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Abstract. We find three positive integers x0, x1, x2 satisfying gcd(x0, x1, x2) = 1 such
that the tribonacci-like sequence (xn)

∞

n=0 given by xn+1 = xn + xn−1 + xn−2 for n > 2
consists of composite numbers only. The initial values are x0 = 99202581681909167232,
x1 = 67600144946390082339, x2 = 139344212815127987596. This is a natural extension of a
similar result of Graham for the Fibonacci-like sequence.

1. Introduction

Let S(x0, x1, x2) = (xn)
∞

n=0 be a sequence of integers satisfying the ternary recurrence
relation

xn+1 = xn + xn−1 + xn−2 (1.1)

for n = 2, 3, 4, . . .. The values of x0, x1 and x2 determine the sequence S(x0, x1, x2). If x0 = 0,
x1 = 0, and x2 = 1, then S(x0, x1, x2) is a classical tribonacci sequence. This sequence has
been examined by many authors. See, for example, [5, 8, 11]. The aim of this paper is to
find three positive integers A, B, and C satisfying gcd(A,B,C) = 1 such that the sequence
S(A,B,C) contains no prime numbers.

In general, it is difficult to say whether a given integer sequence contains some prime (or
composite) numbers or not. In 1960, Sierpiński [9] proved that there exist infinitely many
odd integers k such that k · 2n + 1 is composite for every n ∈ N. Two years later, Selfridge
(unpublished) showed that 78557 is a Sierpiński number, i.e., 78557 · 2n + 1 is composite for
each n ∈ N. However, after extensive computer calculation it has not yet been proven that
78557 is the smallest Sierpiński number (see, e.g., [3, Section B21], [14, 15]).

The main motivation of this paper is an old result of Graham [2]. He found a sequence
given by some initial values x0, x1 with gcd(x0, x1) = 1 and the binary recurrence

xn+1 = xn + xn−1

for n = 1, 2, 3, . . . that contains only composite numbers. Graham’s pair (x0, x1) was

(331635635998274737472200656430763, 1510028911088401971189590305498785).

Several authors (see [6, 7, 12]) made some progress in finding smaller pairs. Currently, the
smallest known such pair (in the sense that max(x0, x1) is the smallest positive integer) is due
to Vsemirnov [10]

(x0, x1) = (106276436867, 35256392432).

The complete analysis of a binary linear recurrence sequence of composite numbers is given in
[1]. The main result of [1] is the following: if (a, b) ∈ Z

2, where b 6= 0 and (a, b) 6= (±2,−1),
then there exist two positive relatively prime composite integers x0, x1 such that the sequence
given by xn+1 = axn + bxn−1, n = 1, 2, . . . , consists of composite numbers only.

As pointed out in [1], all these results are based on the fact that the Fibonacci sequence is
a regular divisibility sequence, i.e., F0 = 0 and Fn | Fm if n | m. However, by a result of Hall
[4], there are no regular divisibility sequences in case S(0, x1, x2) for any x1, x2 ∈ Z.
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In this paper we shall overcome this difficulty and prove the following result.

Theorem 1.1. If

x0 = 99202581681909167232,

x1 = 67600144946390082339,

x2 = 139344212815127987596,

then gcd(x0, x1, x2) = 1 and the sequence S(x0, x1, x2) contains no prime numbers.

As the proof of this theorem is quite long, we will first prove two auxiliary lemmas. In
Lemma 2.2, we give a sufficient condition for the sequence (yn)

∞

n=0 ≡ S(0, a, b) (mod p) under
which ykm ≡ 0 (mod p), where p is a prime number, m > 2 and a, b ∈ Z. The notation
(yn)

∞

n=0 ≡ S(0, a, b) (mod p) means “for every n > 0, yn ≡ S(0, a, b)n (mod p)”. In Lemma
2.3 we discuss how to choose y1 and y2 so that the condition of Lemma 2.2 would be satisfied.
In Section 3 our main result will be proved.

2. Auxiliary Lemmas

We first observe one elementary property of the tribonacci-like sequence.

Lemma 2.1. If (un)
∞

n=0 = S(a, b, c), (vn)
∞

n=0 = S(a′, b′, c′), and (zn)
∞

n=0 = S(a+a′, b+ b′, c+
c′), then zn = un + vn for all n > 0.

