 is a lightest element in Cut(e, B)

B − e+ c0 is a next best basis

x{e}= x[e] = x(p0)6 x(e)

p0 is a heaviest element in Path(e, B)

B − p0 + e is a next best basis

Case: e ∈ B Case: e 6∈ B

Figure 1: A schematic summary of Lemma 1. A lightest (resp., heaviest) element of a set S ⊆ E is an element of S of the
minimum (resp., maximum) weight (there may be several such elements). If e ∈ B, then a next best basis is a basis which
has the minimal weight under all bases avoiding the element e. If e 6∈ B, then a next best basis is a basis which has the
minimal weight under all bases containing the element e.

(ii) the set B − e+ c0 is a lightest basis among all bases avoiding the element e.

(i) To show the inequality x(e)6 x(c0), suppose for a contradiction that x(c0)< x(e) holds. Since
c0 ∈ Cut(e, B), Proposition 2 implies that the set B − e+ c0 is a basis. But then its weight is smaller
than that of B, contradicting the optimality of B.

To show the inequality x[e]> x(c0), let C be an e-circuit witnessing the min-max weight x[e] of
the element e. Hence, x[e] = x( f0), where f0 is a heaviest element of C − e. By Proposition 3, there
is an element g in the intersection (C − e)∩Cut(e, B). Then x(g)6 x( f0) = x[e] because g ∈ C − e
and f0 is a heaviest element of C − e, and x(g) > x(c0) because g ∈ Cut(e, B) and c0 is a lightest
element of Cut(e, B). Hence, x[e]> x(c0).

To show the opposite inequality x[e]6 x(c0), consider the fundamental circuit C = Path(c0, B)+c0
of the element c0 relative to the basis B. Since c0 ∈ Cut(e, B), we have e ∈ Path(c0, B). Thus, both e
and c0 belong to the same circuit C . Let p0 be a heaviest element in C − e = Path(c0, B)+ c0− e. Since
in the definition of the min-max weight x[e] we take the minimum over all circuits containing e, we
have x[e]6 x(p0). So, it remains to show that x(p0)6 x(c0) holds. Suppose for a contradiction that
we have a strict inequality x(p0) > x(c0). Then (clearly) p0 6= c0 and, hence, p0 ∈ Path(c0, B). By
Proposition 2, the set A= B − p0 + c0 is a basis. But the weight of this basis is x(A) = x(B)− x(p0) +
x(c0)< x(B), contradicting the optimality of the basis B. Thus, x[e]6 x(c0), as desired.

(ii) LetB0 be the family of all bases avoiding the element e; hence, B 6∈ B0. Since c0 belongs to
Cut(e, B), Proposition 2 implies that the set B − e+ c0 is a basis, and this basis belongs toB0. Our
goal is to show that this specific basis has the smallest weight among all bases inB0.

So, let B′ be a lightest basis in B0; hence, e ∈ B \ B′. By Proposition 1(b), there is a bijection
φ : B → B′ such that the set B − f +φ( f ) is a basis for every element f ∈ B. Since the basis B
is optimal, this yields x( f ) 6 x(φ( f )) for every f ∈ B. Consider the basis A = B − e + c where
c := φ(e) ∈ B′. Its weight is

x(A) = x(c) +
∑

f ∈B−e

x( f )6 x(c) +
∑

f ∈B−e

x(φ( f )) = x(c) + x(B′ − c) = x(B′) .

Since A is a basis, Proposition 2 implies that c ∈ Cut(e, B). Since both elements c and c0 belong to
Cut(e, B), and since c0 is a lightest element of Cut(e, B), we have x(c0)6 x(c). So x(B − e+ c0)6
x(B − e+ c) = x(A)6 x(B′), meaning that B − e+ c0 is a lightest basis inB0, as claimed.
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Remark 5. The inequality x[e]> x(c0) in part (i) also follows from the equivalent definition Eq. (1)
of the min-max weight x[e] (see Remark 4). For this, it is enough to verify that the set Cut(e, B) + e
is a cocircuit. The set Cut(e, B) intersects every basis A with e 6∈ A: by the basis exchange axiom,
B − e+ a is a basis for some a ∈ A; hence, a ∈ Cut(e, B). Moreover, no proper subset of Cut(e, B) has
this property: for every f ∈ Cut(e, B), the set Cut(e, B)− f does not intersect the basis B − e+ f .

