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ABSTRACT 

The contact scheme complexity of Boolean functions has been 

studied for a long time but its main problem remains unsolved: we 

have no example of a simple function (say in NP) that requires 

~(n 3) contact scheme size. The reason is, perhaps, that although 

the contact scheme model is elegantly simple, our understanding of 

the way it computes is vague. 

On the other hand, it is known (see, e.g. [2,3]) that the main 

tool to reduce the size of schemes is to use "null-chains", i.e. 

chains with zero conductivity.(These chains enable one to merge 

non-isomorphic subschemes). So, in order to better understand the 

power of this tool, it is desirable to have lower bound arguments 

for schemes with various restrictions on null-chains. 

In this report such an arguments are described for schemes 

without null-chains (Theorems 1-2), for schemes with restricted 

topology of null-chains (Theorem 3), and for schemes with restricted 

number and/or restricted length of null-chains (Theorem 4). In all 

these cases nearly-exponential lower bounds are established. 

Finally, we prove that null-chains do not help at all if schemes are 

required to realize sufficiently many prime implicants (Theorem 5). 

1. PRELIMINARIES 

We deal with the standard model of contact schemes but we need 

some notations. Fix some set of Boolean variables ~+ {x 1 ~-. = , . . . , X  } 
n 

and t h e i r  n e g a t i o n s  ~ -  = { m X l ' ' ' ' ' m X n  }" The e l e m e n t s  o f  ~ = ~+ U 

~- are called contacts A contact scheme S is a labelled digraph 

with two distinguished nodes (the source and the output), and edges 

labelled by contacts. The size of S, size(S), is the number of edges 

in S. A chain is (a sequence of edges in)a path from the source to 

output. A subchain is a subsequence of (not necessarily consecutive) 
edges in a chain. A cut is a minimal set of edges which contains an 

edge from each chain. We will often identify a chain [cut] A with 

the set A ~ ~ of contacts it consists of; the current meaning will 

be clear from the context. A chain [cut] A = {yl,...,ym} c ~ (m 



247 

m m 
2n) defines the monomial K A = &[=ly L [the clause D A = ~=tyi ]. 

A chain [cut] A is redundant if K A ~ 0 [DA ~ i]. Thus a chain 

(as well as a cut) is redundant iff it contains some pair of 

contrary contacts x and ~x. . Redundant chains [cuts] are also 
i i 

called null-chains Lone-cuts]. A contact scheme computes a Boolean 

function f iff 
S 

fs = V{ K A : ,4 is a chain of S }, 

or equivalently, iff 

fs = & [DA : i is a cut of S }. 

We will also need the following notions from extremal set 

theory. Let ~ be a family of subsets of a finite set N . For an 

integer i (0 ~ i ~ INI), put 

# . ~ :  max { i~I : ~ ~ and t ~ AI ~ i } 
l A~ 

i.e. #.~ is the maximum number of sets in ~ that have at least 
i 

i elements in common. Thus 

I .~  I > ~ > > # ~ = 1 
i- : #0 ~ - # i  y . . . . .  IN I 

The rate to which #.~ ---> 1 as i--->IN ] characterizes the 
1 

"dispersion" of elements from N over the subsets of ~ . 

A family ~ is (t,r)-dispersed if 

#i '~ / #i+lY - > t for all i = 0,1,...,r-l. 

A family ~ is (k,r)-disjoint (kk2,rk0) if # ~ S k - i. 
r 

Notice that any (t,r)-dispersed family is also (k,r)-disjoint with 

-r 
k o l l.t 

In this report we show that for any sufficiently dispersed 

, 2 N family ~ ~ 2 N the characteristic function f~ : --> {0,I} of 
o .. 

any family ~ c 2 N , given by 

A ~  ~ 3 B ~ :  A~B, 
o 

requires super-polynomial size to be computed by contact schemes 

with various restrictions on null-chains and one-cuts. The 

consequence is that, under these restrictions, almost all 

NP-complete functions require super-polynomial contact scheme size. 

2. SCHEMES WITHOUT NULL-CHAINS 

For a Boolean function f, let L (f) denote the minimum size 

of a contact scheme without null-chains computing f . 

The first non-trivial lower bound for ~-schemes without 

null-chains has been proved by A.K. Pulatov in [8] and improved to 
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contact schemes by S.E. Kuznetsov in [6]. Somewhat later similar 

results have been obtained for one-time-only branching programs - a 

special type of contact sheme without null-chains - by now a long 

list of authors (see, e.g. references in [3] or [12]). 

