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Abstract

The lower bounds problem in circuit complexity theory may be
looked as the problem about the possibility to diagonalize over finite
sets of computations. In this paper we show that Sipser’s notion of
”finite limit” is the right diagonal for different models of small-depth
circuits. This i1s partly a survey paper, but it also contains various
new results as well as new proofs of know ones.
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1 Introduction

Important property of computations is their ”locality”: at each step the
decision about the next one is made by looking at only small (in most models,
constant) peace of information conducted so far. It is therefore natural to
use this locality in lower bound proofs. Suppose we are given some ”hard”
function f and want to prove that it is really hard, i.e. that f requires
long computations. Assume the opposite and, starting from some string in
F7H0), try to construct a computation for it which is a ”limit” of accepting
computations, meaning that on each local part it coincides with at least one
accepting computation. By locality of computations, the machine cannot
distinguish this computation from the set of all accepting computations,
and hence, makes an error (accepts a string from f~'(0)).

There are two general ideas how to construct such a ”limit computation”:
the "topological approach” of Sipser [23] and the "method of approxima-
tions” of Razborov [20]. Roughly, these ideas tell us how, given a 0, 1-matrix
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M (rows are computations) and a family F of subsets of its columns (sets
in F corresponds to gates), to construct a "limit row”, i.e. a row which is
not in M but coincides on each set of columns from F with at least one
row of M. The idea (unlike its realization !) is very simple: try to construct
the desired row either as a limit point in an appropriate topology on the
set of strings or by applying appropriate boolean functions to the columns
of M. The idea was materialized for some circuit models: countable non-
deterministic circuits [23, 4], monotone circuits [19], switching-and-rectifier
networks [21] and parity branching programs [16] (see [25] for a survey).
All these methods actually do the same: they diagonalize computations by
constructing a ”limit computation”. There are also other situations (not
covered by [25]) were the notion of "finite limit” works. In this paper we
show how do limits appear in lower bounds proofs for small depth circuits
and small depth branching programs. Our main goal was to look at these
methods in a ”clean form” in order to see what diagonalization tricks they
actually use and what do we need to get better lower bounds. We do this in
the following order.

In the next section we outline the way in which ”limit computations”
appear as diagonals in lower bound proofs and sketch two general diagonal-
ization ideas mentioned above. In Section 3 we define the notions of k-limit,
k-diagonal and k-closed set. Diagonal is a limit which lies outside the set;
a set is closed if it contains no diagonal, i.e. no limit outside the set. We
then state some basic facts about closed sets and introduce one combinato-
rial characteristic of (boolean) functions. This characteristic is denoted by
Ag(f) and is defined as the minimal possible number of blocks in a parti-
tion of the domain of f such that each block is k-closed and f is constant
on each of them. In the remaining sections we investigate this characteristic
for various values of k. We start this investigation in Section 4 by proving
that, for all values of k, the number Ag(f) is large for almost all functions.
In sections 5 and 6 we show that Ag(f) with £ < n (n = the number of
variables of f) is the lower bound for the size of ACY circuits. In Section 7
we show that Ag(f) with £ = n — 1 is the lower bound for the size of ACC
circuits, i.e. unbounded fanin {A,V, =, mod ,,, } circuits. In the last section we
show that some modification of Ag(f) is connected with time-space trade-
offs for Turing machines and gives lower bounds for read-r-times branching
programs.



2 Intuition

To be more specific, fix some basis, i.e. some set H of boolean functions
h:{0,1}% — {0,1}. (One may take, e.g. the standard fanin 2 basis H =
{A,V,=}.) A circuit over the basis H is a stright line program over H, that
is a sequence P = (¢1,92,...,9¢) with g; = z; for 1 < ¢ < n, and for every
i>mn, g =h(g,,-..,9) for some i1,...,i < ¢ and h € H. Those g's are
"gates” of P; their number ¢ is the ”size” of P. The computation of P on a
string @ € {0,1}" is the string

P(a) = ((91(a), ga(a); ..., gi(a)) € {0, 1} (*)

it is an accepting computation if its last coordinate g4(a) = 1. (Clearly,
not every vector in {0,1}" is an accepting computation or even a compu-
tation of P on some input). The circuit P computes the boolean function
f(z1,...,2,)in a usual way: f(a) = 1iff P(a) is an accepting computation.
Let U = f~'(1) C {0,1}" denote the set of "ones” of f. If C' C {0,1}" is the
set of all accepting computations of the circuit P, then U = C’|{1 7777
U is the set of projections of vectors in C' on the first n coordinates. The
set C itself is very special ("locally defined”) subset of {0,1}?, namely, for
each string z € C' and every ¢ > n, the i-th bit z; of z depends only on some
collection of k£ previous bits z;,, ..., 2;, of z. Thus, the lower bounds problem
is the following question: given a set U C {0,1}" and a number ¢ > 0, prove

o o€

,,,,,

other words, we want to prove that the set U/ cannot be separated from its
complement {0,1}"\ U by making only small number of "local tests”.

