

S. P. Yukna, On an entropic method for obtaining lower bounds on the complexity of Boolean functions, *Dokl. Akad. Nauk SSSR*, 1988, Volume 298, Number 3, 556–559

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 193.219.95.139

February 14, 2023, 15:56:06

ЛИТЕРАТУРА

1. Bestvina M. Characterizing k-dimensional universal Menger compacta. Dissertation. Knoxville. Univ. Tennessee, 1984. 2. Engelking R. Dimension Theory. Warszawa: PWN, 1978. 3. Chapman T.A. — Fund. Math., 1972, vol. 76, p. 181. 4. Chapman T.A. — Ibid., 1972, vol. 76, p. 261. 5. Geoghegan R., Summerhill R. — Trans. Amer. Math. Soc., 1973, vol. 179, p. 281. 6. Borsuk K. Theory of Shape. Warszawa: PWN, 1975. 7. Lacher R.C. — Bull. Amer. Math. Soc., 1977, vol. 83, p. 495.

УЛК 519.714

МАТЕМАТИКА

С.П. ЮКНА

ОБ ОДНОМ ЭНТРОПИЙНОМ МЕТОДЕ ПОЛУЧЕНИЯ НИЖНИХ ОЦЕНОК СЛОЖНОСТИ БУЛЕВЫХ ФУНКЦИЙ

(Представлено академиком А.Н. Тихоновым 25 IX 1986)

В силу известного эффекта Шеннона—Лупанова почти все булевы функции (БФ) при реализации обычными логическими схемами такими, как схемы из функциональных элементов (СФЭ), контактные схемы (КС) и др., требуют экспоненциального числа элементов. Тем не менее эффективно (т.е. без привлечения полного перебора всех БФ) строить сложнореализуемые БФ пока не удается: наиболее высокими эффективными нижними оценками (ЭНО) остаются оценки порядка $\Omega\left(n^2\right)$, где n — число переменных БФ, полученные Э.И. Нечипоруком [1] и В.М. Храпченко [2]. На принципиальность такого явления указывают также результаты С.В. Яблонского о неустранимости полного перебора при построении самых сложных БФ посредством так называемых правильных алгоритмов [3]. Поэтому для выяснения природы возникающих трудностей приходится так или иначе ограничивать класс схем.

Первый нетривиальный результат в этом направлении получил Э.И. Нечипорук в [4], где доказаны полиномиальные ЭНО для формул в некоторых специальных базисах. Затем Г.А. Ткачев [5] получил первую экспоненциальную ЭНО Ω (ехр $(n^{1/4})$) для СФЭ ограниченной глубины. А.К. Пулатов [6] и С.Е. Кузнецов [7] получили аналогичные оценки для схем без нулевых цепей. Для монотонных СФЭ*, т.е. СФЭ в базисе {&, \vee , 0, 1}, первую экспоненциальную ЭНО порядка ехр $(n^{1/8-o(1)})$ удалось получить А.Е. Андрееву [9]. Независимо А.А. Разборов [10] для этого класса схем получил ЭНО $n^{c \log_2 n}$, c > 0. Следует заметить, что вводимые ограничения приводят к тому, что реализуемая подсхемой функция слабо зависит или вообще не зависит (как в случае монотонных схем или схем без нулевых цепей) от всей схемы, т.е. к определенной локальности вычислений.

В настоящей заметке предлагается новый метод получения ЭНО для контактных схем. В случае локальных схем он позволяет получать экспоненциальные ЭНО, рост которых достигает $n^{c\sqrt{n}}$, c>0. Метод является подходящей конкретизацией

^{*}Известно [8], что сложность самых сложных БФ в этом классе схем асимптотически равна $\sqrt{2/\pi} \cdot 2^n \cdot n^{-3/2}$.

