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Abstract. We present some initial ideas of a new lower bound techuique which captures, ina
strong way, the structure of optimal circuits. The key observation is that optimal circuits are unstable
not only w.r.t. deletion of gates but also w.r.t. renaming gates. Such an unstability allows one
to extract some useful information about the inner structure of optimal circuits. We demonstrate
the technique by new exponential lower bounds on the size of null-chain-free formulae over the basis
A\/, v, Jv approximating subsets of the Boolean 12—cube, and in particular, for formulae computing

”semi-slice” functions, i.e. functions \ such that, for some k& < [ < m,
f=fATE ATV TE,

where MJN is the £—th threshold function.

Introduction

One reason for the failure of existing methods to derive superpolynomial lower bounds
on circuit size lies in the fact that these methods have made little use of the structure
of optimal circuits. An information about the form of minimal circuits appears to
be very difficult to obtain. The only information about an optimal circuit is that it
computes a given function f and no circuit of smaller size computes f. In particular,
any deletion of a gate from an optimal circuit spoils the function computed by the
whole circuit. Even this simple observation has led to some new information which has
been successfully employed by Krichevskii [6] in his proof of non-linear lower bound
for the complexity of computing the threshold function in the class of formulae over
{&,V, ~}. The observation has also been utilized in a powerful technique for monotone
circuits called "replacement rules”, which was independently proposed by Paterson 9]
and Melhorn and Galil [7], and generalized by Dunne [3].

It appears, however, (see Theorem 1 bellow) that optimal circuits (over arbitrary
bases) are unstable not only with respect to dcletion of gates but also in a much more
stronger sense: any replacement of a gate by a different one spoils the function computed
by the whole circuit (the size remains unchanged). This result supports an intuitive idea
that in optimal circuits the necessity of each of its gates must be "strongly motivated” by
some input vectors detecting all its possible faults. The properties of these motivation
vectors may be used to extract some useful information about the behavior or structure
of optimal circuits. The point is that although the properties of motivating vectors
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depend on the circuits hardware (which is a "black box” for us), these vectors also
depends heavily on combinatorial properties of a Boolean function computed. In case
when such a dependence can be captured, one obtains an additional information about
minimal circuits which, in its turn, can be used in proving lower bounds on their size.

We apply this idea to prove new exponential lower bounds on the size of formulae
over the basis {A,V, =} with restricted usage of —-gates computing so-called semi-slice
functions. The restriction is that formulae has no short null-chains, i.e. chains with
zero conductivity. The class of slice-like Boolean functions is one which is promising for
the proof of nonlinear lower bounds for unrestricted circuits. In spite of the fact that
(for other functions) exponential lower bounds for null-chain-free formulae are already
known, we hope that proof techniques based on unstability of optimal circuits may be
fruitful for more general circuits.

The paper is organized as follows. In section 1 we prove (Theorem 1) that optimal
circuits (over arbitrary bases) are unstable in a very strong sense: any replacement of
a gate by another one spoils the function computed by the whole circuit. The general
idea of how this phenomenon can be used in proving lower bounds is also described. In
section 2 we consider formulae over the basis {A,V, =} without short null-chains. We
show that the unstability of optimal formulae implies that some of their subformulae
have very special structure. This is used to derive a general lower bound on the size of
such formulae approximating subsets of the Boolean n-th cube (Theorem 2). In section
3 this bound is applied to obtain new lower bounds for the complexity of semislice
functions.

1. Optimal versus Stable: General Observations

Throughout the paper B, denotes the set of all Boolean functions f : {0,1}" — {0,1}.
Given a Boolean circuit S over some basis B C Byn(m > 1) and its gate e, let &€ €
BU{xy,...,z,} denote its label and f, € B, the function computed at the gate e in S.
The size of S is the number of inner gates in S.

Convention: To simplify notations we will denote by S a circuit as well as the function
computed at its output gate; the meaning will be clear from the context.

