\( \def\<#1>{\left<#1\right>} \newcommand{\OR}[1]{\mathrm{OR}(#1)} \newcommand{\XOR}[1]{\mathrm{XOR}(#1)} \newcommand{\SUM}[1]{\mathrm{SUM}(#1)} \newcommand{\Geq}{\succcurlyeq} \newcommand{\Leq}{\preccurlyeq} \newcommand{\co}[1]{\overline{#1}} \newcommand{\rk}{{\rm rk}\,} \newcommand{\oA}{\overline{A}} \newcommand{\oB}{\overline{B}} \newcommand{\oM}{\overline{M}} \newcommand{\pr}[1]{\mathrm{rk}_+(#1)} \newcommand{\br}[1]{\mathrm{rk}_{\lor}(#1)} \newcommand{\FF}{\mathbb{F}_2} \newcommand{\dec}[1]{\chi(#1)} \newcommand{\Dec}[2]{\chi_{#2}(#1)} \newcommand{\nc}[1]{\mathfrak{nc}(#1)} \newcommand{\cc}[1]{\mathfrak{c}(#1)} \newcommand{\NN}{\mathbb{N}} \newcommand{\RR}{\mathbb{R}} \newcommand{\FF}{\mathbb{F}} \newcommand{\f}{\mathcal{F}} \newcommand{\Un}[1]{L(#1)} % Minkowski complexity \newcommand{\Unr}[2]{L_{#2}(#1)} \newcommand{\Unn}[1]{L^*(#1)} \newcommand{\gf}[1]{\mathrm{GF}(#1)} %\newcommand{\gf}[1]{\FF_{#1}} \newcommand{\cont}[1]{A_{#1}} \newcommand{\arithm}[1]{\mathrm{Arit}(#1)} \newcommand{\Nor}{\mu} % norm without argument \newcommand{\nor}[1]{\Nor(#1)} \newcommand{\nnor}[2]{\Nor_{#2}(#1)} \newcommand{\compl}[1]{Y_{#1}} \newcommand{\pr}[1]{X_{#1}} \newcommand{\mm}{p} \newcommand{\a}{b} \newcommand{\skal}[1]{\langle #1\rangle} \def\bar#1{\underline{#1}} \newcommand{\mon}[1]{\mathrm{mon}(#1)} \newcommand{\ddeg}[2]{\#_{#2}(#1)} \newcommand{\err}{\epsilon} \newcommand{\bal}{\gamma} \newcommand{\bbal}{\gamma} \newcommand{\Binom}[2]{E^{#1}_{#2}} \newcommand{\sel}[2]{E^{n}_{#1,#2}} \)

$(1,1)$-thin sets are Sidon sets

Let $A\subset\NN^n$ be a $(1,1)$-thin set. Our goal is to show that $A$ is a Sidon set. The argument is due to Igor Sergeev.

Assume that $A$ is not a Sidon set. Then there are vectors $a,b,c,d\in A$ such that $a+b=c+d$ but $c\not\in\{a,b\}$. To show that then the set $A$ is not $(1,1)$-thin, we have to show that there exist vectors $x\neq x'$ and $y\neq y'$ in $\NN^n$ such that $x+y=a$, $x'+y'=b$ and $\{x,x'\}+\{y,y'\}\subseteq A$. We define the desired vectors componentwise.

If $a_i < c_i$ then take $x_i =0$, $x'_i=c_i-a_i$, $y_i=a_i$ and $y'_i=d_i$ ($=a_i-c_i+b_i$). If $a_i\geq c_i$ then take $x_i =a_i-c_i$, $x'_i=0$, $y_i=c_i$ and $y'_i=b_i$ ($=c_i-a_i+d_i$). Then all four vectors $x,x',y,y'$ belong to $\NN^n$, vectors $x+y=a$ and $x'+y'=b$ belong to $B$, and the ``cross-vectors'' vectors $x+y'=d$ and $x'+y=c$ belong to $A$. Moreover, $c\neq a$ implies $x\neq x'$, and $c\neq b$ implies $y\neq y'$. $\Box$

Back to "Notes on Monotone Arithmetic Circuits".