For a subset S = {i1,...,0k41} C IN = {1,2,...}, a test on § is a
function ¢ : {0, 1} — {0,1} for which there is some h € H such that for
any (infinite) string 2 € {0,1}N, ¢(2) = 1 <= h(zi,...,2;,) = Zipyrs
subset S is the support of this test. Observe that each gate in P makes the
test: ”is the output bit consistent with input bits?”. We can therefore look
the circuit P as the set ® of tests made by its gates; the size is the number
of tests in ®. The set C' of accepting computations of the circuit ¢ is then
simply the set of those and only those strings in {0, 1}’ that pass all the tests
in ®,ie. C= {z € 10,1} 1 Ayeo ¢(2) = 1}. The lower bounds problem is
to prove that if £ is too small then U # [, ..

One can obtain such a proof by constructing a string b € {0,1}" such
that:

(i) the initial part (by,...,b,) of bis not in U, and



(ii) b is a "limit” for the set C' is the following sense: on each subset
S € support(®), the string b coincides with at least one string in C'.

By (ii), the string b passes all tests, which means that b € C. But by (i), the
projection of b is not in U, and hence, U # C|,, ..

Thus, what we need is to diagonalize over the set C' in order to find
a limit string outside C. This can be done by combining (or "fusing”, a
term proposed in [25]) strings in C' into a new string. There are two general
ideas how to construct such a diagonal: the "topological approach” and the
"method of approximations”. (Wigderson in [25] proposed to look them as
one "fusion method”.) In this paper we will follow the first, "topological”
idea but let us briefly sketch both of them.

The Topological Approach. Sipser [23] suggested approaching the NP
vs. coNP question by studying its infinite analog: the classical result of
Lebesque that the class of analytic sets is not closed under complements.
Sipser provides a new topological proof of this result, which can hopefully
be "finitized”. The idea is to choose an appropriate notion of ”large set” and
construct the diagonal using some kind of "backward induction” preserving
largeness of sets. A sequence of strings a!,a?,...in f~!(1) converging to a
string a* € f7'(0) is constructed so that the associated sequence of accept-
ing computations 2!, 2%, ... converges to an accepting computation for a*.
Convergence here is in terms of an appropriate topology on the set of all
strings. In [23] natural discrete topology (open set being the set of exten-
sion of a finite string) is shown to work in infinite case. The main role of
"largeness” is to ensure (under the assumption that the number of tests in
® is small) the possibility to continue the process until a* is reached.

The Method of Approximations. The second idea, the "method of ap-
proximations”, was suggested by Razborov [20] and developed by Karchmer
and Wigderson in [15, 16, 17, 25]. The idea is to look the set of accepting
computations C' C {0, 1} as the mx¢ matrix with m = |C/|, and try to obtain
the desired limit string b by combining (”fusing”, as suggested by Wigderson
[25]) the rows into a new one. This is done by applying some special (”fus-
ing”) boolean functions ' : {0,1}" — {0,1} to the columns of C'. Each such
F produces the string b = (F(c'),..., F(c")) € {0,1} where ¢',...,c" are
columns of C. If we are lucky, our fusing function F’ preserves (in a natural
sense) all the local tests in ® and satisfies f (#'(c'),..., F(¢")) = 0; then b is
the desired diagonal. Razborov in [20] has proved that if f has no circuit over
{A,V, =} of size t then, potentially, the diagonal can be obtained by fusing
with only monotone functions. There are, however, too much such ”candi-



dates for a limit” (double exponent in m = |U]) and it is hard to choose the
right one. Fortunately, Razborov was able to do this in [21] where he proves
a super-linear lower bound on the size of switching-and-rectifier networks
for the Majority function. Karchmer and Wigderson have then proved simi-
lar lower bound for the Majority in the class of parity branching programs.
This was done using linear functions F. The third interesting class of fus-
ing functions is that of monotone self-dual functions, i.e monotone boolean
functions satisfying ' F'(a) V ~F(=a) = 1. Karchmer in [15] shows how self-
dual fusing functions can be used to re-prove Razborov’s lower bound for
monotone circuits. Recently, Ben-David, Karchmer and Kushilevitz [4] have
demonstrated that the limit in Sipser’s proof about analytic sets can be also
obtained by fusing computations via self-dual functions.

3 Limits and Closed Sets

Consider the hypercube E} where E, = {0,1,...,¢ — 1}. Elements of E}

are vectors @ = (ai,...,a,) with a; € E,. The projection of a onto a set
of coordinates S = {iy,...,ir} C [n] = {1,...,n} is the vector a|, =
(@iyy..nsay,).

Let F be a family of subsets of [n]. A vector b € Ej is an F-limit of a
subset A C E7 if for every set S € F there exists a vector a € A such that
a # b but al, = bl,. A k-limit is an F-limit with F = [n]¥ = {S C [n] :
|S| = k}. Let limz(A) (limg(A)) denote the set of all F-limits (k-limits) for
A. Then

limi(A) D limg(A) D -+ D lim,(A) = 0.