For a gate e of S and a function & € By, let S._. denote the circuit obtained from S
as follows: replace the label of e by A and remove all the gates which become redundant
in the resulting circuit.

Given a class of Boolean functions F C B, we say that a circuit S represents F
if § computes a function from F, i.e. if S € F. Thus, for example, S computes f iff
S represents the class F = {f}. A circuit S is optimal for F if S represents F, and
no circuit of smaller size does it. Thus, optimal circuits are unstable with respect to
deletion of gates. It appears however that optimal circuits are unstable in a stronger
sense: we cannot replace even the labels of gates; the size of the resulting circuit remains
the same but, nevertheless, the function computed differs from the original one.
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Definition: A function & € By, is called to be a strong neighbor of a function ¢ € By, if
either h < =g or & > —g (or both). & is a neighbor of g if either it is a strong neighbor
of g or g depends on at least two variables and g @ z; < g @ hfor some 7 € {1,...,n}.
A neighbor of a gate is a neighbor of its label.

For example, neighbors of the disjunction V are all the two variable Boolean functions,
except @ and the function V itself. Constants 0 and 1 are strong neighbors of all non-
constant functions.

Given an optimal circuit S representing F, a gate e of S and its neighbor h, an
h-motivation for e in S with respect to F is a subset of vectors W C {0, 1}" motivating
the necessity of this gate:

VfeEF vew . Sen(v) # fv).

Theorem 1: Let § be an optimal circuit representing a class of Boolean functions F
with 7N {0,1} =, and let e be any of its gates. Let h be a strong neighbor of € or an
arbitrary neighbor of e if |F| = 1. Then the circuit Se—n does not represent F.

Proof: Let f1,..., fm be the functions computed at the inputs of the gate e, i.e. fo =
9(f1,---, fm) where ¢ is the label of e. Let fe—n denote the function computed at the
gate e in the modified circuit Sy, ie. for = A(f1,..., fm). For é € {0,1}, let W
be a minimal §-motivation for ¢ in S. Since S is optimal and size(S._s) < size(S) — 1,
both sets W9 and W?! are nonempty, and moreover

VfeF : Ses(WP) £ F(W®) (1.1)
Case I: h is a strong neighbor of ¢, i.e. for some 6 €1}

gHI<hBiD1 (1.2)

hand, by (1.2), fewn(W®) = A(f1,..., fm)(W?®) = 6. Thus, Ses(W?®) = S,_s(W?),
and by (1.1) we conclude that S,_., does not represent the class .

Case 2: |[F|=1 and h is a neighbor of g.
‘Let 7 = {f}. We have to prove that S,_.j, # f if

g, <gPh (1.3)
for some ¢ € {1,...,n} Assume w.lo.g thati= 1.

Let S denote the circuit obtained from S as the result of the following transformation:
add a new edge connecting the output of the gate e; with the output of e, and delete
the gate e.

Since § was optimal, we have that $' # f. Take a vector v € {0,1}" for which S'(v) #
F(0): Then £(v) = g(fi(v) .., fm()) # f1(v), ands0 by (13), fo_a(v) = fi(v). Thus,
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This may be not the case (if, say, the circuit S compute correctly only one function from F. (Thanks to Sasha Razborov for pointing to this mistake.) Fortunately, for one function (when |F|=1, the case considered in this paper) the theorem is true. 
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Se—n(v) = S'(v), and hence S._.;(v) # f(v). This completes the proof of Theorem 1.
O

The lower bounds problem is, given a Boolean function f, to estimate from below its
complexity, i.e. the size of an optimal circuit computing f. In doing so, we suggest to
use the strong unstability of optimal circuits.