Associate with a Boolean vector ~_~. =('-'41 '°'''-~n ) the set of 

contacts N~. = {x I ,... ,Xn } c ~ where x = x and x = ~x , 

and put D~ = { N : e .=_ f-i(1) }. Let 
f a 

d(f) : 1 + min { r : ~i is (2,n-r)-disjoint } 
f 

Notice that d(f) is actually the minimal Hamming distance between 

any two vectors in f-i(1) . 

Theorem i (Pulatov [8], Kuznetsov [6]): For any Boolean function f 

d(f)/n 

The theorem enables to obtain non-trivial lower bounds for 

functions f with d(f) large enough with respect to !~fl 

Recently, S.V. Zdobnov has announced in [13] the following 

improvement of this result. 

Theorem ~ (Zdobnov [13]): If d(f) k 3 then 

(~/2-E)logn 2-n 
L (f) ~ ]~!fl.n 

The theorem already yields super-polynomial lower bounds for 

some functions f with small d(f), including the characteristic 

function of the Hamming code. Unfortunately, this argument (as well 

as Theorem I) does not work for functions f with small l~fl 

Example 1 : Let m ~ 2 be a prime power and let 1 ~ s ~ m/2. The 

2 
Galois function is the following function ~m,s(X) of n=m 

Boolean variables X = { x. : i,j E GF(m) } : 
1,j 

~m,s(X) : I iff there exists a polynomial c of degree at most s-I 

over the Galois field GF(m) such that 

Vi,jeGF(m) 

Since d(~) ~ 2m, we have that 

x. = 1 iff j = c(i). 
l,j 

d(S)/n 2 
!~! I < m = n and log IN I : slogm :e(n), S - S 

and therefore, both arguments fail for ~, whereas it is known 

s 
[2]) that L (Sm,s) ~ m . 

(see 
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So, even for schemes without null-chains new arguments are 

desirable. General technique for schemes with restrictions on the 

topology of null-chains have been proposed in [2,3]. Let us briefly 

describe a modification of this argument . 

3. SCHEMES WITH FREE SUBCHAIN$ 

Let ~{S) be the set of all subchains in a contact scheme S 

For AE~(S), let ext(A) = { C~(S) : AUC is a chain in S } be the 

set of all extentions of A in S, and let sp(S) = { B~(S) : ext(B) = 

ext(A) } be the "span" of A in S. For families of sets ~ and ~, set 

~T®~ = {AUB : A~ and Be~ }. A subehain A ~ ~(S) is called to be 

free in S if it produces no new null-chain, i.e. if 

V C ~ ext(A) : K C ~ 0 ~ KAL!C ~ 0 . 

A collection of subchains ~ ~ ~(S) is a separator of S if 

S~-j : ,4~U S A~ and igl ~ size(S). 

where S A = sp(A) @ ext(J) (and hence, S@ is the set of all chains 

S). A separator ~ is an [a,b]-separator if a ! ]A+I ~ b for all in 

A6~. (Throughout, ,4 + stands for the set of all unnegated variables 

(not edges [) in a subchain i ). Thus, any cut defines an obvious 

[0,1]-separator. Moreover, any scheme has at least one 

[a,b]-separator for any 0 ~ a ~ b ~ min{[A+l : A~S~ }. 

We call a contact scheme S to be [a,b]-separable if there exists 

an [a,b]-separator ~ of S such that all A~ are free in S Let 

L b(f) denote the minimum size of an [a,b]-separable contact 
a~ 

scheme computing f . It is clear that for all a ~ b 

L (f) ~ La,b(f). 

Let ~f(m) ~ ~f be the m-th slice of f ~ i.e ~f(m) = { Ae~f : 

i~+i = m } A function f is called (k,r) -dis.~oint if the following i'" i " m 

two conditions are fulfilled : 
+ 

(i) # { A : A ~ ~ (m)) S k-I , 
r f 

~ but A ~ ~ (m) then IA+i ~ 2m . (ii) if A 
f ~'f 

Theorem 3 : If f is (k,r) -disjoint for some k~2 and m=2r=0~ 
m 

then 

L (f) > I (m)] "(k-l)-2 
r,m-r - ~!f 

Proof : Let S be an [r,m-r]-separable scheme computing f, and let ~ 

~(S) be the corresponding free separator of S Notation: for a 
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set of chains ~' we will write I !~.I 