The proof of this fact is by a trivial induction.
Define two sequences (sn)

∞

n=0 = S(0, 1, 0) and (tn)
∞

n=0 = S(0, 0, 1). Let p be a prime number
and let (yn)

∞

n=0 ≡ S(0, a, b) (mod p) for a, b ∈ Z. Lemma 2.1 implies

yn ≡ sna+ tnb (mod p). (2.1)

Lemma 2.2. Let p be a prime number and let (yn)
∞

n=0 ≡ S(0, a, b) (mod p) with some a, b ∈ Z.

Suppose that m > 2 is an integer. If ym ≡ y2m ≡ 0 (mod p) then ykm ≡ 0 (mod p) for

k = 0, 1, 2, . . ..

Proof. Let

A =





1 1 0
1 0 1
1 0 0



 and Yn = (yn+2, yn+1, yn).

Then the recurrence relation yn+3 = yn+2 + yn+1 + yn can be rewritten in the matrix form
Yn+1 = YnA, for n = 0, 1, 2 . . .. In particular, Yn = Y0A

n and

Ykm = (ykm+2, ykm+1, ykm) = (y2, y1, y0)(A
m)k. (2.2)

Assume, that y0 ≡ ym ≡ y2m ≡ 0 (mod p). If the vector Y0 (mod p) is an eigenvector of Am

(mod p), then ykm ≡ 0 (mod p) by (2.2). If not, then Ym (mod p) and Y0 (mod p) (considered
as vectors over the finite field Z/pZ) are linearly independent, hence form a basis for the vector
space V = {(u, v, 0)} ⊂ (Z/pZ)3. Since Y2m = YmAm modulo p is also in V by assumption, we
have that V Am ⊂ V . Therefore, by induction, Ykm (mod p) is in V for k = 0, 1, 2, . . .. Hence,
ykm ≡ 0 (mod p). �

Lemma 2.3. Let p be a prime number. Suppose that m > 2 and smt2m−s2mtm ≡ 0 (mod p).
Then there exist a, b ∈ Z such that at least one of a, b is not divisible by p and

skma+ tkmb ≡ 0 (mod p)

for k = 0, 1, 2, . . ..
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Proof. Set yn = sna + tnb. Since y0 = s0a + t0b = 0, by Lemma 2.2, it suffices to show that
there exist a, b such that ym ≡ 0 (mod p) and y2m ≡ 0 (mod p). Our aim is to solve the
following system of linear equations:

{

sma+ tmb ≡ 0 (mod p),

s2ma+ t2mb ≡ 0 (mod p).
(2.3)

If sm ≡ tm ≡ s2m ≡ t2m ≡ 0 (mod p), then we can choose a = b = 1. Suppose that tm 6≡ 0
(mod p) (the proof in the other cases, when p does not divide sm, s2m or t2m, is the same).
Set a = 1, b = −t−1

m sm where t−1
m denote an integer for which tmt−1

m ≡ 1 (mod p). It follows
easily that the first equation of (2.3) is satisfied. Then the second equation is equivalent to

−s2mtm + smt2m ≡ 0 (mod p). (2.4)

Hence, by the condition of the lemma, (2.4) is true, which completes the proof of the lemma.
�

3. Proof of Theorem 1.1

Consider the following table:

i 1 2 3 4 5 6 7 8 9 10 11
mi 2 5 6 8 10 12 15 20 24 30 40
ri 0 0 5 7 9 9 13 17 3 1 27

Table 1

One can verify that every integer belongs to at least one of the arithmetic progressions

Pi = {mik + ri, k ∈ Z}, i = 1, 2, . . . 11. (3.1)

In other words, the integers mi, ri are chosen so that P1, P2, . . . , P11 is a covering system of Z,
i.e.,

Z =

11
⋃

i=1

Pi. (3.2)

To prove (3.2) it is enough to check that any number between 1 and gcd(m1,m2, . . . ,m11) =
120 is covered by at least one progression (3.1).

