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ON COMMUNICATION GAMES WITH MORE
THAN TWO PLAYERS

STASYs JUKNA! 2

Abstract. A k-player game is a communication game between k parties, each
of which has an access to a half of input bits. 2-player games were introduced
by Yao (1981) and are known as best-partition two-party games. We first de-
scribe a lower bounds argument for this case, based on computing the term-rank
and cliqgue-number of communication matrices. Using this argument we exhibit
an explicit function on n variables such that any 2-players protocol for it re-
quires Q(y/n) bits of communication, whereas 3 players need to communicate
only constant number of bits. We then consider another restriction: we allow
any number of players but require that every singular input bit is accessable to
< k of these players. We prove that, for small values of k£, no such protocol can
recognize codewords of some linear codes of length n using less than Q(y/n) bits

of communication.

1. Introduction

A communication game is specified by a family (called the support of the game)
F ={S1,...,5:} of subsets of [n] = {1,...,n}. To avoid the trivial cases we suppose
that S; Z S; and |S;| <n —1for all 1 < # j <{. There are ¢ players - one for each
set in F - who wish to evaluate a Boolean function f(z1,...,z,). Each player knows
the function f and has unlimited computational power. The only restriction is that
the :-th player can see only arguments z; with 7 € S;. They share a blackbord, viewed
by all players, where they can exchange messages. The objective is to minimize the

number of bits written on the board. The game proceeds in rounds. In each round

'Research supported by DFG-project Me 1077/5-2.
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some player writes a string of bits on the board. The last bit written is the outcome
of the game and should be f(zy,...,z,). The protocol specifies which player does the
writing and what is written in each round. The cost is the number of bits written
on the board for the worst case input. The communication complexity of f w.r.t.
F, denoted ccx(f), is the minimal cost of an F-protocol that computes f. Different

families F define different games.

1. Fized-partition game of Abelson (1978) and Yao (11979) when F consists of one

fized partition of [n] into two equal parts.

2. Best-partition game of Yao (1981) when F can be any partition of [n] into two

equal parts. Only few lower bounds are known for this game.

3. Card game of Edmonds & Impagliazzio (1994) when F contains only sets S C [n]
that i € S <= i+ % ¢ S. Impressing upper bound ccz(f) < (logn)® was
obtained by Pudlak & Sgal (1995) for the Sequence Equality function. (This
function is hard for the fixed-partition model and is easy in the best-partition

model). No non-trivial lower bounds are known for card games.

4. k-Party game of Chandra, Furst & Lipton (1983). The support F of this game
is defined as follows: fix a partition of [r] into k& mutually disjoint blocks
By, ..., By, each of cardinality n/k, and let F = {Si,...,S;} where S; =
BiU...UB;—1 UB;41 U...Bg. Thus, the i-th player can see all the input bits
exept those in the block B;. No non-trivial lower bounds are known here for
k > logn. Best remains an {2 (n/ck) lower bound of Babai, Nissan & Szegedy
(1992).

In this paper we consider the following two types of games

o k-player game when F consists of k subsets of [n], each of cardinality %. (Thus,
we get k-player game from the card game if we relax the condition ¢ € § <=
i+ 5 &S5 to|S] = 7.) For k =2 this is exactly the best-partition game of Yao
(1981).

o degree-k game when deg(F) < k where deg(F) = max {|F'| : F' CF, NF' £ 0}
1s the maximum number of sets in F containing a common point. Put otherwise,

the only restriction is that every input bit is accessable to at most k players.

In Section 2 we describe a lower bounds argument for the 2-players games, i.e. for

the case of best-partition two-party games. The argument is very simple and is
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based on the term-rank and cligue-number of communication matrices. In Section 3
we establish an exponential gap in communication complexity between 2-player and
3-player games: we exhibit an explicit function on n variables such that any 2-players
protocol for it requires 2(y/n) bits of communication, whereas 3 players, each seeing
only half of inputs, need to communicate only constant number of bits. In Section 4
we prove that bounded-degree protocol cannot recognize codewords of some linear

codes of length n using less than Q(/n) bits of communication.

