A TRIBONACCI-LIKE SEQUENCE OF COMPOSITE NUMBERS

JONAS SIURYS

ABSTRACT. We find three positive integers o, z1,z2 satisfying ged(zo,z1,22) = 1 such
that the tribonacci-like sequence (xn)ne=o given by Zn4+1 = ZTn + Tn-1 + Tn—2 for n > 2
consists of composite numbers only. The initial values are o = 99202581681909167232,
r1 = 67600144946390082339, x2 = 139344212815127987596. This is a natural extension of a
similar result of Graham for the Fibonacci-like sequence.

1. INTRODUCTION

Let S(xo,x1,72) = (xn)52, be a sequence of integers satisfying the ternary recurrence
relation

Tptl = T + Tp—1+ Tp—2 (11)

for n = 2,3,4,.... The values of xy, 1 and x5 determine the sequence S(xg,x1,x2). If 29 =0,

x1 = 0, and zo = 1, then S(zg,z1,22) is a classical tribonacci sequence. This sequence has
been examined by many authors. See, for example, [5, 8 11]. The aim of this paper is to
find three positive integers A, B, and C satisfying ged(A, B,C) = 1 such that the sequence
S(A, B,C) contains no prime numbers.

In general, it is difficult to say whether a given integer sequence contains some prime (or
composite) numbers or not. In 1960, Sierpiriski [9] proved that there exist infinitely many
odd integers k such that k- 2" 4+ 1 is composite for every n € N. Two years later, Selfridge
(unpublished) showed that 78557 is a Sierpiniski number, i.e., 78557 - 2" + 1 is composite for
each n € N. However, after extensive computer calculation it has not yet been proven that
78557 is the smallest Sierpiniski number (see, e.g., [3, Section B21], [14, 15]).

The main motivation of this paper is an old result of Graham [2]. He found a sequence
given by some initial values xg,x; with ged(zg, 1) = 1 and the binary recurrence

Tntl = Tp + Tp—1
for n =1,2,3,... that contains only composite numbers. Graham’s pair (z¢, z1) was
(331635635998274737472200656430763, 1510028911088401971189590305498785).

Several authors (see [6, 7, 12]) made some progress in finding smaller pairs. Currently, the
smallest known such pair (in the sense that max(xg,z1) is the smallest positive integer) is due
to Vsemirnov [10]

(x0,21) = (106276436867, 35256392432).

The complete analysis of a binary linear recurrence sequence of composite numbers is given in
[1]. The main result of [1] is the following: if (a,b) € Z2, where b # 0 and (a,b) # (£2, 1),
then there exist two positive relatively prime composite integers g, z1 such that the sequence
given by x,+1 = axy, + bxrn,_1, n=1,2,..., consists of composite numbers only.

As pointed out in [1], all these results are based on the fact that the Fibonacci sequence is
a reqular divisibility sequence, i.e., Fy = 0 and F,, | F,,, if n | m. However, by a result of Hall
[4], there are no regular divisibility sequences in case S(0,x1,z2) for any x1,z9 € Z.
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In this paper we shall overcome this difficulty and prove the following result.

Theorem 1.1. If
xo = 99202581681909167232,
x1 = 67600144946390082339,
o = 139344212815127987596,

then ged(zg, x1,22) = 1 and the sequence S(xg,x1,x2) contains no prime numbers.

As the proof of this theorem is quite long, we will first prove two auxiliary lemmas. In
Lemma 2.2, we give a sufficient condition for the sequence (y,)5>, = S(0,a,b) (mod p) under
which yg, = 0 (mod p), where p is a prime number, m > 2 and a,b € Z. The notation
(yn)2y = S(0,a,b) (mod p) means “for every n > 0, y, = S(0,a,b), (mod p)”. In Lemma
2.3 we discuss how to choose y; and yo so that the condition of Lemma 2.2 would be satisfied.
In Section 3 our main result will be proved.

2. AUXILIARY LEMMAS

We first observe one elementary property of the tribonacci-like sequence.

Lemma 2.1. If (up)52, = S(a,b,¢), (vp)0%, =S, V,), and (2,)32y = S(a+a’, b+, c+
), then z, = u, + v, for alln > 0.
The proof of this fact is by a trivial induction.

Define two sequences (s,,)5%, = S(0,1,0) and (,)52, = S(0,0,1). Let p be a prime number
and let (y,)02, = 5(0,a,b) (mod p) for a,b € Z. Lemma 2.1 implies

Yn = Spa + t,b  (mod p). (2.1)

Lemma 2.2. Let p be a prime number and let (y, )52y = S(0,a,b) (mod p) with some a,b € Z.
Suppose that m > 2 is an integer. If y, = yom, = 0 (mod p) then yr, = 0 (mod p) for
k=0,1,2,....

