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Let (a,b) ∈ Z
2, where b �= 0 and (a,b) �= (±2,−1). We prove that

then there exist two positive relatively prime composite integers
x1, x2 such that the sequence given by xn+1 = axn + bxn−1, n =
2,3, . . . , consists of composite terms only, i.e., |xn| is a composite
integer for each n ∈ N. In the proof of this result we use certain
covering systems, divisibility sequences and, for some special
pairs (a,±1), computer calculations. The paper is motivated by
a result of Graham who proved this theorem in the special case of
the Fibonacci-like sequence, where (a,b) = (1,1).
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1. Introduction

The main result of this paper is the following:

Theorem 1. Let (a,b) ∈ Z
2 and let (xn)∞n=1 be a sequence given by some initial values x1 , x2 and the binary

linear recurrence

xn+1 = axn + bxn−1 (1)

for n = 2,3,4, . . . . Suppose that b �= 0 and (a,b) �= (2,−1), (−2,−1). Then there exist two relatively prime
positive integers x1 , x2 such that |xn| is a composite integer for each n ∈ N.

* Corresponding author.
E-mail addresses: arturas.dubickas@mif.vu.lt (A. Dubickas), aivaras.novikas@mif.vu.lt (A. Novikas), jonas.siurys@gmail.com

(J. Šiurys).
0022-314X/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2010.03.015

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:arturas.dubickas@mif.vu.lt
mailto:aivaras.novikas@mif.vu.lt
mailto:jonas.siurys@gmail.com
http://dx.doi.org/10.1016/j.jnt.2010.03.015


1738 A. Dubickas et al. / Journal of Number Theory 130 (2010) 1737–1749
To avoid confusion with zero and one, we call a non-negative integer n a composite number if
n �= 0,1 and n is not a prime number. The question of determining prime and composite numbers
in a given integer sequence is an old one. For instance, it is not known if there are infinitely many
primes of the form n2 +1, n ∈ N, and if there are infinitely many primes in the Fibonacci sequence Fn ,
n ∈ N, given by F1 = F2 = 1 and the recurrence relation Fn+1 = Fn + Fn−1 for n � 2. Although almost
all positive integers are composite, for some quite natural sequences, for example, [rn], where r > 1
is a rational non-integer number and n runs through the set of positive integers N, it is not even
known if they contain infinitely many composite numbers or not (see Problem E19 in [6]). The latter
question is only settled for r = 3/2, r = 4/3 in [4] and for r = 5/4 in [3]. See also [1,2] for some
related problems.

The main motivation of this paper is a result of Graham [5] who found two relatively prime posi-
tive integers x1, x2 such that the sequence

xn+1 = xn + xn−1,

n = 2,3,4, . . . , contains only composite numbers, i.e., xn is composite for each n ∈ N. Graham’s pair
(x1, x2) was

(331635635998274737472200656430763,1510028911088401971189590305498785).

Knuth [8] found the smaller pair

(x1, x2) = (62638280004239857,49463435743205655).

Wilf [11] slightly refined Knuth’s computation and found the pair

(x1, x2) = (20615674205555510,3794765361567513).

This was further reduced by Nicol [9] to

(x1, x2) = (407389224418,76343678551).

Currently, the “smallest” known such pair (in the sense that x1 + x2 is the smallest positive integer or
max(x1, x2) is the smallest positive integer) is due to Vsemirnov [10]

(x1, x2) = (106276436867,35256392432). (2)

All these results are based on the fact that the Fibonacci sequence is a divisibility sequence, i.e.,
Fn|Fm whenever n|m, and on finding a covering system ri (mod mi), i = 1, . . . , t , with the property
that there exist distinct prime numbers pi such that pi |Fmi for i = 1, . . . , t. See Section 4 for more
details. We shall also use Graham’s idea of finding an appropriate covering system for |b| = 1 and
Vsemirnov’s pair (2) in order to treat some special cases with |b| = 1 in our proof.