Fach limit of A (if any) can lie inside as well as outside A. In this last case,
the limit is a "diagonal” for A: it does not belong to A but this fact cannot
be captured by looking at only small peaces of coordinates. Formally, we say
that a vector b € Ej is an F-diagonal for a subset A C E7 if b & A but b is
an F-limit of A, i.e. if b € limz\ A. If F = [n]* we say that b is a k-diagonal
for A.

The main goal of this paper is to show that various lower bound methods
in circuit complexity theory are actually different solutions of the following
(purely combinatorial) ”diagonalization problem”:

exhibit an explicit set U C Ej such that in every partition of U into
“small” number of blocks, at least one block has a k-limit in EY \ U.

"For a vector a € {0,1}", =a = (=a1, ..., "am).



In order to have a diagonal, the set must have at least one limit. To make
this limit a diagonal, we have to force it be outside the set. And this is
hard. Much easer is to prove that some limit lies inside the set. Namely,
every sufficiently large set contains at least one of its limits. Although such
limit is not a diagonal, let us state this fact (pointed out to the author by
M. Sipser [22]) explicitly.

Proposition 1 Let A C Ej. If |[A] > ¢ (7) then limg(A)N A # 0, ie. A
contains at least one of its k-limits.

Proof. Suppose that limg(A) N A = (). This, in particular, means that for
every vector @ € A there exists a subset S(a) C [n], |5(a)| = k, such that
|50 # bl for all b€ A~ {a}. In other words, each vector @ € A has its
own ”"pattern”, i.e. a set of k coordinates in which this vector differs from all
other vectors in A. Hence, for any two different vectors ¢ and b in A we have
that either S(a) # S(b) or S(a) = S(b) but a; # b; for some i € 5(a),i.e. one
can assign to each vector @ € A its "pattern (5, a|, ) so that different vectors
have different patterns. There are (Z) possible subsets of k£ coordinates, on
each of which vectors can have no more than ¢* possible values. Thus, there
are at most (Z)ql‘C possible patterns (subset,value). Since each vector in A
must have its own pattern, we conclude that |A| < (})q"*. I

Definition. A set A is F-closed if limr(A) C A, and F-open otherwise. A
set is k-closed if it is F-closed with F = [n].

Remark: For A C E7, let dist(A) = min {d(a,b) : a,b € A, a # b} where
d(a,b) is the usual Hamming distance between the vectors a and b, i.e.
d(a,b) = |{i : a; # b;}|. If dist(A) > n — k + 1 then A is k-closed because
then limg(A) = 0. Thus, sets with large distance are closed. On the other
hand, by Proposition 1, such closed sets cannot be very large: if dist(A) >
n — k + 1 then no two vectors in A can coincide on k coordinates; this, in
particular, means that lim,(A) N A = 0, and hence, [A| < ¢*(7).

When dealing with closed sets it is sometimes useful to keep the following
alternative definition in mind. Say that a function ¢ : E} — {0,1} is k-
variable function if ¢ depends on at most & variables. A function f:Ej —

{0,1} is a generalized k-CNF'if it is a product (AND) of k-variable functions.

Proposition 2 A set A C E} is k-closed if and only if A = ®=1(1) for some
generalized k-CNF .



Proof. Given A C Ej, associate with each S C [n] the k-variable function

os : Eqs — 40,1} defined by: ¢s(y) =1 < y = z|, for some z € A. One
may easily check that the product ®4 = [] ¢s over all S C [n] with | S| =k,
is the desired generalized k-CNF . 0

Corollary 3 If A and B are k-closed then so is AN B.

Corollary 4 The hypercube Ey has at most 97°(%)  k-closed subsets.

Proof. For each § C [n] with |§| = k, there are 27° functions g : EY —
{0,1}. [

Definition. For a function f: Ef — {0,1}, let Ag(f) denote the minimal
possible number of blocks in a partition of Ef such that

e each block is k-closed, and

e f is constant on each block.

Note that A(f) > A(f) > ... > Au(f) where A, (f) = 1if f is
a constant function, and A,(f) = 2 otherwise (since both blocks of the
partition Ef = f~1(0)U f~1(1) are n-closed).

Various lower bound arguments in circuit complexity theory consist of
two steps: the ”"reduction” step and then the ”diagonalization” step :

1. Prove that if f has small circuit then Ag(f) is also small. The parame-
ter k as well as the real meaning of ”small” depend on a circuit model
only.

2. Prove that Ar(f) is large.

In what follows we will concentrate on the second, ”diagonalization”
step. The first, "reduction” step will be only sketched.

4 Limits for Random Functions

For k = 1, k-closed sets are, by Proposition 2, exactly the subcubes of Ej,
i.e. sets of the form

— n o, — —
A_{mEEq Dy _ail,...,mim_aim}



where aj; € E,, 1 <7 <m < n. The number n — m is the dimension of
this subcube. Thus, it is easy to exhibit a function f : E} — {0,1} with
large Ai(f). Take for example, the Parity function Par, = 21 & -+ & 2,
over E}. Then A;(Par,) = 2", since Par, is non-constant on each subcube
of dimension # 0.