A~z~ 

where 

So i t  r e m a i n s  t o  p r o v e  t h a t  :5 ~ ( k - l )  2 . T a k e  A~_d . T h e n  r_<[~t÷t < 

m-r and ,4 is free in S. Consider Ext = { cC =~ ext(A) : i lsp(A)®{C}] [ 

>- 1 }. Ext is the set of all the extentions of A that are used to 

compute the m-th slice of f . Other extentions of A are of no 

interest for us since 

I IsAll  = I IsP(At®Extl l  

Let :[} == ([A}®Ext) (l }.If(m) . Then ]:[)[ ~ k-1 since I(~{[' + : ['~$_) }[ 

-> [A+I ~ r . The crucial observation is that -~ = {A}®Ext This 

follows from (ii) because if B = AUC with CeExt, then K B ~ 0 and 

IB+ t + I" I -< ]A+l + I C ] < (m-r)+m ~ 2m . Hence, Ext may be partitioned 

into 13D 1 _< k-i pairwise disjoint subsets Ext D = { C~Ext : AUg = D 

}, ~_:~ . By ~i) ~e have, for each ~_~, that l lsp~Al®Extol 1 ~ k-~ 

because 

~ { c  + : c.-_-Ext~ }[  > ] o + \ ~ +  I > m - ( m - r )  = r 

instead of ]~ ~ ~f(m)[ . Then 

= ~ 6 size(S) , 

Therefore, ~5 S I~I (k-l) ~ (k-l) 2 and the theorem follows. I 

The class of schemes without null-chains is not closed under 

the negation in a sense that L (~f) ~ L (f) for some f . Let, for 

2 
example, p be the function of n = m Boolean variables 

n 

representing the elements of an mxm-matrix M, whose value is 1 iff 
+ 

each row and each column of M has exactly one I. Then I~ i 'p I = m! 

a n d ,  t h e r e f o r e ,  P n  i s  ( k , r ) m - d i s j o i n t  f o r  r = m / 2  a n d  k = r ! .  By  

T h e o r e m  3, L (Dn)  ~ e x p ( f l ( ~ n ) ) ,  w h e r e a s  one  may e a s i l y  v e r i f y  t h a t  

L ( ~  = 0 ( n 3 / 2 ) .  
n 

On the other hand, Theorem 3 enables one to construct an 

explicit functions f such that both f and ~f are hard to compute by 

schemes without null-chains.(Notice that Theorems I and 2 both fail 

in this situation, because d(~f) = 1 for any function f with 

d(f) ~ 3 ). 

2 
Example 2 : Define the function ~ of n = m variables by : 

m,s 
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• (e) otherwise, 

where f stands for the dual of f, i.e. f = mf(~xl''''~Xn)" 

Since f is (2,s) -disjoint and self-dual (i.e. [ = ~* 
m 

Theorem 3 i m m e d i a t e l y  y i e l d s  t h e  f o l l o w i n g  l o w e r  b o u n d ,  

S 
Corollary I : min { Ls,m_s ([), Ls,m_s (~[) . ~ m 

Specifically, both f and ~f are hard to compute if 

are forbidden 

, 

null-chains 

4. SCHEMES WITH LONG NULL-CHAIN9 

As we h a v e  s e e n  a b o v e ,  t h e r e  i s  an e x p o n e n t i a l  gap  b e t w e e n  t h e  

complexity of schemes with and without null-chains. This means that 

although the usedge of null-chains and one-cuts has no influence on 

the function computed, such chains and cuts may lead to great 

reduction of size. 

In this section we will show that null-chains and one-cuts do 

not help in both of the following situations: 

(i) if we restrict the number of null-chains and one-cuts in a 

scheme, or 

(ii) if we do not use "very short" null-chains or one-cuts. 

Given a contact scheme S, let m(S) [m±(S)] denote the number 

of all minimal subsets A + ~ ~+ where A ranges over all null-chains 

lone-cuts} in S . (Recall that A + is the set of unnegated 

,, T± min I A+I v a r i a b l e s  i n  ~ ) .  L e t  ~ (S)  [~ ( S ) ]  s t a n d  f o r  w h e r e  

A r a n g e s  o v e r  a l l  n u l l - c h a i n s  [ o n e - c u t s }  i n  S Thus  f o r  a n y  

c o n t a c t  s c h e m e  S , we h a v e  t h a t  

0 ~ ~(S)  ~ n a n d  0 ~ ~ ( S )  ~ f ~ l "  

D e f i n e  
g 

L p , k ( f )  = min~  ~ s i z e ( S )  : S c o m p u t e s  f a n d  ~ { S )  

± 
In case of one-cuts we will write L instead of L .Notice that 

L k(f) = L(f), the unrestricted contact scheme complexity of f, if 
fn ~ 

either ,~ ~ = n or ,k < n but ~ ,, = If! [J 

a n d  i : (S)  ~ k } .  
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We will estimate these complexity functionals in terms of the 

dispersion of minterms and maxterms. A minterm [maxterm] of a 

Boolean function f is a minimal set, of contacts A c '!~ such that 

f ~ & y ~ 0 [ f ~ V y ~ i ]. 
yea y~_A 

Define ,V~l;'l ( f ) , M~X(f) as the set of minterms, respectively 

maxterms of f . Let 1~(f), ..~(f) denote the minimum cardinality of a 

set in ~l~(f), respectively in ,~e':<(f). 