Let α := (a +√
D )/2 and β := (a −√

D )/2, where
√

D is defined as i
√−D for D < 0, be two roots

of the characteristic equation

x2 − ax − b = (x − α)(x − β) = 0 (3)

with discriminant

D := (α − β)2 = a2 + 4b. (4)



A. Dubickas et al. / Journal of Number Theory 130 (2010) 1737–1749 1739
By (3) and (4), we have α − β = √
D , αβ = −b and α + β = a. It is easily seen that, for each n ∈ N,

the nth term of the sequence (xn)∞n=1 defined in (1) is given by

xn = −x1β + x2

α − β
αn−1 + x1α − x2

α − β
βn−1 (5)

provided that α �= β , i.e., D �= 0. For α = β , i.e., D = 0 we have

xn = (
2x1 − x2α

−1 + n
(
x2α

−1 − x1
))

αn−1 (6)

for each n ∈ N.

Our plan of the proof of Theorem 1 can be described as follows. In Section 2 we shall examine the
following three cases: (i) D = 0; (ii) a = 0; (iii) b = −1, |a| � 2. Also, in Section 2 we show that the
condition of the theorem (a,b) �= (±2,−1) is necessary.

In case |b| � 2 we shall take x2 divisible by |b|. Then, by (1), x3 and so, by induction, all xn , where
n � 2, are divisible by |b|. The main difficulty is to show that x1 can be chosen so that xn �= 0,b,−b
for each n � 3, so that |xn| is composite. This case, |b| � 2, will be examined in Section 3. Finally, in
Section 4 we shall describe the method of covering systems and prove the theorem for |b| = 1.

It would be of interest to extend Theorem 1 to linear recurrence sequences of order d, where
d � 3. For which (a1, . . . ,ad) ∈ Z

d , where ad �= 0, one can choose d integers x1, . . . , xd satisfying
gcd(x1, . . . , xd) = 1 such that the sequence

xn+d = a1xn+d−1 + a2xn+d−2 + · · · + adxn, n = 1,2,3, . . . ,

contains only composite numbers, i.e., |xn| is a composite integer for each n � 1?
It seems likely that the complete answer to this question is out of reach. Firstly, for most linear

recurrences of order d, there are no divisibility sequences satisfying them. See, e.g., Theorem IV in the
paper of Hall [7] for one of the first results of this kind for d = 3. So, using the methods of this paper,
one will not be able to deal with the cases, where, e.g., ai ∈ {−1,0,1} for each i = 1, . . . ,d and the
characteristic polynomial of the linear recurrence is irreducible. Secondly, and more importantly, there
are no methods that would allow us to show that the cases, where the characteristic polynomial

xd − a1xd−1 − a2xd−2 − · · · − ad

is (x + 1)d or (x − 1)d , are exceptional. Already for d = 3 and, say, (a1,a2,a3) = (3,−3,1) one gets a
problem on prime values of a quadratic polynomial Z �→ Z at non-negative integer points which is
completely out of reach.

2. Several simple special cases

In this section we shall consider three special cases: (i) D = 0; (ii) a = 0; (iii) b = −1, |a| � 2.

Case (i). Since D = a2 + 4b = 0, the solution of the linear recurrence (1) is given by (6). Note that
a = 2α and b = −α2. So α is a nonzero integer. We shall split the proof into two cases |α| � 2 and
|α| = 1.

In the first case, |α| � 2, let us take two distinct primes p,q satisfying p,q > |α| and select
x1 := p2, x2 := |α|q2. Then x1, x2 are composite and gcd(x1, x2) = 1. Furthermore, writing |α| = αε,
where ε = ±1, by (6), we obtain

xn = (
2p2 − q2ε + n

(
q2ε − p2))αn−1
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for each n � 1. Clearly, |xn| is divisible by |α2| = |b| � 4 for n � 3, so |xn| is composite for each n ∈ N,
unless

2p2 − q2ε + n
(
q2ε − p2) = 0

for some n. But this equality cannot hold for n ∈ N. Indeed, if ε = −1, then

n = 2p2 + q2

p2 + q2
= 1 + p2

p2 + q2

is greater than 1 and smaller than 2, a contradiction. If ε = 1, then (n − 1)q2 = (n − 2)p2 implies
n − 1 = �p2 and n − 2 = �q2 with � ∈ Z. Hence 1 = (n − 1)− (n − 2) = �(p2 − q2), which is impossible,
because p,q > |α| � 2 yields |p2 − q2| � |52 − 32| = 16 > 1.

