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THE GRAPH OF INTEGER MULTIPLICATION
IS HARD FOR READ-K-TIMES NETWORKS

STASYS JUKNA!

Abstract. We prove that the graph of integer multiplication requires non-
deterministic read-k-times branching programs of exponential size. On the other
hand we show that one can add polynomially many integers by small determin-
istic read-once-only branching programs. This shows that the reason for the
hardness of multiplication is not the necessity to add many integers (and hence,
to get rid of the carry numbers) but the necessity to add different subsets of
these integers.
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1. Introduction

It 1s known that the graph of multiplication is hard for depth-2 threshold circuits
(Hajnal et al. 1987) and for AC? circuits (Buss 1992). In this paper? we prove that
the graph of integer multiplication function is hard for non-deterministic read-k-times
branching programs.

Read-k-times branching programs have gained a considerable attention during the
last decade. There are at least two reasons for this. The first reason is that this
model captures space limitations of so-called eraser Turing machines which erase each
input cell after a fixed number £ of readings. Another reason 1s that such programs
have become an important tool in computer-aided design of digital circuits (see, e.g.
Bryant 1992 for a survey). Restricted versions of such programs (namely, oblivious
read-k-times programs) have one nice property: logical operations (A, V, @, etc) can
be effectively applied directly to such programs. There are packages based on reduced
oblivious read-once-only branching program (OBDD, for short?) representation which
work well for design and verification of concrete circuits.
'Research supported by DFG-project Me 1077/5-2.

2This is a revised version of the manuscript distributed in April 1994,
3In computer-aided design (CAD) literature the term ”binary decision diagram” is used instead
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Although good in many situations, these packages cannot verify some very important
circuits. One such example is the integer multiplication. Up to now all the attempts
to verify 32-bit multiplicator have failed. Bryant (1991) explained this failure by
proving that the n-th bit in the binary representation of x -y, is hard for oblivi-
ous read-once-only programs. Bollig et al. (1993) and Gergov (1994) observed that
Bryant’s result combined with known lower bounds arguments for oblivious branch-
ing programs implies that the multiplication is hard also for oblivious read-k-times
programs even with & = o(logn). The requirement for a program to be oblivious is
very strong restriction: in each s-t path the variables must appear in the same (fixed
for the program) order. It is therefore natural to ask if the multiplication can be
done by a small (polynomial) size non-oblivious read-k-times branching program.

The lower bound argument for oblivious branching programs is based on the observa-
tion that any such program for f must be large if, for at least one partition of inputs
into two sets, the communication complexity of f is large. Bryant takes a partition
where Alice gets x and Bob gets y, and proves that (under this partition) they need
Q(n) bits of communication to compute the n-th bit of x - y, Unfortunately, this con-
struction holds only for this very special partition of input bits and fails for others.
Recently Ponzio (1995) has found another argument which works for any partition
where Alice receives ©(y/n) less significant bits of both integers x and y, and Bob
receives the remaining bits. This, combained with the generalization of “cut-and-
paste” method by Simon and Szegedy (1993), leads to a 2V" lower bound for the
n-th bit of x - y in the class of deterministic read-once-only branching programs.

Our main result i1s the following lower bound for the graph of integer multiplica-
tion in the calss of non-deterministic read-k-times branching programs. We will
identify binaty vectors x = (z1,...,z,) in {0,1}” with the corresponding integers
x = 3", 2;2"7". The projection of x onto a set of coordinates S = {4,...,4,,} is the
vector X|s = (z4,,...,;,). Given a subset S, the corresponding graph of multiplica-
tion is the Boolean function rmulty defined by multy(x,y,z) =1 1iff (x-y)]s = z.

THEOREM 1. For any sufficiently large n > 0 there exists an n-bit integer a and subset
S C{l,...,n}, |S| < /n, such that every non-deterministic read-k-times branching
program computing mults(a,y,0) has size at least exp (Q(n1/4/k2k)) .