To be more specific, let S be an optimal circuit representing a class F. Then, by
Theorem 1, for any gate ¢ of S there exist nonempty subsets W C {0, 1}™ motivating its
necessity in S. Our idea is to use these motivation-sets to extract some extra information
about the structure of S. The point is that although these sets depend heavily on the
circuits hardware (which is a "black box” for us), they also depend on the function
computed. In this paper we will show that even the dimension Dim(W) = max{|v | :
v € W } where [v] = vy + ...+ v, is the weight of v, can be useful for lower bounds
arguments.

Definition: Given a set of functions M, define the degree degle : H, F,S] of a gate e
in 5 as the minimum of Dim(W) over k € H and all h-motivations W of e in S w.r.t.
F. The degree of optimality deg[S : M, F| of the whole circuit § is the maximum of
degle : H, F, S] over all gates e of S.

Thus, 0 < deg[$ : H,F] < n, and S has large degree of optimality iff the necessity of
its gates is motivated by vectors of small weight.

The idea is, given a Boolean function f, to associate with it an appropriate class of
functions F such that the size of optimal circuits representing F does not heavily exceed
the size of circuits computing f (this is so, for example, if f € F), and to proceed in
the following three steps.

Step 1: Using the (functional) properties of the class F and the unstability of optimal
circuits representing F, prove that at least one optimal circuit Sy representing F has
low degree of optimality.

Step 2: Using the information that S, computes a function in F with low degree of
optimality, show that Sy has some special structure.

Step §: Using this extra information about the structure of So estimate from below its
size.

By the definition of F, this lower bound on the size of So directly yields a lower bound
for the complexity of f.

2. The General Lower Bound

In this section we will consider Boolean formulae (i.e. fan-out 1 circuits) over the
basis {A, V} with tight negations, i.e. each input gate e is labelled by a variable or its
negation é € {z1,...,2,,-2y,..., —2,} and each inner gate is labelled by A or V. We
will describe the structure of formulae in terms of their chains.
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A chain of a formula F is a minimal set of its input gates (not variables !) eidnr.wm we

set to 1, F will compute the constant function = 1. regardless of the values assigned

to the other input gates. For a chain «, we define its length  |la|| as the number of

variables z; which appear in « positively, i.e. #; = ¢é for some gate e € . Set also
o = é . e€al.

?\M nw\w/mw o is :::.&Ws.: if Ko = 0. Notice that such chains and cuts do not effect the

function computed by F since F' = \/{ Ky : « € chains(F)}.

A formula is called to be A — free (0 < A < n) if it has no null-chains of ~mbm$.~ <A
All formulas are 0-free; n-free formulas have no null-chains and are called null-chain-free
ones. .

In order to demonstrate steps 2 and 3 of our approach (see Section 1), we will prove
a general lower bound for A-free formulae with A a2 \/7i.

First, we need some notation concerning the structure of the binary zys.g cube. An
(upper) cone BY of a subset B C {0,1}" is the set of all vectors v covering at least
one vector in B, i.e. such that v 3 u for some u € B. Define &im(B) (Dim(B)) to
be the minimum (maximum) weight of a vector in B. For ¢ > 0, let #;(B) denote the
maximum number of vectors in B that have at least : ones in common. Let ﬂn:imv
be the minimum number r (0 < r < n) such that no two vectors in B have r ones in
comunon, i.e. rank(B) = min{i : #;(B) = 1}. Let also Rank(B) be the maximum
number R (0 < R < n) such that each binary vector of weight < R covers at most one
vector in B.

Now we turn to the main result of this section. Given a subset m c {0,1}™, .Hmn
F = F(B) denote the set of all Boolean functions f approzimating B in the following
sense:

BC (1)< BY.

Theorem 2: Let F' be an optimal M-free formula approximating a subset B C {0,1}"
with the degree of optimality deg[F : {1}, F(B)] = d. If A\ > Rank(B)+ 1 and

d £ 2dim(B) — 3rank(B) — 1 (2.1)
then

size(F) > |B|

Proof: For a subformula G of F, let I(G) C {1,...,n} denote the set of W&mxww of those
variables z; which appear in G positively, i.e. I(G) = {{ : é = z; for some input gate
e of G }. Set r = rank(B) and say that G is an r-subformula if r < I(G)| < 2r.