(на случай булевых функций) предложенного ранее автором [11] более общего подхода к проблеме получения ЭНО сложности вычислений, основанного на введенном Ю.И. Яновым [12] понятии свертки алгоритмов. Общая идея метода достаточно проста. При заданном классе схем 🖫 с мерой их сложности μ задача состоит в том, чтобы без привлечения понятия реализуемости определить нижнюю оценку для $L_{\mu}(f) = \min\{\mu(S): S \text{ реализует } f\}$. Каждую схему S отождествляем с некоторой совокупностью S^* ее "подсхем" и вводим подходящее отношение φ "подобия" таких подсхем. Под φ -э н т р о п и е й $H^{\varphi}(S)$ схемы S понимаем минимальное число покрывающих S^* φ -интервалов, т.е. множеств $A \subseteq S^*$ таких, что для любых $a, b \in A$ $a \varphi b$ или $b \varphi a$. Второй шаг состоит в построении сохраняющих энтропию вложений схем. При этом считаем, что схема S_1 (φ , ψ)-эпиморфна схеме S_2 , если существует такая (возможно, частичная) сюрьекция $\nu\colon S_1^*\to S_2^*$, что для любых $a,b\in \nu^{-1}(S_2^*)$ $a\varphi b$ влечет $\nu\left(a\right)\psi\nu\left(b\right)$. Тогда $H^{\varphi}(S_{1})\geqslant H^{\psi}(S_{2})$ (хотя возможно, что $\mu\left(S_{1}\right)$ $<\mu(S_2)$). Для получения требуемой оценки выделяем некоторые промежуточные классы (более ограниченных) схем $\mathfrak{A} = \mathfrak{A}_0 \supset \mathfrak{A}_1 \supset \ldots \supset \mathfrak{A}_k$, где $\mathfrak{A}_k -$ класс исходных заданий БФ, и определяем отношения их подобия $\varphi_0, \varphi_1, \ldots, \varphi_k$ так, чтобы каждая реализующая f схема из \mathfrak{A}_i была $(\varphi_i, \varphi_{i+1})$ -эпиморфной некоторой реализующей f схеме из \mathfrak{A}_{i+1} . Если при этом φ_0 такое, что $\hat{H}^{\varphi_0} \leqslant \mu$, то $L_{\mu}(f) \geqslant H^{\varphi_k}(f)$.

Используемые далее без пояснений понятия можно найти в [13]. Для КС S через S^v (через S_v) обозначаем дизъюнкцию всех ненулевых цепей из входа схемы S в вершину v (соответственно из v в выход S). Окрестность вершины v — это множество переменных x таких, что для некоторых цепей $K_0 \in S_v$, K_1 , $K_2 \in S^v$ и $\alpha \in \{0,1\}$ имеет место: $x^\alpha \in K_0$, $\overline{x}^\alpha \in K_1$ и $\overline{x}^\alpha \notin K_2$. Схему, окрестность любой вершины которой содержит не более чем $\lambda \geqslant 0$ переменных, называем λ -л о κ а л ьно й. Любая КС, реализующая БФ от n переменных, λ -локальна при некотором $0 \leqslant \lambda \leqslant n$. Примерами 0-локальных схем служат монотонные КС (т.е. КС из замыкающих контактов) и схемы без нулевых цепей. Помимо обычных КС, представляют также интерес детерминированные схемы (ДКС), т.е. схемы, любой двоичный вектор в которых реализует не более одной ветви. Частным случаем таких схем являются бинарные программы (см., например, [14, 15]). Пусть $L_\lambda(f)$ — минимальное число контактов, достаточное для реализации БФ f λ -локальной КС. В случае ДКС меру L_λ будем обозначать l_λ . Известно [14], что $l_n \leqslant L_n^{O(1)}$.

$$v\psi u \iff (T^{v} - T^{u}) \cdot T_{v} = (T^{u} - T^{v}) \cdot T_{u},$$

$$v\theta u \iff T_{v} \{T^{v} - T^{u}\} \cap T_{u} \{T^{u} - T^{v}\} \neq \phi.$$

X э м м и н г о в о й называем любую БФ f такую, что любые два вектора из $f^{-1}(1)$ различаются не менее чем в двух координатах. Путем построения подходящих эпиморфных вложений схем доказывается

Т е о р е м а 1. Для любой булевой функции f выполнены неравенства $L_{\lambda}(f) \geqslant H^{\varphi}(f) \cdot 3^{-\lambda}$ и $l_{\lambda}(f) \geqslant h^{\varphi}(f) \cdot 3^{-\lambda}$, где $\varphi = \psi$, если f хэммингова, и $\varphi = \theta$ в противном случае.