Suppose next that α = ±1. Then b = −α2 = −1 and a = ±2. This case is not allowed by the
condition of the theorem. Moreover, it is easy to see that in this case the sequence (|xn|)∞n=1, where
x1, x2 are composite and gcd(x1, x2) = 1, contains infinitely many prime numbers. Indeed, by (6),

xn = (
2x1 − x2ε + n(x2ε − x1)

)
εn−1

for each n � 1 and ε = ±1. Since x1 and x2 are relatively prime positive composite integers, we must
have u := 2x1 − x2ε �= 0 and v := x2ε − x1 �= 0. Moreover, gcd(x1, x2) = 1 implies gcd(u, v) = 1. So,
by Dirichlet’s theorem on prime numbers in arithmetic progressions, we conclude that |xn| = |vn + u|
is a prime number for infinitely many n ∈ N. This not only completes the proof of Theorem 1 in the
case D = 0, but also shows that the condition (a,b) �= (±2,−1) is necessary.

Case (ii). For a = 0, we have xn+1 = bxn−1 for n � 2. Let p,q > |b| be two distinct primes. Selecting
x1 := p2 and x2 := q2, we have gcd(x1, x2) = 1. Furthermore, x2k−1 = p2bk−1 and x2k = q2bk−1 for
each k � 1, so |xn| is composite for every n ∈ N.

Case (iii). The cases (a,b) = (±2,−1) and (a,b) = (0,−1) are already covered by Case (i) and
Case (ii), respectively. If (a,b) = (−1,−1) the recurrence sequence xn+1 = −xn − xn−1 satisfying the
condition of the theorem is, for example, the following periodic sequence:

9,16,−25,9,16,−25,9,16,−25, . . . .

For (a,b) = (1,−1), we have the recurrence xn+1 = xn − xn−1. Now, the periodic sequence

16,25,9,−16,−25,−9,16,25,9,−16,−25,−9, . . .

satisfies the conditions of the theorem.

3. The case |b| � 2

Lemma 2. Let d and � be two positive integers. Then there is a positive integer c and three distinct odd prime
numbers p,q, r such that pqr divides d + c2 and gcd(pqr, �c) = 1.

Proof. Given h ∈ Z and a prime number p, let ( h
p ) be the Legendre symbol. Take three distinct prime

numbers p,q, r greater than max(d, �) such that

(−d

p

)
=

(−d

q

)
=

(−d

r

)
= 1.
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(For example, one can take the prime numbers p,q, r in the arithmetic progression 4kd + 1, k =
1,2, . . . .) Then there are three positive integers c1, c2, c3 such that c2

1 ≡ −d (mod p), c2
2 ≡ −d (mod q),

c2
3 ≡ −d (mod r). By the Chinese remainder theorem, there is a positive integer c such that c ≡

c1 (mod p), c ≡ c2 (mod q), c ≡ c3 (mod r). Then c2 ≡ −d (mod pqr). This proves that pqr divides
d + c2.

Since p,q, r > �, none of the primes p,q, r divides �. Assume that p|c. Then p|(d + c2) implies p|d,
which is impossible, because p > d. By the same argument, q and r do not divide c. This completes
the proof of gcd(pqr, �c) = 1. �
Lemma 3. Let ui, vi , i = 1,2, . . . , p − 1, and s be the elements of the field Fp , where p is a prime number.
Assume that for each i at least one of ui, vi is nonzero. Then there exist u, v ∈ Fp such that at least one of u, v
is nonzero and uui + v vi �= s for each i = 1, . . . , p − 1.