Our proof follows the framework of (Borodin et al. 1993) and is done via simple
reduction of mult" to the problem of recognizing codewords of a linear code, for

which a lower bound of exp (Q(\/ﬁ/k%)) is proved in (Jukna 1993).

Then we show that the integer addition of polynomially many n-bit numbers can be
done by small deterministic read-once-only branching programs (= OBDDs). This
shows that the reason for the hardness of multiplication is not the necessity to add
many integers (and hence, to get rid of the carry bits) but the necessity to add many

of ”branching program”. OBDD stands for ”Ordered Binary Decision Diagram”; this is exactly the
oblivious deterministic read-once-only branching program.
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shifts of the same integer (integer a from the theorem), and hence, the necessity to

get rid of shifting.

We consider well known model of branching programs. Recall that such a program is
a directed acyclic graph GG with a distinguished source node s and a distinguished sink
node {. The outdegree of each non-sink node 1s at most 2. Each edge 1s labeled by some
variable or its negation. If a vertex has outdegree 2 then the two outgoing edges are
labeled by x; and —a;. The branching program becomes nondeterministic if we allow
7guessing nodes” that is nodes with both two outgoing edges being unlabeled. The
size((¥) is the number of labeled edges in . A program is oblivious if the underlying
graph G is levelized so that the edges from the ¢-th level go only to the z 4+ 1-th
level and all are labeled by the same variable. The program G computes a Boolean
function f: {0,1}" — {0, 1} in the obvious way: for each u € {0,1}" we let f(u) =1
iff there exists at least one (directed) path starting in the source node s and leading
to the sink node ¢ and such that all labels along this path are consistent with u.

A program is read-k-times program if each variable occurs at most k times along each
path going from s. We denote the corresponding complexity measures by BP;(f)
and NBP,(f). It is clear that BP,(f) < NBP;(f) for every function f. It is also
known (see Jukna 1993) that non-deterministic model is much more powerful than
the deterministic one: there is a sequence of Boolean functions (f,|n > 0) such that

NBP(f.) = O(n) but BPy(f,) = exp ((n®)) for any k = o(logn).

2. Multiplication is hard: the proof of Theorem 1

In this section we prove the lower bound stated in Theorem 1. We prove this lower
bound in two steps: we reduce the function multg(a,y,0) to linear codes and then
apply the general lower bound on the read-k-times complexity for (general) codes

proved in (Jukna 1993).

2.1. Reduction to linear codes. The cyclic shift of a vector x = (z1,...,2,) is
the vector x' = (zq,...,@n, x1). Given a vector x = (z1,...,x,), we denote by M(x)
the cyclic n by 2n matrix, the first row of which is (0,---,0,z1,...,,), and all other
rows are obtained by shifting this vector (¢ + 1-th row is the cyclic shift of the -th
one):

0 -~ 0 0 zy - Ty

o -0 = 2z - =z, 0
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The multiplication matrix is the |y| by 2n submatrix® M(x,y) of M(x) defined by the
set {1 : y; = 1}, i.e. the i-th row of M(x) is in M(x,y) iff y; = 1. The matrix M(x,y) is
what one uses when multiplying the numbers x and y "by hand”. Namely, the k-th

bit z of x -y 1s
k—1

zp = Sp + Z 55 2 (mod Qk)

7=1
where s; is the sum of ones in the j-th (from the right) column of M(x,y).

Recall that a set C' C {0,1}" is a linear (r, s, d)-code if there is an r x s " parity check”
matrix H over the field F; = GF(2) such that:

(i) u e Ciff (u,v) =0 for all s columns v of H (here (u,v) = ujv; G-+ B u,v, is
the standard skalar product over F3), and

(ii) any d — 1 rows of H are linearly independent (over Fj).

Any linear (r, s, d)-code has 2"~° vectors and the Hamming distance between any two
of them is at least 2d + 1.