Our plan is to associate with F a decreasing sequence of ¢ < size(F) mc.vmwn.m By =
B2 B;2...2 B, =0 and prove that maxocj<i—1 | B; \ Bj41]| < 1. This gives the

desired lower bound on the size of F.

The procedure is to repeatedly replace some r-subformulas Om. F by 0 and ammbm.
B; as the set of all vectors from B accepted by the formula obtained from F' after j




replacement steps. Then B;_; \ Bj; is the set of vectors from B which are "lost” at the
j-th replacement step.

More precisely, we start with the formula F and repeatedly perform the following
reduction operation: choose an r-subformula G of F and replace it by 0. Repeatedly
perform such reductions until no more are possible. Since the number of gates decreases
with each reduction, the reduction procedure terminates with a formula having no r-
subformulas. Thus we obtain a sequence of formulas Fy = FF> Fy > ... > F, and the
corresponding sequence of their r-subformulas Gg, Gy, ..., G¢_; where each Fipis Fy
with G; replaced by 0. Take B; = ‘m.Dm.wlAC, 7 =0,1,...,t. This sequence decreases,
and moreover, B; = § because otherwise, we would have by (2.1) that Fy has at least
dim(B) > r positively appearing variables, and hence, the reduction procedure could
be continued, which is impossible.

We will prove that

To prove this, we will use the optimality of F' in order to extract some additional infor-
mation about the structure of subformulas G;. Let G stand for any such subformula.

Claim: For any i € I{G), each chain of G contains an input gate labelled
by z;.

Before proving the claim, notice that it directly yields (2.2) and hence, the desired
lower bound on the size of F. Indeed, by Claim, all the vectors in Bj\ Bj4; must have
at Jeast [I[(G)| > r = rank(B) ones in comumnon, and so by the definition of rank(B),
this set consists of no more than one vector.

Now let us turn to the proof of the claim. Denote H = F;, G = G and fix some
¢ € I(G) and an input gate e of & with ¢ = z,. By the definition of the degree of
optimality d, the necessity of e in F must be motivated by some vector of weight < d,
i.e. there exists a vector w € {0,1}" with |w| < d such that

Fee(w) =10 = F(w) (2:3)

and

w#u, Yu€ B, (2-4)
Thus, there exists a chain o of & and a chain B of Hs_., such that

NV\AQ/TZCQASV =1 % 0= ‘N.r\QCuAEv Aw.mv
and

laUBl < |wl+1 <d+1. (2.6)

Now take an arbitrary chain v of G. To finish the proof of Claim we have to prove that
7 contains a gate labelled by z;.

By (2.6),
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Iy UBE < [l +18ll < 20 +d < Rank(B), (2.7)

So, the chain v U § is non-null. Take a minimal vector u such that

Koup(u)=Flu)=1 (2.8)

Consider the vector v = (wy,...,w;_;, 1, Wit1, ..., Wy). By (2.5)

Kaug(v) = Fv) =1 (2.9).

Since F' approximates B, (2.8) and (2.9) yield {u,v} € BY. Moreover, each of these two
vectors may cover only one vector in B because by {2.1), (2.6) and (2.7), their weights
are < d + 2r < Rank(B). Let u* and v* be the corresponding vectors in B covered by
u and v, respectively. Then |v*| + |u* A v £ d+14[v* Au*|. Since [v*] > dim(B)
and [u*Av| 2 fu*|—|lv| > dim(B) - 2r, we conclude, by (2.1), that

[v"Au*| >2dim(B)=2r—d -1 > 2dim(B) — Rank(B) -1 >r.