Поскольку энтропия функций определяется энтропией их бесповторных КД, то в ряде случаев она оценивается достаточно просто. Сделаем это для трех классов булевых функций. Пусть $X = \{x_1, \ldots, x_n\}$ и |A| — число элементов в множестве A. Отображение $\rho: X \to X \cup \{0, 1\}$ такое, что $\forall x \in X (\rho(x) \notin \{0, 1\} \Rightarrow \rho(x) = x)$ называем подстановкой; множество $\hat{\rho} = \rho^{-1}(0) \cup \rho^{-1}(1)$ – ее сигнатурой, а число $|\hat{\rho}|$ – ее рангом. Для БФ f(X) полагаем $f^{\rho} = f(\rho(x_1), \dots, \rho(x_n))$.

Функцию f называем (слабо) m-н е о д н о р о д н о й, если для любых двух различных подстановок ρ и γ одной и той же сигнатуры ранга m выполнено: (либо $\hat{f}^{\,
ho}=f^{\,\gamma}\equiv 0$, либо) $f^{\,
ho}
eq f^{\,\gamma}$. Класс таких функций достаточно богат: при любом $m \le n - (1 + \epsilon) \log_2 n$, $\epsilon > 0$, почти все БФ от n переменных m-неоднородны. Пусть $Q_m(f)$ — минимальное число k подстановок ρ_1,\ldots,ρ_k ранга m, достаточное для представления БФ f в виде $f = K_{\rho_1} \cdot f^{\rho_1} \vee \ldots \vee K_{\rho_k} \cdot f^{\rho_k}$, где $K_{\rho} = \{x^{\rho(x)} : x \in \hat{\rho}\}$. Теорема 2. Если f слабо 2m-неоднородна, то $h^{\theta}(f) \geqslant Q_m(f)$. Если npu

этом f m-неоднородна, то $h^{\theta}(f) \geqslant 2^{m}$.

Функцию f(X) называем m-у с т о й ч и в о й, если для любой $x \in X$ и любого $Y \subseteq X - \{x\}$, $|Y| \le m$, существует подстановка ρ сигнатуры $X - Y - \{x\}$ такая, что функция $f^{\rho}(x, Y)$ зависит только от переменной x, т.е. либо $f^{\rho}(x, Y) = x$, либо $f^{\rho}(x, Y) = \overline{x}$.

T е о р е м а 3. Если f 2m-устойчива, то $h^{\theta}(f) \ge 2^{m}$.

Пусть $|\tilde{\alpha}|$ — число единиц в $\tilde{\alpha} \in \{0, 1\}^n$. Функцию f называем (k, r) -р а в н ом е р н о й, если для всех $\widetilde{\alpha}$, $\widetilde{\beta}$ из $f^{-1}(1)$ выполнено $|\widetilde{\alpha}| = |\widetilde{\beta}| \ge 2r$ и любые k векторов в f^{-1} (1) имеют не более чем r общих единичных координат; k-р а в н о м е рн о й, если она (k,r)-равномерна при некотором $r \ge 1$. Пусть $||f|| = |f^{-1}(1)|$.

Теорема 4. Если f k-равномерна, $k \ge 2$, то $h^{\psi}(f) \ge \|f\| \cdot (k-1)^{-2}$ u $H^{\psi}(f) \ge \|f\| \cdot (k-1)^{-3}$.