In what follows fo will stand for the characteristic function of a subset C' C {0,1}",
le. fe(u) =1iff u € C. A function g is a subfunction of f if g can be obtained from
[ by assigning constants to some of its variables.

We now turn to the proof that (characteristic functions of) linear codes are subfunc-
tions of multy(a,y,0) for appropriate n-bit integer a and subset of coordinates S.
We do this in two steps. First, we prove that the parity check matrix H of C is a
submatrix of M(a, b) for some fixed integers a and b. Second, we show that, for some
set of coordinates 9, the value of a -y on all these coordinates are 0 iff the vector
YyADb=(yi Abi,...,yn A b,) is orthogonal to all the columns of this submatrix. Set
p=logn+1 and n = rsp.

CrAM 2. There exist two n-bit vectors a,b € {0,1}" such that |b| = r and the matrix
M(a,b) contains the submatrix
H* = [vi|0]v,| 0] Ov, | O]

where vy, ..., v, are the columns of H and O is the r X p matrix of nulls.

Proor. Take the vector w = (u;...u,) € {0,1}"* where u,,...,u, are the rows of
the matrix H. Let
a = ('wl()'wg() et 'wn_l()'wn)

where 0 denotes p many 0's. Since the rows of M(a) are cyclic shifts of the first row
(0...0a), the submatrix M(a,b) with b, = 1 iff ¢ € {1,sp,2sp,...,(r — 1)sp}, contains
H* as a submatrix. [

Y1yl = 5=, v is the number of 1’s in y.



S. Jukna Multiplication is hard, addition is easy 5}

CrAm 3. For any linear (r,s,d)-code C there is a subset S C {1,...,2n} such that
the function fc (on r variables) is a subfunction of multy(a,y,0) (on n+|S| variables).

PROOF. Let S be the set indices of columns vy,...,v,, of H in the matrix M(a, b).
Take J = {j : b; = 1} and consider the function fap : {0,1}7 — {0,1} defined by:

Jap(y) = multi(a,y Ab,0)

where yAb is the vector in {0, 1}" which coincides with y on .J and has nulls elsewhere.
The function fap is the Boolean function on |J| = |b| = r variables. Observe that
for each j € S, the j-th bit z; of z = a- b is simply the sum modulo 2 of the bits in
the corresponding column v; of M(a, b). This is because the carry number obtained
at previous column of H in M(a,b) has binary length at most log rn, and hence, has
no influence to the value of z; since we have p > log n null-columns between these
columns. Hence, z; = (y,v;) for all j € S. Thus, fap(y) = 1 iff the vector y is
orthogonal to all the columns of H, and hence, multi(a,y Ab,0) =1 iff fop(y) =1
iffy e Ciff fo(y)=1. 1

2.2. The lower bound. By claims 2 and 3, for any linear (r,s,d)-code C, the
function fo (on r variables) is a subfunction of the function multy on 2n + |S| <
3n = 3rsp variables where p = log r + 1.

To complete the proof of Theorem 1, let C' C {0,1}" be the BCH-code. For this code
we have that s < dlog(r + 1). It was proved in (Jukna 1993, Corollary 1) that, for

d=0 ( r/k*¥) | these codes require exponential size read-k-times networks:

NBP; (fo) > exp (v/r/k*)) . (1)

The function multy(a,y,0) itself has n = rsp = O (7“3/2 (log 7")2) = o(r?) variables.
Since f¢ is the subfunction of multy(a,y,0), the bound (1) immediately gives the
bound

NBP, (multy) > exp (Qn'4/k*)) . (2)

which completes the proof of Theorem 1. I

Remark It is easy to see that our lower bound holds also for the following problem
related to integer addition:

Adds(y)=1 <= Y aies

2y =1

where ay,...,a, are fixed integers and S is some (also fixed) set of powers of 2.
Thus, it is hard to add different subsets of the same (fixed) set of integers. On the
other hand, the addition of many integers itself is extremely easy (even for oblivious
read-once branching programs).
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3. Addition is easy

Integer addition is an important component of the multiplication. Namely, the prod-
uct x -y of two n-bit numbers x and y is simply the sum of n (2n)-bit integers
represented by the rows of the matrix M(x,y) considered above.