Proof. Fix an index i in the range 1 � i � p − 1. We claim that there are exactly p pairs (u, v) ∈ F
2
p

for which

uui + v vi = s. (7)

Indeed, if ui = 0, then vi �= 0 and (u, sv∗
i ), where u ∈ Fp and v∗

i is the inverse element of vi in Fp ,
are the solutions of (7). By the same argument, (7) has p solutions if vi = 0. Finally, if ui �= 0 and
vi �= 0, then we can take any u ∈ Fp and the linear equation (7) has a unique solution in v. This
proves the claim.

As i runs through 1, . . . , p − 1, we have p − 1 Eqs. (7) which all together have at most p(p − 1)

distinct solutions (u, v) ∈ F
2
p . But F

2
p consists of the pair (0,0) and p2 − 1 pairs (u, v) with at least

one u, v nonzero. Since p2 − 1 > p(p − 1), there exists a pair (u, v) ∈ F
2
p as required, namely, u �= 0

or v �= 0 and uui + v vi �= s for each i = 1, . . . , p − 1. �
Lemma 4. Let c > 0, D < 0 and a be three integers. Suppose that p is an odd prime number which divides
−D + c2 but does not divide c. Then the sequence of rational integers

sn := (a + √
D )n − (a − √

D )n

2
√

D
, (8)

n = 1,2,3, . . . , is purely periodic modulo p with period p − 1. Also, no two consecutive elements of the
sequence (sn)∞n=1 can be zeros modulo p.

Proof. By (8), we have

sn =
[(n−1)/2]∑

k=0

(
n

2k + 1

)
an−2k−1 Dk,

where 00 is defined as 1. Since D ≡ c2 (mod p) and

[(n−1)/2]∑
k=0

(
n

2k + 1

)
an−2k−1c2k = (a + c)n − (a − c)n

2c
,

we find that

sn ≡ (a + c)n − (a − c)n

(mod p). (9)

2c
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Since p and 2c are relatively prime, it remains to show that, for each n � 1, we have

(a + c)n+p−1 − (a − c)n+p−1 ≡ (a + c)n − (a − c)n (mod p).

Indeed, by Fermat’s little theorem, p divides both the numbers (a + c)n+p−1 − (a + c)n = (a + c)n ×
((a + c)p−1 − 1) and (a − c)n+p−1 − (a − c)n , so p also divides their difference. This proves the peri-
odicity.

For the second statement of the lemma, assume that sn ≡ 0 (mod p) and sn+1 ≡ 0 (mod p) for
some n ∈ N. Then, by (9), (a + c)n ≡ (a − c)n (mod p) and (a + c)n+1 ≡ (a − c)n+1 (mod p). If a ≡
c (mod p) then a ≡ −c (mod p), so p divides 2c, which is not the case by the condition of the
lemma. Similarly, a and −c modulo p are distinct. Hence, from

(a − c)n+1 ≡ (a + c)n+1 ≡ (a + c)n(a + c) ≡ (a − c)n(a + c) (mod p),

we find that a + c ≡ a − c (mod p). Once again this yields p|2c, a contradiction. �
Lemma 5. Let (xn)∞n=1 be a sequence of integers given by (1), D = a2 + 4b �= 0, b �= 0, and let δ be a fixed real
number. Then xn+1 = δb for some n � 2 if and only if

x1
sn−1

2n−2
+ x2

b

sn

2n−1
= δ,

where sn is given by (8).

Proof. The roots α and β of the characteristic equation (3) are distinct, so, by (5) and α − β = √
D ,

we have

xn+1
√

D = (−x1β + x2)α
n + (x1α − x2)β

n (10)

for each n � 0. Since 2α = a + √
D and 2β = a − √

D , using (8), we find that αn − βn = 21−n
√

Dsn.

Since αβ = −b, equality (10) yields

xn+1
√

D = x2
(
αn − βn) − x1αβ

(
αn−1 − βn−1) = x221−nsn

√
D + x1b22−nsn−1

√
D.