For integers t,r > 1 and real numbers p , N  .=- [0,i], let 

Hf(t,r,p,~) denote the following number: 

{ [ r 
• f)]tp-flog l 

gf = t -r/2 rain Af(r/2) t i- ~ - #0~.~'Jr~(f)p I'( ~ j, 

where 

Af(i) = max [#0~ / #i.>~ ] 

and .~ ranges over all (t,r)-dispersed subfamilies .~ _c ~_~A(f) 

Theorem 4 : For any monotone Boolean function f 

bound holds: 

where 

L . (f) ~ max Hf(t,r,p,N) 

..... p~[O,l) 

= min ~p ,np/)., . 

,'~(f The same bound holds also for L ..~ ) with 

replaced by h*~x(f) and ~(f) 

the following 

~n(f) and ?(f) 

Proof (sketch): Let S be a minimal contact scheme computing f 

with m(S) ~ ~ and ~.(S) ~ k Replace in S all the negated 

contacts by constant ] (or by 0 in ease of one-cuts). Let f+ be 
+ 

the monotone function computed by the resulting scheme S Then 

size(S) "~ size(S + f+ = ) and ~ f . From ([4], Theorem 4) it follows 

that 
size(S + ) ~ m a x  H +(t,r,p,N ), 

f + 
p~[0,1) 

where 

+ t ~" ] L " J 

and A ~ {Xl'''''Xn} is a random monomial in which each variable 

x. appears independently and with equal probability p~[0,1). 
1 
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Let g be the disjunction of all the monomials in 

t~.in(f+)\,~}~in(f). Then f+ = fVg , r(g) ~ ~(S) and #0~}~[A(g) -< ~(S)° 

So, [ ] r 
< P r o b  i K. < f j + P r o b  I K. -< g ] .  

~+ - L " '  J L " '  J 

It remains to notice that for any monotone f, we have that 

r I ...... p:(/) 
Prob[ K~ ~ f i ~ #0 ~'~(f) 

L ~' 3 

and, by Chebyshev's inequality, 

Prob K A ~ f -< Probj I AI ->~( f~ ~ np/r(f~. | 
L " J L 

. . . .  oono one o n: 

variables representing the edges of an undirected graph G, which is 

1 iff G contains an s-clique where s = [(m/in m) 2/3] Then 

#i~z-n(fn )''~ = .s-i[m-i] , and hence ~.iT~([ )iSn (t,r)-dispersed for any 

t_< rm/3 ] and r~s. 

Corollary 2, : If "~" Q(n l-I/s ) ,~ = or /-2 ~ (l-g)n k/s, E>0, then 

L~,} (f n) ~ exp(~.(nl/6-O(1)). 

F sl I -2/s Pr-oof: Take r = , t = r4rln m and p = m Then 

2 
!:is s #0~.'-in(f)p" < p < m , and by Theorem 4, the bound holds for 

\ 
any .u,k such that rain { pp , np/~ } _< const < 1 I 

Example 4 : Define 

+ 

~n = & V xi,~(i) 
~ ieGF(m) 

where ~ is the set of all polynomials over GF(m) of degree at most 

# i ~x ( 9 n s - i s-I , and s = [in m] As ..... +) = m , the family 
+ 

# ~dx(g ) is (t,r)-dispersed for any t S m/3 and r S s . 
1 n 

Corollary 3: If k = ~2(n) or log2.u < O(k) then 

L ~ {2(logn) 
> n 

' " ~n 

- -lln2t) Pr-oof: Take t = F,4m ] , r = Is/2] and p = (t I/s , and 
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apply Theorem 4. I 

+ 
This bound is almost tight because 9n is computable by 

trivial contact scheme S with m±(S) = 0 and size(St ~ n l°gn 

Theorem 4 yieds also the following criterion for the monotone 

scheme complexity L+(f). For a random monomial A ~ ~+, put 

PA(r) = max( Prob [ A ~ B ] : B ~ ~+ and IBI = r } . 