Therefore u* = v*, i.e. both vectors v and v cover the same vector v* in B. By (2.5),
the chain 4 does not contain a gate labelled by z;, whereas by (2.4) and (2.9) the i-th
coordinate of v* must be 1 since w differs from v exactly in this coordinate. But then
the i-th coordinate of u must be also 1 since u > v*. Since u is the minimal vector with
Kyup(w) = 1, the chain v must contain a gate labelled by r;. This concludes the proof
of the claim, and hence the proof of theorem 2. (J

3. Lower Bounds for Semi-slice Functions
The (k,1,m) — semislice (k <1 < m) of a Boolean function f is the function

\nr.klz = .\. A NJN A JHN; \ N.,,‘N

where T is the -th threshold function which takes the value 1 iff at least k of its
arguments are 1. (For the sake of uniformity we assume that mo1 = 0.) Hence the
usual k-slice (see (2], [11], [12]) is the (k,1,m)-semislice with m = { =k + 1.

Although null-chains do not effect the function computed, it is known that their
presence enables one to reduce the size strongly: there exist Boolean functions which
have polynomial size circuits with null-chains, but have no polynomial size circuit with-
out them ([4], {10]). On the other hand, Berkowitz in [2] made a striking observa-
tion which showed that for some Boolean functions, namely, for slice functions null-
chains are in fact superfluious. The trick is, given a circuit computing a k-th slice
function f, to replace each negated input gate —z; by a monotone circuit computing
e Yz, .., Tin1,Tit1,...,%a). The resulting circuit is monotone (and hence, has no
null-chains). One may easily verify that it also computes f. Moreover, its size in-
creases by at most an additive factor O(n(logn)?) ([11], [12]). Thus any lower bound
of Q(n!*¢) on the null-chain-free circuit complexity of k-slice of f would imply that f
had non-linear combinational complexity.




Unfortunately, known proof techniques for monotone circuits ({1], [8]) and for null-
chain-free circuits ([4], [5]), although apparently quite general, do not seem to be ap-
plicable to slice functions. It is thus desirable to learn more about the null-chain-free
complexity of slice-like functions.

Let us mention the present knowledge concerning this problem. Let Ly(f) and (L.(f))
denote the minimum size of a \-free (null-chain-free) formula over {A, V, =} computing
f, and let By denote the set of all vectors in F7Y(1) of minimal weight, i.e. the set of
all "lower ones’ of f.

Theorem 3 ([4], [5]): Let f be a (k, k + 1,m)-semislice of some Boolean function and
B = By. Then

|B]
La(f) = %ILWVIN

where
s=min{k/3, (m—-k-1)/2}.

Theorem 4 ([5], using (8]): Let f be a (k,m,m)-semislice of a monotone Boolean
function and B = By. Then for any t,5 > 1 and 0 < ¢ < 1 we have

:w_ %.N:.Iu_om,\m

L > 752
D)2 i) By

where
8 =1—en/m—|B|é*.

Theorem 2 implies the following lower bound for other semislices.

Theorem §: Let f be a (k, 1, n+1)-semislice of monotone Boolean function and B = By.
If k and ! satisfy | < 2k — 3rank(B)+1 then L.(f) > |B|.

Proof: Let F be an optimal null-chain-free formula computing f. Then F approximates
B since f is a semislice of a monotone Boolean function. Let d = deg[F : {1}, F(B)] be
the corresponding degree of optimality of /. By Theorem 2 it is enough to verify that
d < -2, ie. that each (unnegated) gate ¢ of F has a motivation for its necessity of
weight < [ -2,

Since F is optimal, there must exist a vector v € {0,1}" such that Foi(v) = 1 #

f(v). If e is labelled by z; then v; = 0. Put ' = (v1)--3ie1y L, 0igy, .., 0p). Then
F(v") =1 as F has no null-chains. But [v'] £ 1 —1 since F computes 0 for all vectors
of weight > 1. Hence |v| = |v/| — 1 < [— 2, and we are done. [J

For the sake of illustration, let us consider the following monotone function of n = &
Boolean variables {z;; : 1<i,j < k} (here k is a prime power):

%
POLY (k,s) = <A >&ri; : v(z) € GF(k)[z] and deg(y) < s—1}.
=1

Theorems 3-5 yield the following lower bounds for various semislices of this function.