Hence xn+1 = x1b22−nsn−1 + x221−nsn , because D �= 0. It follows that equality xn+1 = δb is equivalent
to

δ = x1
sn−1

2n−2
+ x2

b

sn

2n−1
,

as claimed. �
Lemma 6. Let (xn)∞n=1 be a sequence of integers given by (1), where a �= 0 and D > 0. Then, for each K > 0
and each x1 , there is a constant λ(K ,α,β, x1) > 0 such that by selecting the two first terms of the sequence (1)
as x1 and x2 > λ(K ,α,β, x1) we have |xn| > K for each n � 2.

Proof. Since D > 0 and a = α + β �= 0, we have |α| �= |β|. Suppose that |α| > |β|. (The proof in the
case |α| < |β| is the same.) From αβ = −b, we obtain |α| >

√|b| � 1. Hence, by (10), using several
times the triangle inequality, for n � 1, we obtain
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|xn+1|
√

D �
∣∣(−x1β + x2)α

n
∣∣ − ∣∣(x1α − x2)β

n
∣∣ = |bx1 + x2α||α|n−1 − | − bx1 − x2β||β|n−1

�
(|bx1 + x2α| − |bx1 + x2β|)|α|n−1 �

(|bx1 + x2α| − |bx1 + x2β|)|α|n−1

�
(|x2α| − |bx1| − |bx1| − |x2||β|)|α|n−1 = (|x2|

(|α| − |β|) − 2|bx1|
)|α|n−1.

Since |α|n−1 � 1 for n � 1, the last expression is greater than K
√

D provided that |x2|(|α| − |β|) >

2|bx1| + K
√

D. So the lemma holds with

λ(K ,α,β, x1) := 2|bx1| + K
√

D

|α| − |β| (11)

when |α| > |β|. Evidently, the constants b, D appearing in the right-hand side of (11) depend on α,β

too, because b = −αβ and D = a2 + 4b = (α − β)2, by (3), (4). �
Lemma 7. Let a1 � 0 and b1,b2 � 1 be integers such that no prime number p divides the three numbers
a1,b1,b2 . Then, for each K > 0, there exists an integer k1 > K such that b1k1 + a1 is a composite integer
relatively prime to b2 .

Proof. The lemma is trivial if a1 = 0. Assume that a1 � 1. Set t := gcd(b1,a1). By the condition of
the lemma, t is relatively prime to b2. By Dirichlet’s theorem about prime numbers in arithmetic
progressions, there is a t1 ∈ N such that (b1/t)t1 + a1/t is a prime number greater than b2. Then
b1t1 + a1 = t((b1/t)t1 + a1/t) is relatively prime to b2. This implies that, for any s ∈ N, the number

b1b2s + b1t1 + a1 = b1(b2s + t1) + a1

is relatively prime to b2. Of course, there are infinitely many s ∈ N for which the number b1b2s +
b1t1 + a1 is composite. It remains to take one of those s ∈ N for which k1 := b2s + t1 > K . �

We begin the proof of the theorem for |b| � 2 from the more difficult case when the discriminant
D = a2 + 4b is negative. Let us apply Lemma 2 to d := −D and � := |b|. Then, by Lemma 2, there exist
a positive integer c and three distinct odd primes p,q, r such that pqr divides −D + c2 and

gcd
(

pqr, |b|c) = 1. (12)

Our aim is to choose two composite relatively prime positive integers x1, x2 so that |b| divides x2
and xn+1 /∈ {0,b,−b} for each n � 2. Then |x1| = x1 and |x2| = x2 are composite. Also, using (1), by
induction on n we see that |b| divides xn+1 for each n � 1. Since xn /∈ {0,b,−b} for n � 3 and |b|
divides xn for n � 2, we must have |xn| > |b| for each n � 3. Hence |xn| is a composite integer for
every n � 3 too.

For a contradiction, assume that, for some n � 1, xn+2 = δb with δ ∈ {0,1,−1}. Then, by Lemma 5,
we have

x1
sn

2n−1
+ x′

2
sn+1

2n
= δ, (13)

where x′
2 := x2/b and n ∈ N. Firstly, let us choose x1, x′

2 modulo p so that

2x1sn + x′
2sn+1 �= 0, n ∈ N. (14)

This is possible by combining Lemma 4 with Lemma 3. Indeed, by Lemma 4, the sequence
sn (mod p), n = 1,2,3, . . . , is purely periodic with period p − 1. So, by Lemma 3 applied to the
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pairs (2s1, s2), (2s2, s3), . . . , (2sp−1, sp) ∈ F
2
p and s = 0, we conclude that there are x1, x′

2 ∈ Fp , not
both zeros in Fp , such that (14) holds.