Опираясь на полученные результаты, можно достаточно просто получать экспоненциальные ЭНО для локальных схем. При этом в ряде случаев получаются более высокие нижние оценки (и в более широких классах схем), чем оценки, даваемые наиболее сильными из известных специальными методами. Здесь приведем лишь некоторые из них.

Богатый класс примеров порождается задачей нахождения трансверсалей (0,1)-матриц. Пусть $q \ge 2$ и $\overline{q} = \{0,1,\ldots,q-1\}$. Пусть W_q — семейство всех одноместных функций $\sigma: \overline{q} \to \overline{q}$. Трансверсаль (0,1)-матрицы $X = \{x_{i,j}: i,j \in \overline{q}\}$ — это функция $\sigma \in W_q$ такая, что $x_{i,\sigma(i)} = 1$ для всех $i \in \overline{q}$. Пусть $\mathrm{Tr}(X)$ — множество всех трансверсалей матрицы X. Для класса $F\subseteq W_q$ через $t_F(X)$ обозначим число трансверсалей X в F, т.е. $t_F(X)=|F\cap \mathrm{Tr}(X)|$. С любым классом $F\subseteq W_q$ связываем две булевы функции $F^0(X)$ и $F^1(X)$ (от $n=q^2$ переменных), полагая: $F^0(X)=1 \Leftrightarrow t_F(X)>0$ и $F^1(X)\equiv t_F(X)$ (mod 2). Пусть $\operatorname{gr} \sigma$ -график функции σ . Класс F называем m-п л о т н ы м, если для любого $a \in \overline{q}^2$ и любого $A \subseteq \overline{q}^2 - \{a\}$, $|A| \le m$, имеется $\sigma_0 \in F$ такая, что $a \in \operatorname{gr} \sigma_0$, $A \cap \operatorname{gr} \sigma_0 = \phi$ и $\operatorname{gr} \sigma - (A \cup \operatorname{gr} \sigma_0) \ne \phi$ для любой $\sigma \in F - \{\sigma_0\}$ такой, что $a \notin \operatorname{gr} \sigma$. Можно показать, что m-плотность класса $F \subseteq W_q$ влечет m-устойчивость обеих $\operatorname{B}\Phi$ F^0 и F^1 . Отсюда

С ледствие 1. Для любого т-плотного класса $F\subseteq W_q$ и $\alpha\in\{0,1\}$ выполнено неравенство $l_\lambda(F^\alpha)\geqslant 2^{m/2}\cdot 3^{-\lambda}.$ Пусть $R=\{\sigma\in W_q\colon \forall\,i\in\overline{q}\;(\sigma^{-1}(i)\neq\phi\Rightarrow|\sigma^{-1}(i)|\geqslant 2)\}$. Класс R т-плотен при любом $m \leq q/2$. Отсюда

С ледствие 2. Пусть $\lambda \leq \sqrt{n}/20$ и $\alpha \in \{0, 1\}$. Тогда $l_{\lambda}(R^{\alpha}) \geq 2^{\sqrt{n}/5}$.

Пусть $B\subseteq W_q$ — класс всех биекций и P — класс всех полиномов степени не выше d=[q/2] над полем Галуа GF(q) порядка q. Нетрудно видеть, что эти классы m-плотны при любом $m\leqslant d-2$. Поэтому для порождаемых ими БФ P^α и B^α , $\alpha\in\{0,1\}$, справедливы аналогичные оценки. Функции P^0 и B^0 рассматривались в

[9, 10], где для них в классе монотонных СФЭ доказаны оценки Ω ($\exp(n^{1/8-o~(1)})$) и $\exp(\Omega~(\log_2^2 n))$ соответственно. Что же касается близких к ним функций P^1 и B^1 , то для них эти методы заведомо неприменимы (в силу немонотонности этих функций).

Через f_* обозначим характеристическую функцию множества нижних единиц монотонной БФ f. Ясно, что тогда f_* хэммингова.