We are interested in the differences smi
t2mi

− s2mi
tmi

(i = 1, 2, . . . , 11).
Let us fix i ∈ {1, 2, . . . , 11}. As we can see from Table 2, each prime number pi divides the
corresponding difference smi

t2mi
− s2mi

tmi
. By Lemma 2.3, for every pair (pi,mi) we can

choose ai, bi ∈ Z so that at least one of ai, bi is not divisible by pi and

skmi
ai + tkmi

bi ≡ 0 (mod pi) (3.3)

for k = 0, 1, 2, . . ..
Next, we shall construct the sequence (xn)

∞

n=0 = S(x0, x1, x2) satisfying

xn ≡ smi−ri+n ai + tmi−ri+n bi (mod pi) i = 1, 2, . . . 11 (3.4)

for n = 0, 1, 2, . . .. Set

Ai = smi−ri
ai + tmi−ri

bi,

Bi = smi−ri+1 ai + tmi−ri+1 bi,

Ci = smi−ri+2 ai + tmi−ri+2 bi,
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i pi mi |smi
t2mi

− s2mi
tmi

|
1 2 2 2
2 29 5 29
3 17 6 2 · 17
4 7 8 26 · 7
5 11 10 2 · 11 · 29
6 107 12 23 · 17 · 107
7 8819 15 29 · 8819
8 19 20 23 · 11 · 19 · 29 · 239
9 1151 24 26 · 7 · 17 · 107 · 1151
10 1621 30 2 · 11 · 17 · 29 · 1621 · 8819
11 79 40 26 · 7 · 11 · 19 · 29 · 79 · 239 · 35281

Table 2

for i = 1, 2, . . . , 11. Since the sequence (xn)
∞

n=0 is defined by its first three terms, it suffices to
solve the following equations:

x0 ≡ Ai (mod pi),

x1 ≡ Bi (mod pi),

x2 ≡ Ci (mod pi),

(3.5)

for i = 1, 2, . . . , 11. The values of ai, bi, and Ai (mod pi), Bi (mod pi), Ci (mod pi) for i =
1, 2, . . . 11 are given in Table 3.

i 1 2 3 4 5 6 7 8 9 10 11
ai 1 1 1 1 1 1 1 1 1 1 1
bi 0 21 4 5 5 14 2994 7 858 623 61
Ai 0 0 1 1 1 15 2994 8 43 95 41
Bi 1 8 4 5 5 30 2995 16 1127 0 50
Ci 0 23 5 6 6 59 5990 12 1132 1556 50

Table 3

By the Chinese Reminder Theorem (see, e.g., in [13, Theorem 1.6.21]), we find that the
system of congruences (3.5) has the following solution

x0 = 99202581681909167232,

x1 = 67600144946390082339,

x2 = 139344212815127987596.

Moreover, we have gcd(x0, x1, x2) = 1.
By (3.3) and (3.4), pi divides xn if n ≡ ri (mod mi), where i ∈ {1, 2, . . . , 11}. Since

{Pi, i = 1, 2, . . . , 11} cover the integers, we see that for every nonnegative integer n there is
some i, 1 6 i 6 11, such that pi divides xn. All prime divisors pi are relatively small (smaller
than mini>0 xi = x1), so pi | xn, where i = 1, 2, . . . 11, implies that xn is composite for each
n = 0, 1, 2, . . . . This completes the proof of the theorem.

Another interesting problem is to determine how far from the optimal (i.e., the smallest)
solution we are. If (a, b) is a solution of (2.3), then (ka, kb), where k ∈ Z, is also a solution
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of (2.3). So we can vary (ai, bi) in Table 3. Also, we can choose a different covering system
based on another set of primes.
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[9] W. Sierpiński, Sur un problème concernant les nombres k · 2n + 1, Elem. Math., 15 (1960), 73–74.

[10] M. Vsemirnov, A new Fibonacci-like sequence of composite numbers, J. Integer Seq., 7 (2004), Art. 04.3.7,
3 p.

[11] M. E. Waddill, Some properties of a generalized Fibonacci sequence modulo m, The Fibonacci Quarterly,
16 (1978), 344–353.

[12] H. S. Wilf, Letters to the editor, Math. Mag., 63 (1990), 284.
[13] S. Y. Yan, Number Theory for Computing, 2nd ed., Springer, Berlin, 2002.
[14] http://www.prothsearch.net/sierp.html

[15] http://www.seventeenorbust.com/stats/

MSC2010: 11B37, 11A07, 11Y55

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius, LT-

03225, Lithuania

E-mail address: jonas.siurys@gmail.com

302 VOLUME 49, NUMBER 4