We say A islocally independent if for any two monomials BI,B 2 ~ ~+, 

the events { A ~ B i j A ~ BI(]B 2 } are independent. We say f is 

(t,r)-good if there exists a locally independent monomial .4 such that 

-I 
Prob [ K A ~ f ] ~ const < 1 and PA(r) >> t in if(r). 

Critel-ion: If f is (t,r)-good and ~i~i(f) is (t,r)-dispersed 

-i 
for some t and r such that In t << r in Af(r), then 

L+(f) ~ Af(r)t -r 

5 ,SHEME$ WITH NECEE;E;ARY MINTERH9 

For a contact scheme S, let f denote the Boolean function it 
S 

computes, and let ~ denote the set of all monomials corresponding 
S 

to non-null chains of S. A minterm A 6 ~[L~n(f) is necessary if 

there exists a vector ~{0,i} n with KA(~) : I but KB(~ ) = 0 

for all other minterms B ~ ?)~Lr~(f)-{A}. (These minterms belong 

necessarily to each shortest DNF of f ). Define ~ed(f) as the set 

of all necessary minterms of f . 

A contact scheme S is called to be a 6-scheme (6 ~ [0,I]) if 

i,n n neC(fs)l > 6 l~eC(fs~t 
I~ S - I' 

i.e. if S realizes at least G fraction of all the necessary 

minterms of f . A scheme S is 0]-scheme if 
S 

neC(fs) ~ ~S ~ ~n(fs)" 

Note that any scheme is G-scheme for some G~[0,1]. An ~0-scheme is a 

special type of G-scheme for 6 = 1 . 

For G ~ [0,1]uJ{os}, let LG(f) denote the minimum size of a 

G-scheme computing f . Thus~ Lo(f) is the unrestricted contact 
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scheme complexity of f . 

The functional L~(f) has been studied for a long time. The 

first non-trivial result in this direction has been obtained by E. 

A. Okol'nishnikova in [7], where a sequence of functions 

fn(Xl,...,x ) is given such that 
n 

Ll(fn ) ~ 2n but L0~(fn) ~ exp(~(nl/4)) 

The next major development was made by A. A. Razborov [9,10] and A. 

E. Andreev [i] where super-polynomial lower bounds for L+(f), the 
monotone scheme complexity of f, have been proved One may 

transfere these bounds also to Ll(f) , because any minimal 1-scheme 

for monotone f has no null-chains, and therefore Ll(f ) = L+(f) 

However, we have seen before that the presence of null-chains 
may substantially reduce the size of schemes (see also 
[2,3,6,8-11]). Thus we need a technique to prove lower bounds for 
LA(f) with 6 < I, as well as for Ll(f) and non-monotone f (in 

these cases null-chains may be used in a non-trivial manner to 
reduce the size of schemes). 

We say f is (t,r)~-dispersed if each sub-family ~ ~ ~ee(f) 

with I~I ~ ~ F~ec(f) I is a t,r)-dispersed family. 

Using an extention of Andreev-Razborov argument [1,9] to 

non-monotone circuits, given in [4,5]~ one may prove the following 

lower bound. Let Hf stand for Hf with Dl[n(f) replaced by 

nec(f) 

Theorem ~: For any ~ ~ [0,i] and any (t,r)6-dispersed Boolean 

function f , we have that 

L6(f) ~ ~ min Hf(t,r,p,0). 
p~[O,l) 

Example 5: Let us consider the following non-monotone version of 
+ 

~n (see Example 4): 

~n = V K where K = & (x & 
~ . . . .  i~GF(m) i,~(i) ~xi,~(i)el) 

Then neC(~n) = { K : c~ 6 H } and ~0n 

any t S 6m/3 and r < s ([5]). Taking t,r and p~[0,1) as in 

Corollary 3, we obtain from Theorem 5 the following lower bound. 

is {t,r)6-dispersed for 
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-~(logn) 
Cor o!!ary ~ :For any 6 c n , and hence, for any 

u~(0,1], we have that 
LS(~ n) ~ n ~(l°gn) 

constant 

Thus, for an arbitrary small constant 6 ~ (0,I], the 6-scheme size 

o f  ~) i s  a l m o s t  t h e  same a s  t h e  s i z e  I iqeC(~ ) i  = { ) ( n l ° g n )  
" n  n 

s h o r t e s t  DNF n e c ( ~  0 ) ,  a n d  s o ,  i f  ~ ~ c o n s t > O  t h e n ,  f o r  
n 

Boolean functions, null-chains do not help at all. 

of its 

some 
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