For larger values of k£ the problem becomes harder. One may ask if at all
Ai(f) can be large if k is large? Not surprisingly, the answer is - yes, almost
all functions f have this property.

For a function f : E} — {—1,1}, its discrepancy, disca(f), on a set
A C E7 is the absolute value of the sum 3~ . 4 f(#). If our function f ranges
over {0, 1} instead of {—1,1} then its discrepancy is defined to be that of
(=1)/. Define

disc(f) = max {disc4(f) : Ais k-closed}

Note that
Ax(f) 2 " /disci(f) (1)
This is because f(A) = const <= disca(f) = |A|, and hence, f is non-

constant on all k-closed sets containing more than discg(f) vectors.

Theorem 5 For almost all functions f :Ej — {0,1} we have that

(2)

Theorem 5 follows directly from (1) and the following simple lemma.

Lemma 6 Consider the random function f: Ej — {—1,1} taking the values
—1 and +1 independently with probability 1/2. Then

Prob[discg(f) > N] < 2exp (—aqk (Z))

where a =1 —=1n2=0.31... and

N = | 2qm+* (Z) .



Proof. By the Chernoff’s bound ? we have for any subset A C Ej; that

Prob[disc4(f) > N] < 96— N?/2#(A)

By Corollary 4, there are at most exp ((1 —a)g* (2)) closed sets, and the
desired bound follows. 1

5 Limits for £ =1

Even for k = 1 the number A.(f) gives lower bounds for AC? circuits, i.e.
bounded depth unbounded fanin AND/OR circuits. Recall that by Propo-
sition 2, a set A C EY} is 1-closed iff A is a subcube of Ef.

The ”bottom-up” method of random restrictions of Furst, Saxe and
Sipser [9]; Yao [26] and Hastad [12] have led to the following lower bounds
criterion for ACY circuits.

Theorem 7 ([5]) Suppose that f : Ef — {0,1} has an AC® circuit of depth
d and size L. Then f is constant on at least one subcube of dimension m =

n/3(101og L)¥~2 —log L, and hence, A;(f) < 277,

The Parity function Par, = zy & --- & z, has Ay(Par,) = 2".
Hence n/3(10log L)4~! — log I, < 0 which gives the lower bound 1 >

exp (Q(nl/(d_l))) for this function.
6 Limits for 1 <k < n

Theorem 8 ([13]) Suppose that f : Ef — {0,1} has an AC® circuit of
depth 3 and size L. Then there is a subfunction f' of f on Q(n) variables
such that

L> A(f) where  k =log L.

Remark: What is new in this bound after we have Theorem 77 The largest
bound Theorem 7 can give in depth 3 is exp (©(y/n)) achieved by the Parity
function. On the other hand, it is known ([18]) that almost all functions

2If X1,...,X,m are mutually independent random variables with Prob [Xi=+41] =
Prob [X; = —1] = 1/2 then for every a > 0, Prob [|X; + -+ X,,,| > a] < 2= /2,
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require depth 3 ACY circuits of size 2"/logn. Thus, our seemingly good
understanding of AC? circuits is not complete: we know why the Parity
function is AC°-hard but we do not know why other (in fact, most) functions
are harder. Theorem 8 allows (at least potentially) to achieve this bound.
For random function f:E} — {0,1}, Theorem 5 gives

Ag(f) >

which by Theorem 8 gives the lower bound exp (nl_o(l)) for f.

Open Problem 9 Fzhibit an explicit sequence of functions f, : Ej —
{0,1} with Ap(fn) > exp(n®) for k = n® with a > 1/2.

In order to estimate Ag(f) for k > 1, we have to look at the behaviour
of f on the class of k-closed sets which is much richer than that of subcubes.
It was shown in [13] that appropriate modification of well-known Erdés-
Rado lemma about ”sunflowers” [8] can help to construct limits for k& > 1.
It appears, however, that the same result can be achieved using Sipser’s
topological argument.

Let us, for example, prove Ay(77) > (7) - k=° where T7(a) = 1 iff
|a| > s; |a| is the number of ones in a. Take any partition of E} into k-closed
blocks, and suppose that the number of blocks is » < (7) - k=5. What we
need is to prove that then 77" # const on at least one the blocks. At least
one of the blocks B contains at least (7)/r > k* vectors from the s-th slice
The function accepts all these vectors, hence it is forced to accept all the
vectors in the block B (since T7 is constant on B). At this step we need a
”diagonalization” lemma (Lemma 10 bellow) stating that any set A of more
than £° vectors from the s-th slice has a k-limit b with less than s ones.
Then T7(b) = 0. But b € B since B is k-closed, and hence, T} must accept
this vector b, a contradiction.

Lemma 10 Let A C {0,1}". Suppose that A has more than k* vectors with
exactly s ones and no vectors with less than s ones. Then A is not k-closed.