The aim of this section is to show that the addition of many integers can be per-
formed effectively with oblivious deterministic read-once-only branching programs.
This shows that the reason for the hardness of multiplication is not the necessity to
add many integers (and hence, to get rid of the carry numbers) but the necessity to
add different shifts of the same integer.

Given n-bit integers x',...,x™ € {0,1}", their sum is the (n + log m)-bit integer x' +
...+ x™. (Recall that we identify vectors x € {0,1}" with integers x = " | #,2"7%)
For S C {1,...,n+log m}, the corresponding graph of addition is the Boolean function
adds defined by adds(x',...,x™, z) = 1 iff (x! + ...+ x™)]s = z. Note that, for each
v, the function add, (x',...,x™) = addgy(x',...,x™, 1) is the v-th bit in the binary
representation of the sum x' + --- + x™. Let OBDD(f) denote the minimum size of
an oblivious deterministic read-once-only branching program computing f.

PROPOSITION 4. For any S, OBDD (adds) = O(nm?).

PrOOF. We describe the desired program for a function add,(x',...,x™), with v
arbitrary but fixed coordinate. The program then can be easily modified (without
increasing the number of nodes) to compute adds for any subset S.

The idea is simple and is based on the following observation. The main difficulty in
computing the sum of many, say m, numbers is to get rid of the logm "carry” bits.
Read-once-only programs have no "memory tape” where they could keep the results
obtained so far and use them later without reading once more the input. It appears,
however, that such a programs have "inner memory”: they can keep the information
not only in the labels of their nodes but also in the topology of underlying graphs.

We will add m integers x',...,x™ in a usual manner — column by column from the
right to the left. (We look vectors x',...,x™ as rows). At the {-th step we compute
the t-th ”carry number” ¢; which is defined as follows.

Let s be the binary representation of the sum of integers represented by initial parts
(from the right) of length ¢ of vectors x!,...,x™. This vector s has length at most
t + log m and has all the information about the summ over the first ¢ columns. We
may assume w.l.o.g. that s € {0,1}'1°¢™ (the left bits of s can be ('s). Define the
t-th carry number ¢; as the number represented by the first log m bits of this sum s

(from the left). Thus,

S = (51, S Slogma Slogm,-l-'l yae ey Slogm,-}-t)-
—_——
Ct
For a vector x = (z1,...,z,) its shift is the vector x’ = (0, z1,...,2,-1). Observe that

the {-th carry number ¢; is obtained by adding the (¢ — 1)-th carry number ¢;_; to
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the sum 37, z¢ of the bits in the ¢-th column and shifting the resulting integer one
bit to the right, i.e.

m o\
7
= |1 + § Ly .
=1

The desired oblivious read-once program P for the v-th bit add,(x',...,x™) in the
binary representation of the sum x; + - - + x,, looks as follows. The program has v
levels. The ¢-th level consists of m + 1 programs P!, ¢ € {0,1,...,m}. The program
P! looks at the ¢-th column and computes the ¢-th carry number assuming that ¢ was
the (t — 1)-th carry number. Namely, P! depends on the variables z;, 27 ..., 2] and
has m + 1 outputs vy, vy, ..., v, where for b € {0,1,...,m},

. m ,.il
vb:{l if b=(c+Xm, z})

0 if otherwise

The output node v, of P! is the start node of the program P/*' on the next (¢ + 1)-th
level.

Thus, being at the t-th level corresponds to looking at the ¢-th column (from the
right) of the m x n matrix with rows x',...,x™. Simple but crusial observation is
that being in the program P! of this level we know that ¢ is the (t—1)-th carry number
computed so far. Exactly one output of the program P! is evaluated to 1. This is the
b-th output vy where b = ¢ + 7, 2%, Thus vy = Exacty_. (z},...,27"), where Exact,
computes 1 iff exactly r inputs take the value 1.