Proof of Lemma 1(b). Let x : E→ R be a weighting, e ∈ E a ground element, and B an optimal basis.
Assume that e 6∈ B, and let p0 be a heaviest element in Path(e, B). Our goal is to show that

(i) x(e)> x[e] = x(p0), and

(ii) the set B − p0 + e is a lightest basis among all bases containing the element e.

(i) To show the inequality x(e) > x(p0), suppose for a contradiction that x(e) < x(p0). Since
p0 ∈ Path(e, B), Proposition 2 implies that the set B − p0 + e is a basis. But then its weight is smaller
than that of B, contradicting the optimality of B.

The inequality x[e] 6 x(p0) holds because Path(e, B) + e is an e-circuit, and x[e] takes the
minimum (of the maximum weights) over all e-circuits. To show the opposite inequality x[e]> x(p0),
suppose for a contradiction that we have a strict inequality x[e]< x(p0), and let C be an e-circuit
witnessing x[e]. Hence, x( f ) < x(p0) holds for all f ∈ C − e. Since p0 ∈ Path(e, B), Proposition 2
implies that A= B− p0+ e is also a basis. Since e ∈ A and C is an e-circuit, Proposition 3 implies that
some element f0 ∈ C−e belongs to Cut(e, A). So, by Proposition 2, the set A′ = A−e+ f0 = B−p0+ f0
is a basis. But since x( f0)< x(p0), we have x(A′)< x(B), contradicting the optimality of B.

(ii) LetB1 be the family of all bases containing the element e; hence, B 6∈ B1. Since p0 belongs to
Path(e, B), Proposition 2 implies that the set B − p0 + e is a basis, and this basis belongs toB1. Our
goal is to show that this specific basis has the smallest weight among all bases inB1.

So, let B′ be a lightest basis in B1; hence, e ∈ B′ \ B. By Proposition 1(b), there is a bijection
φ : B′ → B such that the set B −φ( f ) + f is a basis for every element f ∈ B′. Since the basis B
is optimal, this yields x(φ( f )) 6 x( f ) for every f ∈ B′. Consider the basis A = B − p + e where
p := φ(e) ∈ B. Its weight is

x(A) = x(e) +
∑

f ∈B′−e

x(φ( f ))6 x(e) +
∑

f ∈B′−e

x( f ) = x(e) + x(B′ − e) = x(B′) .

Since A is a basis, Proposition 2 implies that p ∈ Path(e, B). Since both elements p and p0 belong to
Path(e, B), and since p0 is a heaviest element of Path(e, B), we have x(p0)> x(p). So x(B− p0+ e)6
x(B − p+ e) = x(A)6 x(B′), meaning hat B − p0 + e is a lightest basis inB1, as claimed.

Remark 6 (From optimal bases to bottleneck weights). Having an optimal basis B, we can determine
the bottleneck weight x{e} = min{x(e), x[e]} of any ground element e ∈ E from the weights of
elements of B: if e ∈ B, then x{e} = x(e) (by Lemma 1(a)), and if e 6∈ B, then x{e} = x[e] is the
weight of a heaviest element in Path(e, B) (by Lemma 1(b)). The following proposition shows how
to find such a heaviest element in Path(e, B).

Proposition 4. Let x : E → R be a weighting and B = { f1, . . . , fr} be an optimal basis with x( f1) 6
. . . 6 x( fr). If e 6∈ B, then x[e] = x( fi), where i is the smallest index for which the set { f1, . . . , fi , e} is
dependent.

Proof. For j = 1, . . . , r, let B j = { f1, . . . , f j} be the set of the j lightest elements of B, and let B0 = ;.
The set B0 + e = {e} is independent because e is not a loop, and the set Br + e = B + e is dependent,
because B is a basis and e 6∈ B. So, there is a unique index i ∈ {1, . . . , r} such that the set Bi−1 + e is
independent but Bi + e is dependent. Our goal is to show that x[e] = x( fi) holds for this i.