This lemma was proved in [13] by induction similar to that used in the
Sunflower Lemma. Let us give another proof in order to stress the similarity®
with Sipser’s topological argument [23] (see also Section 2).

®This is of no means the ”finitized” version of the argument in [23] one may expect
since we do not have non-deterministic variables here. The presence of nondeterministic
bits makes our knowledge about the set A less definite.
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Proof. Assume to the contrary that A is k-closed. Then A = ®~'(1) for
some generalized k-CNF &. Consider the set Ag = {a € A : |a| = s}. For
B C Ap and a € {0,1}™ we say that B is large at a if b > a for all b € B,
and |B| > k*~1°l. Note that A itself is large at 0 = (0,...,0). Qur goal
is to construct a sequence of sets Ag O Ay D --- and a sequence of vectors
0 =a’d',...such that |a’| = i and A; is large at a'. As in Sipser’s proof
we perform a construction in stages.

Stage i (i < s —1): Since |a'| =i < s, a’ ¢ A. Hence,the vector a' does
not pass some test ¢ (z;, ...,x; ) from ®. Since all vectors in A; pass this
test, every vector in A; must differ from a’ is at least one of the coordinates
S = {j1,...,jx}. By largeness of A;, b > a' for all b € A;. Hence, for each
b € A; thereis a j € S such that the j-th coordinate of b is 1 whereas that
of @' is 0. There must be, therefore, one coordinate j € § which corresponds
to at least 1/k fraction of vectors in A;. Let A;;1 be this fraction, and a**!
be a* with the j-th coordinate replaced by 1. The set A,y is large at a'*!
since [Aipq| > |Ai| Jk > ks=121=1 = ks=1a"' Go to Stage i + 1.

Upon completion of all s—2 stages we obtain a vector a*~' with s—1 ones.
We claim that this vector passes all the tests in ®, which gives the desired
contradiction. The argument is the same as above. Assume the opposite that
#(a*~1) = 0 for some ¢ from ®. Let S be the support of ¢. Since A,_ is large
at a* !, |As—1| > Es=la"7' = k. Each vector in As_1 has its own position
were it has 1 and @*~! has 0; in all other positions it coincides with a*~"'.
But we have more than & = |§]| vectorsin As_;. Hence, at least one b € A,
must coincide with a*~! on S. But then ¢(b) = ¢(a*~') = 0 whereas, by the
definition, all the vectors in A;_; (and hence, the vector b) pass all the tests
in ®, a contradiction. 0

7 Limits for k ~n

Given a function f : E} — {0,1} with ¢ > 2, define its boolean version
fEP™ — {0,1} with m = [log ¢] +1, as follows. Fix the standard encoding
of integers in E, = {0, 1,...,¢—1} by 0, 1-strings of length m (zeros allowed
on the left). The function f has mn boolean inputs; given a boolean vector
in {0,1}™", the function f first makes the partition of its variables into n
subsequent blocks of length m each, looks each block as representing an
integer in E, and computes the value of f on these integers.



12

Theorem 11 Let f : Ef — {0, 1}. Suppose that the boolean version of f can
be represented as

f=SYM(hy,...,hz) (3)
where SY M is any symmetric boolean function and each h; is an arbitrary
boolean function on at most n — 1 variables. Then

L> (Ao ()" =1,

Proof. Partition the set of mn (boolean) variables of f into n equal-size
blocks and let H; be the set of those functions A; which have no variables
in the i-th block. (This is possible since each h; has only n — 1 variables
and there are n blocks). Since SY M is symmetric function, the value of
f is uniquely determined by the value of the sum F = F, + ... + F}, of n
functions F; = )"y, h. Important here is that for each ¢ € [n], the function
F; does not depend on coordinates in the i-th block. Look at these sums £}
as functions on Ef. That is, each F; has n variables (ranging over E7), and
does not depend on the i-th one.

Now assign to each vector a € E} the color (F1(a), ..., F,(a)). Since each
sum F; can take at most I + 1 different values, we need at most (L 4 1)"
colors to color all the vectors in Ej. Clearly, each color class (i.e. each set
of vectors in E with the same color) is (n — 1)-closed, and on each of them
the function f is constant. Therefore, A,_;(f) < (L 4 1)" which gives the
desired lower bound on L. 1

Let us say here several words on why Theorem 11 is interesting. Beigel
and Tarui [3] have shown (based on earlier results of Toda [24], Allender [1]
and Yao [27]) that any boolean function f on N boolean variables in ACC
(the class of all functions which have bounded depth polynomial size circuits
with AND, OR, NOT and MOD, gates) can be represented * in the form

(3) with L = exp ((log N)O(l)) and n = (log N)°0),

Open Problem 12 Ezhibit an ezplicit sequence of functions f, : Ef —
{0,1} with A,_1(f) > ¢ for n = (loglog ¢)*) and a > n/logq.

By Theorem 11, for any such function, the corresponding sequence fn of
boolean versions is not in ACC.