Следствие 3. Справедливы оценки

$$l_{\lambda}(B^0_*) \geqslant \binom{\sqrt{n}}{\sqrt{n}/2} \cdot 3^{-\lambda}, \quad L_{\lambda}(P^0_*) \geqslant \sqrt{n}^{\sqrt{n}/2+1} \cdot 3^{-\lambda}.$$

Действительно, в силу теорем 1 и 4 достаточно заметить, что функция P^0_* (2, d)-равномерна, функция B^0_* ((q-r)!, r)-равномерна при любом $1 \le r \le d$, причем $\|B^0_*\| = q!$ и $\|P^0_*\| = q^{d+1}$. Для сравнения приведем очевидную верхнюю оценку: $L_0(P^0_*) \le \sqrt{n}^{\sqrt{n}/2+2}$.

Наконец, пусть f_n^s – монотонная БФ от $\binom{n}{2}$ переменных такая, что f_n^s =

= 1 \iff когда n-вершинный граф, определяемый значениями переменных, содержит полный подграф на s вершинах. Пусть также $g_n = (f_n^s)_*$, где s = n/2. Эти функции рассматривались в [14, 15], где для них получены почти экспоненциальные нижние оценки в классе бесповторных (т. е. 0-локальных) бинарных программ. Наш метод прямо дает аналогичные оценки в более широком классе схем. Пусть $s = [\sqrt{n}], f \in \{f_n^s, g_n\}$ и $\lambda \leqslant n/5$. Тогда $l_\lambda(f) \geqslant 2^{cn}$, где c > 1/5. Действительно,

в силу теорем 1-3 достаточно лишь заметить, что функция g_n слабо $\binom{n/2}{2}$ -неод-

нородна, а f_n^s m-устойчива при любом

$$m \leq \min \left\{ \binom{s}{2}, (n-s)/2 \right\} - 1.$$

Замечание. Известно, что функции B^0 , B^1 , P^0_* и g в классе всех ДКС реализуемы с полиномиальной сложностью. Стало быть, переход от n-локальных схем к $n^{1/2-\epsilon}$ -локальным влечет почти экспоненциальное увеличение их сложности.

В заключение автор приносит глубокую благодарность Ю.И. Янову за внимание к работе и полезные обсуждения.

Институт математики и кибернетики Академии наук ЛитССР Вильнюс Поступило 28 V 1986

ЛИТЕРАТУРА

1. Нечипорук Э.И. — ДАН, 1966, т. 169, № 4, с. 765—767. 2. Храпченко В.М. — Матем. заметки, 1971, т. 10, № 1, с. 83—92. 3. Яблонский С.В. В сб.: Проблемы кибернетики. М., 1959, вып. 2, с. 75—121. 4. Нечипорук Э.И. Там же, 1970, вып. 23, с. 291—293. 5. Ткачев Г.А. В сб.: Комбинаторно-алгебраические методы в прикладной математике. Горький, 1980, с. 161—207. 6. Пулатов А.К. Там же, 1979, с. 81—95. 7. Кузнецов С.Е. — Изв. вузов. Математика, 1981, № 5, с. 56—63. 8. Андреев А.Е. — Вестн. МГУ. Математика, 1985, № 4, с. 83—87. 9. Андреев А.Е. — ДАН, 1985, т. 282, № 5, с. 1033—1037. 10. Разборов А.А. — ДАН, 1985, т. 281, № 4, с. 798—801. 11. Jukna S. — Cool. Math. Soc. J. Bolyai, 1984, vol. 44, p. 251—270. 12. Янов Ю.И. — ДАН, 1975, т. 224, № 2, с. 301—304. 13. Нигматуллин Р.Г. Сложность булевых функций. Казань: Изд-во Казан. ун-та, 1983. 208 с. 14. Ридак Р., Žak S. — Preprint, Univ. Prague, 1983. 30 р. 15. Wegener I. — Intern. Beriche, Univ. Frankfurt, 1985, № 5, 32 S.