Since Bi is independent but Bi + e is dependent, the set Bi + e contains an e-circuit C . Since
C ⊆ Bi + e ⊆ B + e, the uniqueness of fundamental circuits yields C = C(e, B); hence, Path(e, B) =
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C(e, B)− e ⊆ Bi . Since the set Bi−1 + e is independent, the last element fi of Bi must be contained in
Path(e, B). Since Path(e, B) ⊆ Bi and since fi is a heaviest element of Bi , fi is also a heaviest element
of Path(e, B). Thus, Lemma 1(b) gives x[e] = x( fi).

5. Proof of Theorem 1

Let, as before, M = (E,I ) be a loopless matroid, and e ∈ E be a ground element. Recall that
the independent sets of the matroid M/e, obtained by contracting the element e, are all sets I − e
with I ∈ I and e ∈ I , while those of the matroid M\e, obtained by deleting the element e, are all sets
I ∈ I with e 6∈ I . Our goal is to show that, for every weighting x : E→ R, the following equalities
hold:

(a) τM/e(x) = τM (x)− x{e};
(b) τM\e(x) = τM (x)− x{e}+ x[e].

Take an arbitrary optimal basis B of M ; hence, τM (x) = x(B). In the proof of both equalities (a)
and (b), we distinguish two cases depending on whether our element e belongs to B or not.

(a) If e ∈ B, then Lemma 1(a) yields x{e} = x(e) and, since then B − e is an optimal basis
of M/e, we obtain τM/e(x) = x(B) − x(e) = τM (x) − x{e}. If e 6∈ B, then consider a basis A
of minimum weight among all bases of M containing the element e. By Lemma 1(b), we have
x{e}= x[e] and x(A) = x(B)− x[e] + x(e). Since then A− e is an optimal basis of M/e, we obtain
τM/e(x) = x(A− e) = x(B)− x[e] = τM (x)− x{e}.

(b) If e 6∈ B, then Lemma 1(b) yields x{e} = x[e] and, since then B is also an optimal basis
of M \e, we obtain τM\e(x) = x(B) = τM (x) = τM (x) − x{e} + x[e]. If e ∈ B, then consider a
basis A of minimum weight among all bases of M avoiding the element e. By Lemma 1(a), we
have x{e} = x(e) and x(A) = x(B)− x(e) + x[e]. Since A is an optimal basis of M \e, we obtain
τM\e(x) = x(A) = x(B)− x(e) + x[e] = τM (x)− x{e}+ x[e].

6. Proof of Theorem 2

Let e ∈ E and let x , x ′ : E→ R be weightings that differ only in the weights given to the element e.
Our goal is to show the equality τM (x ′)−τM (x) = x ′{e} − x{e}.

Recall that the independent sets of the matroid M/e are all sets I − e with I ∈ I and e ∈ I . By
Theorem 1(a), the equality τM/e(z) = τM (z)− z{e} holds for every weighting z : E→ R. Since the
weighting x ′ does not change the weight of elements in E − e, we have τM/e(x ′) = τM/e(x). So,
Theorem 1(a) yields

τM (x
′)− x ′{e}= τM/e(x

′) = τM/e(x) = τM (x)− x{e} ,

from which τM (x ′)−τM (x) = x ′{e} − x{e} follows.

7. Proof of Theorem 3

Fix a ground element e ∈ E, and let x , x ′ : E→ R be weightings that only differ in the weights
given to e. Since the min-max weight of e only depends on the weights of the elements in E − e, and
since the weighting x ′ leaves these weights unchanged, we have x ′[e] = x[e], that is, the min-max
weight of the element e does not change. Thus, the bottleneck weight of e under the new weighting
x ′ is x ′{e} = min{x ′(e), x[e]}. Recall that the tolerance of the element e under the weighting x is
t x(e) = |x[e]− x(e)|.

Let B be an x-optimal basis. Our goal is to prove the following three assertions.

(a) If e ∈ B, then B is x ′-optimal if and only if x ′(e)6 x[e].
10



(b) If e 6∈ B, then B is x ′-optimal if and only if x ′(e)> x[e].

(c) If |x ′(e)− x(e)|6 t x(e), then B is x ′-optimal.