2. Lower bounds for 2-player games

In this section we consider 2-players game. As pointed above, this is exactly the
best-partition model introduced by Yao (1981) where he proved a (n) lower bound
for graph isomorphism * and rised the problem of proving lower bounds for other
functions, noting that this "seems to be a difficult problem in general”. Ja'Ja’ (1984)
proved 6(y/nlogn) bound for the function which outputs all the connected compo-
nents in the input graph. His methods do not seem to work for decision problems. Pa-
padimitriou & Sipser (1984) proved that (n) bits are necessary to recognize triangle-
free graphs. This was the first result showing that in the best-partition model (unlike
the fixed-partition case) non-determinism has an exponential power. Hajnal, Maass
& Turdn (1988) proved the bound Q(y/nlogn) for connectivity, s-t—connectivity and
bipartitness properties of graphs. Krause, Meinel & Waack (1992) have proved the
bound Q(y/n) for the s-i—connectivity restricted to degree-1 graphs.

All these proofs follow one general schema: they reduce the lower bounds problem for
the best partition model to that in the fixed partition model where the lower bound
is easy. The reduction step in all these proofs requires non-trivial combinatorics:
the Ramsey like combinatorial lemma about bicolored graphs in (Papadimitriou &
Sipser 1984), the Regularity Lemma of Szemeredi in (Hajnal et al. 1986) and the
Ramsey-type lemma about triangles in (Krause et al. 1992). Using these facts, the
desired lower bounds are obtained via reduction to the set disjointness or to sequence

equality problems.
Bellow we describe a lower bounds argument?* which may be of independent interest.

3Throughout for graph problems, n is the number of edges, not vertices
“This argument was actually used in (Jukna 1987) to get lower bounds for alteranting switching

networks.
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Instead of reducing the lower bounds problem to the fixed-partition case (as it is
done in all lower bound proofs mentioned above), we reduce the problem to the
computation of two combinatorial characteristics — term rank and clique number —
of (0,1)-matrices. We demonstrate the method by lower bounds on several explicit
functions.

For a (0, 1) matrix A, let k(A) denote the minimal number of (not necessarily disjoint)

all-1 submatrices of A covering all 1’s in A. In particular, x(A) > % where

|A| is the number of 1’s in A and w(A) denotes the maximum number of 1’s in
a line (row or column) of A. It is a folklore that for every partition F = {S5,T},
ccrsy > logy k(A F), where Ajr = {f(a,B)} with a € {0,1}% and B € {0,1}7, is

the standard (0,1) matrix, called a communication matriz of f.

We will use another characteristic of (0, 1) matrices to bound their communication
complexity. The term-rank tr(A) of A is the maximum number ¢ such that A contains
t entries equal 1, no two of which lie on the same line (row or column) of A. The clique-
number of A, ¢l(A), is the maximum number k such that A has a k X k-submatrix,
with all entries equal 1. The fraction p(A) = tr(A)/cl(A) is the cover number of A.
Since we clearly need at least tr(A)/cl(A) all-1 submatrices to cover all the 1’s lying
in different lines and defining the term-rank of A, it follows that k(A) > p(A), which
gives the lower bound ccx(f) > logp(Af#). The lower bound becomes even more
tractable if one uses the estimate

Al

A 2 STty

(1)

This estimate follows immediately from the classical result of Konig-Egervary saying
that the term-rank of a (0,1) matrix A is exactly the minimum number of lines

covering all 1’s in A.

The main advantage of using the product w(A) - ¢/(A) instead of w(A)? is that now
we have to consider only square submatrices. Sometimes ¢l/(A) < w(A) (see e.g. the

bound in Section 3), which gives non-trivial lower bounds also in the cases where the

bound |A|/U)(A)2 is trivial.
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3. Three players versus two

In this section we exhibit a Boolean function g, on n variables such that: any 2-
players protocol for f requires Q(y/n) bits, whereas 3 players, each seeing only half

of inputs, can compute g, with only O(1) bits of communication.

Let n = ¢* where ¢ > 2 is a prime power. Let X = {z,,} be the set of k& Boolean
variables labeled by the pairs of elements of the field F,. Consider the Boolean func-
tion g,(X) whose value is 1 if and only if there exists a polynomial p of degree at
most d = ¢/2 — 1 over F, such that for all u,v € F, z,, =1 <= v = p(u). Put
otherwise, given a subset M of points in the plane F, xF,, ¢,(M) = 1 iff M is exactly
the graph of some degree < d polynomial over F,.