Corollary: Let f be a (k,l,m)-semislice of POLY (k,s) with s < k/3. Ifl and m

satisfy either one of the following three conditions:
(i) I=k+1aodm—k=Q(s),

(i) I=m=Qn~°Wy,

(iii) 1 <2k-3s-2

then

L.(f) 2 n®.

4. Conclusion and open problems

The main goal of this paper was to demonstrate how the unstability of optimal non-
monotone circuits can be used to extract some extra information about their hardware
and, in turn, to prove lower bounds on their size. Results presented reflect only an
embryonic stage of the approach, and the reader will have no doubt to recognize other
ways in which the idea can be developed.

We conclude with some open problems stipulated by the optimal versus stable phe-
nomenon.

1. We have seen above that, for some functions f (e.g. for semi-slice ones), the necessity
of each gate in an optimal formula computing f is motivated by sufficiently short vectors.
What other properties of motivation sets can be extracted from the properties of f7

2. The original statement of lower bounds problem is to bound the size of (i.e. the
number of gates in) a minimal circuit computing a given function (no matter of how
the gates are connected by wires and how gates are labelled). So, the whole family
of functions which can be computed by the same number of gates must be taken into
account. This leads to the following relaxed version of lower bounds problem. Given
a circuit over the basis {&,V, -}, say that a Boolean function f is derivable from S
if fis computed by some circuit obtained from S after some &-gates are replaced by
V-gates and vice versa. For a family of functions JF, let C(F) be the minimum size of a
circuit from which all the functions in F are derivable. Are there families F C B, with
IF] < n%M and C(F) > n¥(1)? That is, is it possible to prove superpolynomial lower
bound for ”almost explicit” Boolean functions ?

3. A function f is singular for a restricted class of circuits if its restricted circuit
complexity is almost the same as the unrestricted one. By Berkowitz's observation slice
functions are singular for monotone circuits. Does null-chain-free circuits have singular
functions other than slice ones? What non-monotone Boolean functions are singular for
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\-free formulae? Are there (k, m,m)-semislice functions with m > k + 2 singular for

A-free formulae?
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The Gaufl Lattice Basis Reduction
Algorithm Succeeds With Any Norm
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Abstract

We generalize GauB’ definition of lattice basis reduction to an arbi-
trary norm and analyse the generalized version of the Gauf lattice basis
reduction algorithm. We can prove that the worst—case bound established
in [5] for the number of iterations of the Gau8 algorithm in the euclidean
norm, which is known to be the best possible in that case, holds for any
norm. We prove for any norm that the norm of two consecutive vectors
in the algorithm at every but the first and the last iteration decreases
at least by a factor 2. We lift this result to a bound for the number of
iterations of log,, s (B/X2) + 1, where B denotes the maximum of
the norms of the two input vectors and X2 denotes the second succesive
minimum in the given norm. Furthermore we give two algorithms for the
maximum norm || . || 2nd the sum norm [ . |l that determine the in-
tegral reduction coefficient for every iteration in the Gauf} algorithm in
O(nlogn) arithmetic operations, where n is the dimension of the given
vector space.

1 Introduction

For the euclidean norm it is well-known that the GauB lattice basis reduction
algorithm solves the problem of lattice basis reduction of a two-dimensional
lattice in IR in polynomial time. More precisely for some constant B the number
of iterations is bounded by logs (B/Az2) + O(1) where B denotes the maximum
of the norms of the two input vectors and A, denotes the second succesive
minimum (see Definition 4) of the lattice. An elementary approach proves that
the quotient of the norms of two consecutive vectors is at least /\M and thus the
choice B = v/2 gives an upper bound. Familiar proofs that improve the size of §