Proof. (a) Let e ∈ B. Then x ′(B) = x(B)+ x ′(e)− x(e) and, by Lemma 1(a), x{e} = x(e). Theorem 2
yields τM (x ′) = τM (x)+ x ′{e}− x{e} = x(B)+min{x ′(e), x[e]}− x(e) . The basis B is x ′-optimal iff
x ′(B) = τM (x ′), which happens precisely when min{x ′(e), x[e]} = x ′(e), that is, when x ′(e)6 x[e].

(b) Let e 6∈ B. Then x ′(B) = x(B) and, by Lemma 1(b), x{e} = x[e]. Theorem 2 yields
τM (x ′) = τM (x) + x ′{e} − x{e} = x(B) +min{x ′(e), x[e]} − x[e] . The basis B is x ′-optimal iff
x ′(B) = τM (x ′), which happens precisely when min{x ′(e), x[e]}= x[e], that is, when x ′(e)> x[e].

(c) Assume |x ′(e) − x(e)| 6 t x(e), i.e., x(e) − t x(e) 6 x ′(e) 6 x(e) + t x(e). If e ∈ B, then
Lemma 1(a) implies x(e)6 x[e] and, hence, t x(e) = x[e]− x(e). Thus, x ′(e)6 x(e) + t x(e) = x[e],
and claim (a) ensures that the basis B is x ′-optimal. If e 6∈ B, then Lemma 1(b) implies x(e)> x[e]
and, hence, t x(e) = x(e)− x[e]. Thus, x ′(e)> x(e)− t x(e) = x[e], and claim (b) ensures that the
basis B is x ′-optimal.

Remark 7. Given Lemma 1, claims (a) and (b) of Theorem 3 also follow from a result of Libura [8,
Lemma 4] stating that B is x ′-optimal iff x ′(e) 6 x(c0) holds for a lightest element c0 of Cut(e, B)
(when e ∈ B) or x ′(e) > x(p0) holds for a heaviest element p0 in Path(e, B) (when e 6∈ B). By
Lemma 1, x[e] = x(c0) (when e ∈ B) and x[e] = x(p0) (when e 6∈ B).

8. Proof of Theorem 4

We will need the following simple fact.

Proposition 5. Let x : E→ R be a weighting, and B a basis. If B is not x-optimal, then x(e)> x( f )
holds for some elements e ∈ B and f ∈ Cut(e, B).

Proof. Let A be an x-optimal basis; hence, x(B) > x(A). By Proposition 1(b), there is a bijection
φ : B → A such that the set B − e + φ(e) is a basis for every e ∈ B. Hence, by Proposition 2,
φ(e) ∈ Cut(e, B) holds for every e ∈ B \ A. Finally, since

∑

e∈B x(e) = x(B)> x(A) =
∑

e∈B x(φ(e)) ,
a strict inequality x(e)> x(φ(e)) must hold for at least one element e ∈ B.

Proof of Theorem 4(a). Let x : E → R be a weighting, and let x ′ : E → R be a weighting satisfying
|x ′(e)− x(e)| 6 1

2 t x(e) for all e ∈ E. Our goal is to show that then every x-optimal basis is also
x ′-optimal.

Assume to the contrary that some x-optimal basis B is not x ′-optimal. Then, by Proposition 5,
x ′( f )< x ′(e) holds for some elements e ∈ B and f ∈ Cut(e, B); hence, we also have e ∈ Path( f , B).
Since e ∈ B and f ∈ Cut(e, B), Lemma 1(a) yields x(e)6 x[e]6 x( f ). Since f 6∈ B and e ∈ Path( f , B),
Lemma 1(b) yields x( f )> x[ f ]> x(e). In particular, t x(e) = x[e]− x(e) and t x( f ) = x( f )− x[ f ].
Putting everything together, we get

x[e] + x(e)
2

6
x( f ) + x[ f ]

2
= x( f )−

t x( f )
2

6 x ′( f )< x ′(e)6 x(e) +
t x(e)

2
=

x(e) + x[e]
2

,

a contradiction.

Proof of Theorem 4(b). Let ε > 0 and let x : E→ R be a weighting. Take an arbitrary x-optimal basis
B. Our goal is to show that there is a weighting x ′ : E → R such that |x ′(e)− x(e)| 6 1

2 t x(e) + ε
holds for all elements e ∈ E but the basis B is not x ′-optimal.