The programs from different levels depend on different variables corresponding to
different columns. Each program P! computes a collection of Exact, functions (r =
0,1,...,m) and can be realized as an oblivious deterministic read-once-only branching

programs of size O(m?). Thus, the total size of P is O(tm?). [

4. Concluding comment

We have shown that, for some subsets 5, the graph of multiplication mults cannot be
computed by read-k-times non-deterministic branching program of polynomial size.

It is not readily apparent which problem is harder for non-deterministic read-k times
networks, the graph or one bit of x-y. For £k = 1 and deterministic model we know
that both, the graph and one bit, of x -y are hard (this follows from our lower bound
together with the bound of Ponzio 1995). But what about non-deterministic model?
Even the case k& = 1 remains unclear: is one bit of x -y hard for non-deterministic
read-once branching programs?

Intuitively, the graph seems to be harder since it requires every bit of z (in S) to be
the desired bit in the binary representation of x -y. In models closed under the AND
operation (like ACY or threshold circuits) this can be done easily (and graphs are
therefore not harder in these). But read-k-times models are not closed under AND
operation.
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And indeed, in read-k-times models there exist multi-output functions, the graphs
of which are harder than the functions themselves. To be more specific, consider
the following function f in n? Boolean variables, represented as a n X n matrix
X = {z;;}. Define: F(X)=zifffor k€ {1,....n}, z =1 < Yoy xg =1, and
for k € {n+1,....2n}, zzx =1 < >, ¢ix-n = 1. Thus, the function has 2n
outputs, each of which is very simple test: ”does the corresponding row or column
of X has exactly one 17. Thus, every bit of z = F/(X) can be computed easily by a
read-once branching program. But its graph f(X,1) =1 <= F(X) =1 is "Exact-
Perfect-Matching” function which is well known (see Jukna 1989 or Krause et al.
1991) to require non-deterministic read-once branching programs of size exp(2(n)).

References

Bounig, B., SAUERHOFF, M., SIELING, D., AND WEGENER, |. Read k times ordered binary

decision diagrams — efficient algorithms in the presence of null-chains. Technical Report Nr.
474, Universitdt Dortmund, 1993.

BoroDIN A., RAZBOROV A. AND R. SMOLENSKY. On lower bounds for read-k times branch-
ing programs, Computational Complezity, 3 (1993), 1-18.

BrvanT, R. E. Symbolic Boolean manipulation with ordered binary decision diagrams.
ACM Computing Surveys, 24:3 (1992), pp. 293-318.

BryanT, R. E. On the complexity of VLSI implementations and graph representations of

Boolean functions with applications to integer multiplication. [EFFE Trans. on Computers,
40:2 (1991), pp. 205-213.

Buss, S. R. The graph of multiplication is equivalent to counting. Information Processing
Letters, 41 (1992), pp. 199-201.

HAINAL, A., Maass, W., PUDLAK, P., SZEGEDY, M., & TURAN, G. Threshold circuits
of bounded depth. In Proc. of28-th Symposium on Foundations of Computer Science, (1987),
pp- 99-110.

GERGOV, J. Time-space tradeoffs for integer multiplication on various types of input obliv-
ious sequential machines. Manuscript, March,1994.

JUKNA, S. The effect of null-chains on the complexity of contact circuits, Springer Lecture
Notes in Computer Science, 380 (1989), 246-256.

JUKNA, S. A note on read-k times branching programs, RAIRO Theoretical Informatics and
Applications, vol. 29, N. 1 (1995), pp. 75-83.

Krause M., MEINEL CH. AND WAACK S. Separating the eraser Turing machine classes
L.y, NL.,co— NL. and P., Theor. Comp. Sci., 86 (1991), 267-275.

Ponzio, S. A lower bound for integer multiplication with read-once branching programs.
In: Proceedings of the 127h Annual ACM Symposium on Theory of Computing (1995).