Next, we shall choose x1, x′
2 ∈ Fq so that

2x1sn + x′
2sn+1 �= 2n, n ∈ N, (15)

in Fq . As above, by Lemma 4, the sequence sn21−n (mod q), n = 1,2,3, . . . , where 21−n is the
inverse of 2n−1 in Fq , is purely periodic with period q − 1. By Lemma 3 applied to the pairs
(s1,2−1s2), (s22−1, s32−2), . . . , (sq−12−(q−2), sq2−(q−1)) ∈ F

2
q and s = 1, we conclude that there are

x1, x′
2 ∈ Fq , not both zeros, such that (15) holds. By the same argument, there are x1, x′

2 ∈ Fr , not
both zeros, such that

2x1sn + x′
2sn+1 �= −2n, n ∈ N, (16)

in Fr .
By the Chinese remainder theorem, combining (14), (15), (16), we see that there exist two con-

gruence classes a1 (mod pqr) and a2 (mod pqr) such that for any integers x1 and x′
2 that belong to

the first and the second class, respectively, equality (13) does not hold for n ∈ N. Furthermore, by
Lemma 3, each prime number p,q, r divides at most one of the integers a1,a2. It remains to select
k1,k2 ∈ Z so that x1 = pqrk1 + a1 and x2 = bx′

2 = b(pqrk2 + a2) are two composite relatively prime
positive integers. Take k2 ∈ Z such that |pqrk2 + a2| > 1, bk2 > 0. Then x2 > 0 is a composite number.
Furthermore, no prime number divides the three numbers pqr, a1 and x2, because the primes p,q, r
do not divide |b|, by (12), and if, say, p|a1 then p does not divide pqrk2 + a2. Hence, by Lemma 7 ap-
plied to the triplet b1 := pqr, a1, b2 := x2, we may select k1 ∈ N so that x1 = pqrk1 +a1 is a composite
integer relatively prime to x2. This proves the theorem for |b| � 2, D < 0.

The case when D = a2 + 4b > 0 is easier. As above, we need to choose two composite relatively
prime positive integers x1, x2 such that |b| divides x2 and show that this choice leads to xn+1 /∈
{0,b,−b} for each n � 2. If |α| = |β|, then α = −β , so a = α + β = 0. This case is already settled
in Section 2. Assume next that |α| �= |β|. Take x1 := p2 and x2 := b2q, where p,q > |b| are prime
numbers and q is so large that b2q is greater than the constant λ(|b|,α,β, p2) given in (11). Then, by
Lemma 6, |xn+1| > |b| for n � 2. This completes the proof of Theorem 1 in case |b| � 2.

4. Divisibility sequences, covering systems and the case |b| = 1

We remind the reader once again that a sequence of rational integers (vn)∞n=1 is called a divisibility
sequence if vr divides vs whenever r divides s. Assume that the roots α, β of the characteristic
equation (3) are distinct α �= β. Then

un := αn − βn

α − β
∈ Z, (17)

n = 1,2,3, . . . , is a divisibility sequence. Indeed, if r|s then, setting l := s/r ∈ N, we see that

us

ur
= αrl − βrl

αr − βr
= αr(l−1) + αr(l−2)βr + · · · + βr(l−1)

is a symmetric function in α,β. Hence us/ur ∈ Z, giving ur |us. If (xn)∞n=1 is a sequence given by the
linear recurrence (1) then one can consider a corresponding divisibility sequence, by selecting u1 := 1,
u2 := a. This sequence is called the Lucas sequence of the first kind.
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From (1) and (17) one can calculate the terms of the Lucas sequence as follows

u3 = au2 + bu1 = a2 + b,

u4 = au3 + bu2 = a
(
a2 + b

) + ba = a
(
a2 + 2b

)
,

u6 = u3
(
α3 + β3) = u3

(
(α + β)3 − 3αβ(α + β)

) = a
(
a2 + b

)(
a2 + 3b

)
,

u12 = u6
(
α6 + β6) = u6

((
α3 + β3)2 − 2(αβ)3) = a

(
a2 + b

)(
a2 + 2b

)(
a2 + 3b

)(
a4 + 4a2b + b2).