THEOREM 1. Three players, each seeing only half of inputs, can compute g, with only
O(1) bits of communication. Any 2-players protocol for g, requires at least \/n/2 bits

of communication.

Upper bound. Recall that inputs for g, are ¢ x ¢ matries X over GF(q). Take
F = {S,T,U} where S (T) consists the first (last) d + 1 columns of X (recall that
d=¢q/2—1), and U consists of d + 1 columns in the middle of X. Thus, we have 3
players, one for each of these sets. Given a (0, 1) matrix X, every player checks if he
can draw exactly one polynomial of degree < d throw all the 1’s in the part he can
see, and responds a one-bit answer. If X was a graph of some polynomial then all
they write "yes’. If not, then at least one of the players must answer “no” since parts

of graphs they see have only one extension (because we consider only polynomials of

degree <d < |S|=|T|=U]). 1T

Lower bound. Take an optimal best-partition protocol for g,, and let F = {S,T'}

be the corresponding partition of inputs. The corresponding communication matrix

1

A = Ar,, has exactly ¢?*' ones. We have only to estimate the cover number p(A).
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Let us first estimate w(A), i.e. the maximum number of 1's in a line of A. Put
otherwise, we must answer the following question. Suppose we have set to constants
a half of entries in the matrix X. In how many ways we can set the remaining n/2
entries of X so that ¢, outputs 1 on the resulting (0, 1) matrix? Since our polynomials
have degree at most d, this number of ways is clearly at most max{0, ¢*'=!} where
t is the number of 1’s in the first assignment. For ¢ = 0 this upper bound on w(A)

becomes trivial, and we need better bound. We will show that actually
g\ 4+
w(G) < (5) . (2)

To prove this, take an arbitrary assignment a € {0,1}” of constants to variables in

S. Set 6(1) = (525)" "

2(q=1)
b € {0,1}T of constants to the remaining variables for which g, (a,b) = 1, where |a]

. We will prove that there are at most ¢(|a|) assignments

1s the number of 1’s in a.

Indeed, if w(A) = 0 then we are done, so assume that there is at least one b € {0,1}7
for which g,(a,b) = 1. Let t = |a|. If t > d + 1, then g,(a,b) = 1 for at most one
b. Suppose now that 0 <t < d and let C4,...,C; be those columns of X, no entry
of which was set by a to 1. In every column of X the assignment a can set to 1 at
most one entry (since otherwise we would have no extensions), hence [ = ¢ — ¢. For
1 =1,...,q9 — t, let s; denote the number of entries in the i-th column C; which a
leaves unassigned. Assume w.l.o.g. that s;1 < ... < s,.¢. Set r =d+ 1 —1{, and let
h(s1,...,s,) be the number of all r-tuples (ji,...,7,) with 1 <j; <s;, fori=1,...,r
Since |a| + r = d + 1, this number A(sy,...,s,) is an upper bound for the number of
possible b for which g, (a, b) = 1. On the other hand, we know that s;+- - 45,4 < n/2,

_ _ n
L= S = o

Thus, w(A) < maxoci<n/2 $(1) = #(0) = (¢/2)**", which completes the proof of (2).

so h achieves 1ts maximum on s; = .. and this maximum is equal ¢(1).

Next, observe that for our concrete matrix A, we have that c/(A) = 1. Indeed, if
cl(G) > 2 then there are vectors a # a’ € {0,1}* and b # ¥ € {0,1}7 such that
gnla,b) = gu(a,b') = g,(a',b) = g,(a’,b') = 1. Assume w.lo.g. that |a| > |b|. Then
la| > ¢/2 = d + 1, which means that g,(a,b) =1 for at most one b, a contradiction.

By (2) and (1) ® we conlcude that every F-protocol for ¢, requires at least log p(A) >
log |[A] —logw(A) > d+1=+/n/2+ 1 bits of communication. I

STf we would try to apply the standard estimate x(G) > |A|/w(A)? we would get only trivial lower
bound since g4+’ (%)_2(d+1) <1 for ¢ > 4.
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4. A lower bound for linear codes

In this section we prove that many players cannot compute linear codes with few
bits of communication if each of input bits is accessable to relatively small number
of players.