*Green, Kdbler and Toran [11] have then showed that the results remains true with one
concrete symmetric function, namely, with MidBit function f(z1,...,r,) which computes
1 iff the middle bit in the binary representation of in is 1.
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Theorem 5 says that for random f, A,,_1(f) > \/¢/2n, which is more than
enough. The problem is, of course, to prove similar (or even much weaker)
lower bound on A,_(f) for an ezplicit function f. We have seen above how
this can be done for moderate values of k. For large k’s the situation is
harder, and so far we have only two non-trivial lower bounds for particular
explicit functions f : Ejf — {0,1}:

Ap—1(f) — oo for each fixed n as ¢ — (CFL bound)
proved by Chandra, Furst and Lipton [7], and
An_1(f) > ¢4 (BNS bound)

proved by Babai, Nissan and Szegedyin [2]. The first proof is an application
of Gallai’s theorem from Ramsey theory. The second derives an upper bound
on the discrepancy disc,—1(f) of f on (n — 1)-closed sets; the inequality
(1) then gives the desired lower bound on A,_;(f). Let us look at these
techniques in more details.

7.1 The CFL Bound: Coloring Spheres

Let us first observe that, when dealing with A, _1(f), we are actually dealing
with special colorings of spheres in E7.
A sphere around a € Ef is a set S of n vectors

S=A(ar,...,a;-1,b;,i11,...,a,) : by # a;,i=1,...,n}.

The sphere® S is specified by two vectors: the center a, and the character
b= (b1,...,b,); they must differ in all coordinates. Thus, there are exactly
(¢ — 1)" spheres around each vector, and each vector belongs to at most
n(q — 1) spheres.

Say that a coloring x : E} — [r] respects a function f : Ef — {0,1} if
it uses different colors for vectors in f~1(0) and f~1(1) i.e if f(a) # f(b)
implies x(a) # x(b).

Proposition 13 A, _i(f) is the minimal number r for which there exists
an r/-coloring X t Ej — [r] such that

(1) x respects f, and

(2) if some sphere is monochromatic then its center has the same color.

5A sphere should not be mixed with Hamming sphere of radius one which is uusally
defined as a set of all (¢ — 1)" vectors (ai,...,ai—1,bi,ait1,...,a,) with 1 <1 < n and
b; € EZ' — {(11}
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Proof. A set A CE} is (n — 1)-closed iff A contains no sphere with center
outside A. 1

ExaMPLE 1. Take n = 2. The hypercube Eg is a complete graph on ¢ vertices.
Define f : E} — {0,1} by: f(z,y) = 1iff z = y. Then Ay(f) = ¢. To see
this take any coloring x : Eg — [q¢ — 1]. By Pigeonhole principle, at least
one color class x~!(7) contains two edges (z,z) and (y,y) with z # y. These
two vectors form a sphere around the vector (z,y). By (2), x(z,y) = x(z,z)
which means that y does not respect f.

ExAMPLE 2. Fix a vector a € E, and let § be the set of all spheres around
a. We have many such spheres, namely, |S| = (¢ — 1)". How many colors
we need in order to leave no of these spheres monochromatic? The answer
is: two colors are enough. Define the coloring x : Ef — [2] by x(z) = 0if z
differs from a exactly in the first coordinate, and x(z) = 1 otherwise.

ExAMPLE 3. Consider the hyperplane P, ,, = {(21,...,2,) : 214+...+ 2, =
q} in Ey, and let fy, be the characteristic function of this hyperplane. It is
proved in [7] that

Ay—1(fyn) — oo for each fixed n as ¢ — o0 (4)

Proof. Let us say that a sphere S C Ej around a vector a is nice if its
characteris a + A = (a1 + A, -+, an, + ) for some A # 0. A ball is a sphere

with its center. Gallai’s theorem (see, e.g. [10]) says that:

For every v and n there exists a p = p(n,r) such that every r-coloring
of E} leaves at least one nice ball monochromatic.

With this theorem at hand, (4) can be derived as follows. Fix an arbi-
trary n € IN and assume to the contrary that there exists an r such that
Ap—1 (fyn) < 7 for all ¢ € IN. By Proposition 13, for every ¢ there exists a
coloring x : P, ,, — [r] which leaves no sphere in the plane P, , monochro-
matic (since centers of spheres in P, ,, lie outside P, ). Take p large enough
and ¢ = np. Then there is a bijection v : E;}_l — P, , which sends a vector
a=(ay,...,0n0-1)€ Eg_l to the vector (a1,...,a,-1,¢ — > a;) € P, ,. This
bijection and the coloring x : P, — [r] induce the r-coloring x’ of EZ~" by
¥(a) = x (v(a)).