To obtain the last equality we used the identity

(
a
(
a2 + 3b

))2 + 2b3 = (
a2 + 2b

)(
a4 + 4a2b + b2).

Lemma 8. If b = −1 and |a| � 4 then there exist five distinct prime numbers pi , i = 1, . . . ,5, such that p1|u2 ,
p2|u3 , p3|u4 , p4|u6 and p5|u12 .

Proof. Let p1 be any prime divisor of u2 = a, and let p2 �= 2 be any prime divisor of u3 =
a2 − 1 = (a − 1)(a + 1). Such p2 exists, because |a| � 4. Clearly, p2 �= p1. Since a2 − 2 is either 2
or 3 modulo 4, it is not divisible by 4. So a2 − 2 must have an odd prime divisor p3. Clearly, p3 �= p1.

Furthermore, p3 �= p2, because gcd(a2 − 1,a2 − 2) = 1. We select this p3 as a divisor of u4. Observing
that 9 does not divide a2 − 3, we get that there is prime number p4 �= 3 that divides a2 − 3. Since
gcd(a,a2 − 3) is either 1 or 3, this yields p4 �= p1. Also, since gcd(a2 − 1,a2 − 3) is either 1 or 2, we
may have p4 = p2 only if p2 = 2, which is not the case. So p4 �= p2. The fact that p4 �= p3 follows
from gcd(a2 − 2,a2 − 3) = 1. We select this p4 as a divisor of u6.

It remains to show that there is a prime divisor p5 of a4 − 4a2 + 1 distinct from pi , i = 1, . . . ,4.

Note that a4 − 4a2 + 1 is not zero modulo 4 and modulo 3. Hence there is a prime number p5 �= 2,3
that divides a4 − 4a2 + 1 � 44 − 43 + 1 = 193. Evidently, p5 �= p1. Writing

a4 − 4a2 + 1 = (
a2 − 1

)(
a2 − 3

) − 2

and using p5 �= 2, we may conclude that p5 �= p2, p4. Similarly, from a4 − 4a2 + 1 = (a2 − 2)2 − 3 and
p5 �= 3, we see that p5 �= p3. �

One can easily check that Lemma 8 does not hold for |a| = 3. The next lemma is very similar to
that above.

Lemma 9. If b = 1 and |a| � 2 then there exist five distinct prime numbers pi , i = 1, . . . ,5, such that p1|u2 ,
p2|u3 , p3|u4 , p4|u6 and p5|u12 .

Proof. Take any prime divisor p1 of u2 = a. Let p2 �= 2 be any prime divisor of u3 = a2 + 1. Such
p2 exists, because a2 + 1 is not divisible by 4. Evidently, p2 �= p1. Similarly, let p3 �= 2 be any prime
divisor of a2 + 2. Clearly, p3 �= p2. Since gcd(a,a2 + 2) is either 1 or 2, p3 = p1 only if they both are
equal to 2, which is not the case. So we may select this p3 as a divisor of u4. Observing next that
9 does not divide a2 + 3, we deduce that there is prime number p4 �= 3 that divides a2 + 3. Since
gcd(a,a2 + 3) is either 1 or 3, this yields p4 �= p1. Also, since gcd(a2 + 1,a2 + 3) is either 1 or 2,
we may have p4 = p2 only if p2 = 2, which is not the case. Hence p4 �= p2. As above, the fact that
p4 �= p3 follows from gcd(a2 + 2,a2 + 3) = 1. We select this p4 as a divisor of u6.