Recall that a linear (n,m, d)-code is an (n — m)—dimensional subspace C' C F7 (thus,
|C| = 2"7™), the Hamming distance between any two vectors of which is at least

2d + 1. A boolean function f:{0,1}* — {0,1} is an (n,m,d) code function if f~(1)

is a linear (n,m,d) code.

For a family of sets F, its rank, tk(F), is the maximum cardinality of a set in F, and

the degree, deg(F), is the maximum number of sets in F containing a common point,
Le. deg(F) =max {|F'| : F' C F, NF'# 0} . Note that small-degree families cannot

be too large, namely, we always have that

n - deg(F)

7l < rk(F)

THEOREM 2. Let f be a linear (m,n,d) code function. Then for every family F C ol

any JF-protocol computing [ requires at least

2
dlog (ai;z ) —m

bits of communication, where

o= alF) = ('7];')_1 and  B=B(F)=1—

deg(F) - tk(F) '

n

Using the same argument as in (Jukna 1995, Lemma 4) one can easily reduce any
F-protocol to a protocol with only two (overlaping!) players S and T such that
|IS\T| > a(F)n and |T'\ S| > B(F)n. Thus, Theorem 2 follows directly from the the

following lemma.

4.1. Lower bound for two overlaping players.

LeMMA 3. Let f be (n,m,d) linear code function and let F = {S,T} with S, T C [n],
s =[S\ T| and t = |T \ S|. Then any F-protocol (i.e. any 2-player protocol, where
Player 1 sees only bits in S and Player 2 sees only bits in T ), requires > dlog ;—2 —m

bits of communication.
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PROOF. We reduce the problem to the case of disjoint players. Namely, there
is an assignment o — S NT of constants to the common part S N T, so that the
resulting set C':= f71(1) C {0, 1}\DUINS) still has the following two properties: (i)
|C| = 2777~ where r = |SNT|, and (ii) the Hamming distance between any two
vectors in C 1s at least 2d + 1.

After the assignment a we actually have a 2 player protocol for the subfunction
fo: Player 1 can see the bits in S \ T and Player 2 the bits in 7'\ S. Recall that
|S\T|=s and |T"\ S| = t. The corresponding communication matrix A = {f,(u,v)}
has |C| = 2"7"~™ ones. From Section 2 we know that any {S\ 7,7 \ S}-protocol

computing f, requires at least
log k(A) = log [C] — log sq(A)

bits of communication, where sg(A) is the maximum of u - v over all monochromatic

(i.e. “all—l”) u X v submatrices of A.

d
For any fixed vector a € {0,1}"\", there are at most [, := 2¢/ 3%, (f) < 2!/ (g)
vectors b € {0,1}"\% for which f,(a,b) = 1 (since the Hamming distance between
any two such vectors b must be at least 2d 4+ 1). Similary, for any fixed vector

d
b € {0,1}7\%, there are at most L, := 2°/ Y%, (j) < 2%/ (%) vectors a € {0,1}5\T

for which f,(a,b) = 1 Thus sq(A) < Ly - Ly <25/ (Z—g)d, and (since s+t =mn—r)

we get
s-1

logk(A) >n —r —m—logsq(A) > dlogd— —m

as desired.

For Bose-Chaudhury codes (BCH-codes) Theorem 2 yields the following lower bound.
Recall, that for any d < n/2 — 1 there is a BCH-code ' C F} which is a linear
(n,m,d)-code with m < dlog(n + 1).

COROLLARY 4. Let f(x1,...,x,) be the characteristic function of a BCH-code of with
d = 0(y/n). Let F CI"l be a family satisfying

(M)degm (1 B deg(]-")-rk(]:)) o).

en n

Then any F-protocol for f requires Q(y/n) bits of communication.

For example, 5 players, each seeing n/3 of input bits, need £(y/n) bits of communi-

cation, if no 3 of them can see one and the same input bit.

Acknowledgment I am thankfull to Jan Roman for interesting comments.
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