PACT • analysis •

- People
- Activities
- Context
 - Technologies

THIRD EDITION

Interactive system design

Dr Kristina Lapin 2 lecture Human Computer Interaction

Aims

- Activities and technologies
- The main characteristics of people

 relevant to designing interactive systems
- The main issues of activities
 and the contexts in which they occur
- The key features of interactive technologies

PACT analysis

• People

- Activities
- Context of use
- Technologies

Physical differences

- Physical characteristics: height, weight
- Senses: sight, hearing, touch, smell, taste

Source of images: An innocent visit to a Thailand ATM sparks a new meme

Physical differences

Colour blindness

 inability to distinguish red and green colours affects ~8% males

- Short-sightedness, long-sightedness
- Hearing and finger dexterity impairements
- Large fingers vs small buttons

Ergonomics

- The term was coined in 1948 to describe the study of the relationships between people and their environment.
- Multidisciplinary discipline includes
 - the working environment
 - safety issues
 - anatomy and physiology
 - psychology

Psychological differences

- Different spatial abilities
 - -Good ability help easier navigate in websites
 - Designers should design for people with poor ability
 - Provide good signs and clear directions
 - Language differences
 - -Cultural differences

Mental model

Norman's system image (Benyon, 2013, p. 31)

- The understanding and knowledge of using IT
 - Incomplete
 - people understand some parts better that others
 - unstable
 - people can forget details
- Develop through interacting with systems

Social differences

- the reason for use technologies
 - The goals and motivations in using technology
- Beginner, intermediate and expert users
- Motivations to learn and use particular system
 - beginner needs to be guided
 - experts use a system regularly and learn all sorts of details
 - intermediate need to remember how to use

USER NEEDS ANALYSIS: PERSONAS AND SCENARIOS

Different experience levels

Beginners

- Need extra help fro the program until they became intermediates
- They may not recall from use to use exactly which command is needed to act on a particular object,
 - but they will definitely remember the relationships between objects and actions.

Intermediates

- need access to tools.
 - They don't need scope and purpose explained to them because they already know these things
 - tooltips
- know how to use reference materials.
 - They are motivated to dig deeper and learn, as long as they don't have to tackle too much at once

Experts

- demand faster access to their regular working set of tools, which may be quite large.
 – want shortcuts to everything
- seek to learn more and to see more connections between their actions and the product's behavior and representation.
- appreciate new, powerful features.

People

- Context of use
- Technologies

- Temporal aspects
- Cooperation
- Complexity
- Safety-critical
- The nature of content

- Temporal aspects
 - frequency
 - Frequent tasks easy to do
 - Infrequent tasks easy to learn or remember how to do
 - Time pressure
 - Quiet or busy
 - Single or continuous actions
 - Can be interrupted?
 - If Yes let user find their place
 - Acceptable response time

- Cooperation
 - One or more users?
 - For collaborative activities
 - Awareness
 - Coordination
 - Communication

- Complexity
 - Well-defined task
 - can be accomplished by steo by step design
 - for a vague activity people have to be able
 - to browse around
 - see different types of information
 - move from one think to another

•

- Safety-critical aspects
 - any mistake could result in in an injury or serious accident
 - designers must pay attention to ensuring that mistakes do not have a serious effect
- Designers must
 - think what happens when people make mistakes and errors
 - design for that circumstances

Activities: Content

- Data requirements
 - What is input?
 - large/modest/small amount of required data?
 - How to input?
 - What is output?
 - alphanumerical data, video records, other media
- good content:

- accurate, up to date, relevant, good presented

The physical context

- Environment in which activity happens
- Physical environment
 - temperature, humidity, atmospheric pressure, lightlevels, noise, ..

Social contexts

- Social environment
 - privat issues
 - individual or group activity

Organisational contexts

- Changes in technologies alter communication and power structures
- Automation can have affects
 - suxh as deskilling

Technologies

- Input devices
 - switches and buttons facilitate instructions
 - take up space
 - for alphanumerical input keyboards

www.shutterstock.com · 114427102

QWERTY keyboard

- 1868
- Christopher Latham Sholes
- solved the jams when the keys were struck
- 150 words per min

QWERTY layout

Without SHIFT

Technologies

- Input devices
 - touch screens
 - pointing devices, e.g. mouse, stylus
 - trackball
 - joystick

Microsoft surface

Technologies

- Input devices
 - gestures
 - QR codes

Microsoft Kinnect

Output technologies

2D and 3D printers

Flexible organic light-emitting diode

Haptic technologies

Communication

- Between people and between devices
 - Bandwidth and speed are critical
 - Wired with fibre-optic cables
 - The fastest communication
 - Wireless, wifi
 - quite limited in range
 - need to be within a few metres
 - 4G fast and wide coverage

– Bluetooth, NFC

Content

- Good content
 - accurate, up to date, relevant and well presented
- Characteristics of the data influence input methods
 - Barcodes for data that does not change often
 - Touchscreens for a few options to choose from
 - Speech input
 - if there is no noise and few commands to enter

Scoping the problem with PACT

- Right mix
 - of technologies
 - to support activities
 - being undertaken by people
 - in different contexts

Example: access to university laboratories

- People
 - students, lecturers, technicians
- Activities
 - enter some form of security clearance and open the door
- Contexts
 - indoor activity, people may carry books, in a crowd,
- Technologies
 - small amount of data has to be entered quickly
 - the output must be clear
 - accessible for people in wheelchairs

Summary

- People: physical, psychological and usage
- Activities: temporal, cooperation, complexity, safety-critical, content
- Contexts: physical, social, organizational
- Technologies: input, output, communication and content
- Undertaking a PACT analysis of a situation is a useful way of scoping a design problem.

Readings

- David Benyon, Phil Turner, Susan Turner. Designing Interactive Systems: People, Activities, Contexts, Technologies. Addison Wesley, 2005, 2014. chapter 2: PACT framework
- Preece, Rogers, Sharp. Interaction Design: Beyond HumanžComputer Interaction, Wiley. Chapter 1. Good and poor design.