Proof. Let
110
1 00

Then the recurrence relation y,+3 = yp+2 + Ynt1 + Yn can be rewritten in the matrix form
Y1 =Y,A, forn=0,1,2.... In particular, ¥;, = Yy A" and
Yion = (Ykm+2, Ykm-+1, Yem) = (Y2, 91, Yo) (A™)F. (2.2)

Assume, that yo = ym = yom = 0 (mod p). If the vector Yy (mod p) is an eigenvector of A™
(mod p), then y,,, =0 (mod p) by (2.2). If not, then Y;;, (mod p) and Yy (mod p) (considered
as vectors over the finite field Z/pZ) are linearly independent, hence form a basis for the vector
space V = {(u,v,0)} C (Z/pZ)3. Since Yo, = Y5, A™ modulo p is also in V by assumption, we
have that VA™ C V. Therefore, by induction, Yy, (mod p)isin V for k =0,1,2,.... Hence,
Yem =0 (mod p). O

Lemma 2.3. Let p be a prime number. Suppose that m > 2 and Sy tom — Somtn,m =0 (mod p).
Then there exist a, b € Z such that at least one of a,b is not divisible by p and

Skm@ + tgmb =0 (mod p)
fork=0,1,2,....
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Proof. Set y,, = spa + tpb. Since yy = sga + tpb = 0, by Lemma 2.2, it suffices to show that
there exist a, b such that y,, = 0 (mod p) and y2,, = 0 (mod p). Our aim is to solve the
following system of linear equations:

Sma+tmb=0 (mod p), (2.3)
S9ma@ + tab =0 (mod p). ’

If s, =ty = Som = tom = 0 (mod p), then we can choose a = b = 1. Suppose that t,, Z 0
(mod p) (the proof in the other cases, when p does not divide s, Som, Or ton,, is the same).
Set a = 1, b = —t's,, where ¢! denote an integer for which t,,¢t,;! = 1 (mod p). It follows
easily that the first equation of (2.3) is satisfied. Then the second equation is equivalent to

—Somtm + Smtam =0 (mod p). (2.4)

Hence, by the condition of the lemma, (2.4) is true, which completes the proof of the lemma.
O

3. PROOF OF THEOREM 1.1

Consider the following table:

v 1123456789 ]|10]11
m; 10 112|115 |20 |24 | 30 | 40
r (0105|7199 13|17 3| 1|27

TABLE 1

ot
(@)
Qo

One can verify that every integer belongs to at least one of the arithmetic progressions

P={mik+ri,keZ}, i=12,...1L (3.1)
In other words, the integers m;,r; are chosen so that P;, P, ..., Pi1 is a covering system of Z,
ie.,
11
z=|JP. (3.2)
i=1
To prove (3.2) it is enough to check that any number between 1 and ged(mq, mo,...,m11) =
120 is covered by at least one progression (3.1).
We are interested in the differences s, tom, — Sam;tm; (1 =1,2,...,11).

Let us fix i € {1,2,...,11}. As we can see from Table 2, each prime number p; divides the
corresponding difference S, tom;, — Som,;tm;. By Lemma 2.3, for every pair (p;,m;) we can
choose a;,b; € Z so that at least one of a;, b; is not divisible by p; and

Skm,; @i + tkm;bi =0 (mod p;) (3.3)
for k=0,1,2,....
Next, we shall construct the sequence (x,)5, = S(zo,x1, z2) satisfying
Tn = Smy—ri4n Qi + tmj—ritn bi  (mod p;) i=1,2,...11 (3.4)

forn=20,1,2,.... Set
A; = Smi—r; Qi + tm;—r; bi,
Bi = spm;—r;+1 @i + tim,—r,+1 bi,
Ci = Smy—ri+2 @i + tmy—r; 42 bis
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i Pi m; |Smit2mi - 32mitmi|
1 2 2 |2
2129 | 5129
31 17 | 6 |2-17
41 7 [ 8]2°.7
51 11 | 10]2-11-29
6 | 107 | 12 | 2%-17-107
7 18819 | 15 | 29 - 8819
81 19 [20[2%-11-19-29-239
9 |1151] 24 [2°.7-17-107 - 1151
10 11621 | 30 [ 2-11-17-29-1621 - 8819
11 79 [40[2%.-7-11-19-29-79-239 - 35281
TABLE 2
for i =1,2,...,11. Since the sequence (x,), is defined by its first three terms, it suffices to
solve the following equations:
xg=A; (mod p;),
x1 = B; (mod p;), (3.5)
z2 = C;  (mod p;),

for i = 1,2,...,11. The values of a;,b;, and A; (mod p;), B; (mod p;),C; (mod p;) for i =
1,2,...11 are given in Table 3.

1t [1] 23456 7 8 9 10 |11

a; |11 (1]1(1]1 1 1 1 1 1

b; 1012145 |5|14]2994| 7 | 88 | 623 | 61

A; {0 0 [1]1]1(15]2994| 8 | 43 95 |41

B;|1|8|4|5|5130]2995|16|1127| O 50

C;10123|5[6|6[59 (5990 | 12| 1132|1556 | 50
TABLE 3

By the Chinese Reminder Theorem (see, e.g., in [13, Theorem 1.6.21]), we find that the
system of congruences (3.5) has the following solution

o = 99202581681909167232,
1 = 67600144946390082339,
T2 = 139344212815127987596.

Moreover, we have ged(xg, x1,z2) = 1.

By (3.3) and (3.4), p; divides x,, if n = r; (mod m;), where ¢ € {1,2,...,11}. Since
{P;,i = 1,2,...,11} cover the integers, we see that for every nonnegative integer n there is
some i, 1 <4 < 11, such that p; divides x,,. All prime divisors p; are relatively small (smaller
than min;>ox; = 1), so p; | p, where i = 1,2,...11, implies that z,, is composite for each
n=20,1,2,.... This completes the proof of the theorem.

Another interesting problem is to determine how far from the optimal (i.e., the smallest)
solution we are. If (a,b) is a solution of (2.3), then (ka, kb), where k € Z, is also a solution
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of (2.3). So we can vary (a;,b;) in Table 3. Also, we can choose a different covering system
based on another set of primes.
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