By Gallai’s theorem, there exists an integer p = p(n,r) such that every
r-coloring X' : Ef ™1 — [r] leaves at least one nice ball B C EZ~' monochro-
matic. Simple but crucial observation is that every nice ball in the hypercube
E;L_l corresponds to a sphere in the hyperplane P, ,. Namely, if a € Eg_l
is the center and a + A the character of the ball B, then the corresponding



15

sphere S around the vector @ = (ay,...,a,-1,¢ — > a; — \) with the char-
acter a + A lies in P, ,. By our assumption, the coloring x leaves no sphere
in P, , monochromatic. That is x(5) # const. But then also x'(B) # const,
a contradiction with Gallai’s theorem. 0

7.2 The BNS Bound: Bounding the Discrepancy

Recall that the discrepancy, disc4(f), of a function f :E} — {-1,1} on a
set A C Ey is the absolute value of the sum .., f(z), and that Ag(f) >
q"/disci(f) where discy(f) is the maximum of disc4(f) over all k-closed
subsets A C E} (see Section 4).

For an index i € [n] and a constant w € E;, let fi,, =
f(z1,. ., Ziz1, 4, Zig1, ..., 2,) denote the corresponding subfunction of f.
If f depends on n variables then f;_,, depends on at most n — 1 variables.
The simplest way to estimate the discrepancy is to do this by induction on
the number of variables n. The basic trick used in [2] is actually the following
recursion.

Lemma 14 For every function f :E} — {—1,1} and every indez i € [n],

1/2

disc,_1 (f) < [¢"7" Z discr—o(fisu * fimsw) . (5)

u,UEEq

Proof. Take a (n — 1)-closed set A C Ef for which disc,_1(f) = disca(f),
and let ® = [[7_; ¢; be the corresponding generalized (n — 1)-CNI. The
only we know about these functions is that ¢; (j € [n]) does not depend on
the j-th variable and that A = ®~!(1). Then

-

uEEq T

disc,—1(f) = disca(f) =

= Z:h(x)

- n—1
where for each & = (21,..., 21, %ig1, ..., 70) €EJ7Y,

h(Z) = ¢i(T) <

Zfz—)u(f) ) q);'—m(f)

Zfz—m(f) ) <I);'—>u(f)

and ¢, = H‘];ﬁz ¢_7
By Couchy-Schwarz inequality
2

[disco_: ()] = lz W) <q" T IoRE <Y

-
xr

Zfi—m *Jimw Q;'—m @

!

= |t
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where, for each pair u,v € E, the inner sum is < discp—o( fimu - fisy) since
the function ®/_, - ®!_, is a generalized (n — 2)-CNF, and hence, defines
an (n — 2)-closed subset of EJ =", I

Let, as before, m = [log ¢| 4 1. For an integer z € E,, let & C [m] denote
the set of those positions on which the standard binary code of z has 1.
Keeping this bijectionE, 3 z «— % € [m] in mind, the function ”generalized
inner product” fp, n : Ef — {—1,1}is defined by: fim n(21,...,2,) = 1 <=
|#10+:Nd, | = 1(mod 2). That is, f, ., computes 1iff the number of positions
where all the (binary codes of ) inputs have 1, is odd. For f = f,, , and any
two constants u,v € E,, the product fi, - fis, coincides® with Jiw i1
where m,,, = |@\ 9| + |# \ @|. Moreover, for each i € [m], there are exactly
(T) pairs u, v for which m,, = 7. Using this property and the recursion (5),
one obtains the recursion

m 1/2
. n— my .
discp—1 (frm,n) < |¢ ! Z < . )dlSCn_Q (fm_l)] . (6)
=0
This gives the estimate disc,—1 (fr,n) < (pn)™ where p,, is given by the
recursion: 3 = 0 (since fy, 1(2) is simply the parity of z) and p, =

V271 (14 pp—1). This is because by (6),

1/2

. 1/2

discn—l (fm,n) S

It is easy to verify by induction on n that p, < 2" — 27", Thus,

At (Fmm) > ¢ /discuor (Fmm) > 2™/ ()™ > (1 _ 2—2n,)‘m
exp (Q(m/4™)) = ¢4,

vV

8 Limits for Small Families F

Recall that k-limits are F-limits with F being the whole family of k-subsets
of [n]. Let us now look what happens if we take only small families.

Definition. For a function f :E} — {0,1},let Ag,(f) denote the minimal
possible number of blocks in a partition of Ef such that f is constant on
each block and

8This is the main and the only (!) property of the Generalized Inner Product used.
Thus, similar lower bounds of A,,_;(f) can be proved in the same way for any function f
which has products fi_. - fi—, among its subfunctions.
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(%) each block is F-closed for some F C [n]® with |F| = £.

The degree of a family F C [n]* is the maximal number of sets in F with
non-empty intersection. Let AJ(f) denote the corresponding measure with
() replaced by

(+*) each block is F-closed for some F C [n]* with deg(F) < r.

Following the proof of Theorem 1 in [6], one can derive the following
reduction for branching programs. The depth of a branching program is the
length of a longest s-t path. A program is read-r-times if each variable in
each s-t path appears no more than r times.

Theorem 15 Suppose that f :E} — {0,1} has a non-deterministic branch-
ing program of size L and depth 'I'. Then, for any k,

L> <Ak,£(f)>1/£

where { = T/ k. Moreover, if the program is read-r-times then the same holds
with Ay ¢(f) replaced by AL(f).