Consider all pairs (e, f ) such that e ∈ B and f ∈ Cut(e, B); hence, e ∈ Path( f , B). Since the basis
B is x-optimal, Proposition 2 implies that x( f )> x(e) holds for every such pair. So, let (e, f ) be a
pair for which the difference x( f )− x(e) is smallest possible. Then f is a lightest element in Cut(e, B)
and e is a heaviest element in Path( f , B). By Lemma 1, x(e)6 x[e] = x( f ) and x( f )> x[ f ] = x(e).
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Hence, t x(e) = x[e]− x(e) = x( f )− x(e) = x( f )− x[ f ] = t x( f ), that is, both elements e and f
have the same tolerance t := t x(e) = t x( f ) under the weighting x .

Now, let x ′ : E → R be the weighting with x ′(e) := x(e) + 1
2 t + ε, x ′( f ) := x( f ) − 1

2 t − ε,
and x ′(g) := x(g) for all other elements g. So, |x ′(g) − x(g)| = 1

2 t x(g) + ε for g ∈ {e, f }, and
|x ′(g)− x(g)| = 0< 1

2 t x(g)+ε for all g 6∈ {e, f }. Then x ′(e)− x ′( f ) = x(e)− x( f )+ t+2ε = 2ε > 0,
and x ′( f ) < x ′(e) implies that the basis B − e + f has smaller x ′-weight than B, so B cannot be
x ′-optimal.

9. Proof of Theorem 5

Every weighting x : E → R yields the partition E = Eall(x) ∪ Enone(x) ∪ Esome(x) of ground
elements into three (not necessarily nonempty) subsets Eall(x) (elements belonging to all x-optimal
bases), Enone(x) (elements not belonging to any x-optimal basis), and Esome(x) (elements belonging
to some but not to all x-optimal bases). Our goal is to prove the following claims:

(1) e ∈ Eall(x) if and only if x[e]> x(e);

(2) e ∈ Enone(x) if and only if x[e]< x(e);

(3) e ∈ Esome(x) if and only if x[e] = x(e).

(4) If all weights are distinct, then B = {e ∈ E : x[e]> x(e)} is the unique optimal basis.

Proof. (1) To show the direction (⇒), let e ∈ Eall(x) and take any optimal basis B; hence, e ∈ B.
By Lemma 1(a), we then have x(e)6 x[e] = x(c0), where c0 is a lightest element in Cut(e, B). By
Proposition 2, the set A= B − e+ c0 is a basis. If the equality x(e) = x[e] held, then this basis would
be optimal, too. But e 6∈ A, a contradiction with e ∈ Eall(x). Hence x[e]> x(e) holds. The opposite
direction (⇐) follows directly from Lemma 1(b): if the element e is avoided by some optimal basis,
then x[e]6 x(e) holds.

(2) The proof of this claim is similar. To show the direction (⇒), let e ∈ Enone(x) and take any
optimal basis B; hence, e 6∈ B. By Lemma 1(b), we then have x(e)> x[e] = x(p0), where p0 ∈ B is
a heaviest element in Path(e, B). By Proposition 2, the set A= B − p0 + e is a basis. If the equality
x(e) = x[e] held, then this basis would be optimal, too. But e ∈ A, a contradiction with e ∈ Enone(x).
Hence, x[e]< x(e) holds. The opposite direction (⇐) in (2) follows directly from Lemma 1(a): if
the element e is contained in some optimal basis, then x[e]> x(e) holds.

(3) Follows directly from claims (1) and (2).
(4) Assume that all weights are distinct. Then the optimal basis B is unique: if there were two

distinct optimal bases, then (by the basis exchange axiom) a heaviest element, lying in one basis but
not in the other, could be replaced by a (strictly) lighter element of the other basis, contradicting
the optimality of the former basis. Since the basis B is unique, we have B = Eall(x) and, by (1),
B = {e ∈ E : x[e]> x(e)}, as claimed.

Acknowledgments. We are thankful to the referees for very useful comments and suggestions to
improve the presentation.
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