Proof. (Sketch). Let P be a non-deterministic branching program which
computes f and has size L and depth 1. With each s-t path pin P associate
the sequence wy,...,wy ({ = T/k) of its nodes (the "trace” of p): wy = s,
wy = t and for each 1 < ¢ < {, the node w; is selected as follows. Take
w; to be the first node u of an edge (u,v) in p after w;—y, for which the
following holds: the function ¢,,_, , computed by a subprogram of P with
w;—1 as start and u as final node, depends on < k variables and ¢, , .
depends on > k variables. In such a way, each trace defines a generalized
E-CNF ¢y A -+ A ¢y. There are at most L’ traces. Therefore, f is an OR
of at most L’ generalized k-CNF’s, and thus, Apo(f) < L* which gives the
desired lower bound on L. 1

One of (many) long-standing problems in complexity theory is to exhibit
an explicit function f, any non-deterministic log-space machine computing
which should require super-linear time. By Theorem 15, this could be re-
solved by proving good lower bounds on Ay 4( f). If f has a non-deterministic
log-space machine then f has a non-deterministic branching program of size
L < nPM), The time 1" is the depth of this program. By Theorem 15,7 > k-{

for all k, ¢ satisfying £ = Q (M> .

logn
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Open Problem 16 Ezhibit an explicit sequence of functions f, : Ef —

{0,1} such that { = Q (%) for some k,{ satisfying k - £ = w(n). By
Theorem 15, any non-deterministic log-space machine computing such f,

requires time 7" = w(n).

Thus, here both A and k& must be large. The only relaxation is that
we have to consider only small subfamilies F of [n]*. We need therefore
arguments for the following generalized ”diagonalization problem”:”

Given integers k and [, exhibit an explicit set U C Ej such that in
every partition of U into "small” number of blocks, at least one block

is F-closed for no family F C [n]* with |F| = (.

It is not clear how to diagonalize using only the knowledge that F has few
sets. This can be done, however, if we know more. Namely, if these sets do
not overlap much, i.e. if F has sufficiently small degree.

For A C E%, let dist(A) be the minimal Hamming distance between two
different vectors in A. For any d € IN there are explicit sets U C {0,1}"
with dist(U) = 2d + 1 and |U]| > 2"/(n + 1)* (BCH codes, for example).
The lemma bellow says that no large subset of U is closed w.r.t. families
of small degree, and hence, A7L(U) must be large®. Similar ”diagonalization
lemma” for small degree families was used in [14] to prove that some linear
code functions require exponential the size non-deterministic read-r-times
branching programs.

Lemma 17 Let A CE}, F C [n]* and r = deg(F) < n. Suppose that

Al > (7)

I

with a = (%)T, B=1-% andd = (dist(A)—1)/2. Then A is not F-closed.

e

Proof. Let F = {S1,...,5,} and assume to the contrary that A is F-
closed. Note that m < n - deg(F)/k = nr/k because each element of [n]
belongs to at most deg(F) sets of F. The proof consists of two stages. We
first prove that A must be H-closed for some family H containing only two

TOf course, this makes sense only if, for some F C [n]* with |F| < (:), we can prove
something better as for F = [n]*, the case considered in previous sections.

#Namely, NU) > (aﬁzz )d with parameters o and 3 defined in Lemma 17
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"sufficiently disjoint” sets, and prove that it is not possible if |A| is large
enough to satisfy (7).

Our first goal is to show that A is H-closed for some family H = {S5,7'}
containing only two sets S, T C [n] such that |[S\T| > an and |T'\ S| > fn.
Take uniformly at random a subset I C {1,...,m} with |I| = r = deg(F),
and consider two (random) sets S = U;erS; and T’ = U;gr95. Since each point
z € [n] can belong to at most r of the sets S,...,S5,, this point belongs
to S\ T with probability at least (T)_l > . This implies that the mean of
|5\ T is at least an. Fix a set [ for which |5\ 7| > an. Since |S| < kr, we
conclude that |7\ S| = n — |S| > fn. Moreover, A is {5, T }-closed.

Split now the set A into p < 215771 blocks Ay, .. ., A, such that all the
vectors in one block coincide on S N7T. Let I'y(n) be the number of vectors
in a Hamming ball of radius d in E}, i.e. Tg(n) = 1+ S0, (7) > (7). Any
two vectors of A differ in at least 2d + 1 positions. Hence, if we fix the values

of some ¢ coordinates then no more than 2"~"/T';(n — t) of all 2"~* possible
extensions can be in A. Since the whole set A was {5, 7'}-closed, each block
A;is {S\T,T\ S}-closed. Thus, for every 1,

A < ‘A | ‘A < 2IT\S| 2IS\T|
ST e\ S La(IS\ T
and hence, [A| = 37_, [A;] < 2"/Tg(an)l'q(Bn), a contradiction with (7).

0
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