It remains to show that there is a prime divisor p5 of a4 + 4a2 + 1 which is distinct from pi ,
i = 1, . . . ,4. Note that a4 + 4a2 + 1 > 6 is not zero modulo 4 and modulo 9. Hence there is a prime
p5 �= 2,3 that divides a4 + 4a2 + 1. Evidently, p5 �= p1. Writing
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a4 + 4a2 + 1 = (
a2 + 1

)(
a2 + 3

) − 2

and using p5 �= 2, we may conclude that p5 �= p2, p4. Finally, from a4 + 4a2 + 1 = (a2 + 2)2 − 3 and
p5 �= 3, it follows that p5 �= p3. �

To illustrate Lemma 9, let us take (a,b) = (±2,1). Then u2 = ±2, u3 = 5, u4 = ±22 ·3, u6 = ±2 ·5 ·7
and u12 = ±22 · 32 · 5 · 7 · 11. Hence Lemma 9 holds with p1 = 2, p2 = 5, p3 = 3, p4 = 7, p5 = 11.

The next lemma uses the concept of covering systems introduced by Erdős. A collection of residue
classes

ri (mod mi) := {ri + mik | k ∈ Z},

where mi ∈ N, ri ∈ Z, 0 � ri < mi , and i = 1, . . . , t , is called a covering system if every integer n ∈ Z

belongs to at least one residue class ri (mod mi), where 1 � i � t . In the proof of the theorem for
|b| = 1 we shall use the following well-known covering system

0 (mod 2), 0 (mod 3), 1 (mod 4), 5 (mod 6), 7 (mod 12). (18)

Lemma 10. Let ri (mod mi), i = 1, . . . , t, be a covering system, and let (un)∞n=1 be a divisibility sequence given
by u1 := 1, u2 := a and un+1 = aun + bun−1 for n = 2,3, . . . , where a ∈ Z, b = ±1 and D = a2 + 4b > 0.

Suppose that there exist t distinct prime numbers p1, . . . , pt such that pi |umi for each i = 1, . . . , t. Then there
are two relatively prime composite positive integers x1 , x2 such that each |xn|, n ∈ N, where xn is a sequence
defined in (1), is a composite number.

Proof. By the Chinese remainder theorem, there exist s, l ∈ Z satisfying

s ≡ umi−ri (mod pi),

l ≡ umi−ri+1 (mod pi)

for i = 1, . . . , t. Note that two consecutive terms of the sequence (un)∞n=1 cannot be divisible by the
same prime number p. Indeed, if p|un and p|un+1 then using b = ±1 from un+1 = aun + bun−1 we
find that p|un−1. By the same argument, p|un−2 and so on. Hence p|u1, a contradiction.

So, for every x1 in the residue class s (mod P ), where P = p1 . . . pt , and for every x2 in the
residue class l (mod P ), we have x1 ≡ umi−ri (mod pi) and x2 ≡ umi−ri+1 (mod pi) for i = 1, . . . , t.
By induction on n, this implies

xn+1 ≡ umi−ri+n (mod pi) (19)

for each n � 0 and each i = 1, . . . , t . Since ri (mod mi), i = 1, . . . , t , is a covering system, every non-
negative integer n belongs to certain residue class ri (mod mi), where i is some of the numbers
1, . . . , t. Fix one of those i and write n = ri + kmi , where k � 0. Note that pi |umi(k+1) , because pi |umi

and umi |umi(k+1) . Thus (19) yields

xn+1 ≡ umi(k+1) (mod pi) ≡ 0 (mod pi),

giving pi |xn+1.

It remains to choose two composite relatively prime positive integers x1 ≡ s (mod P ) and
x2 ≡ l (mod P ) so that |xn| > max(p1, . . . , pt) for every n ∈ N. Then each |xn| is divisible by some
pi and greater than pi , so it is a composite number. To do this let us choose a composite integer
x1 > max(p1, . . . , pt) satisfying x1 ≡ s (mod P ). Then we can select x2 ≡ l (mod P ) as required, by
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Lemmas 6 and 7, where a1 := l, b1 := P , b2 := x1, because no prime number p1, . . . , pt divides both s
and l. �

Now, we shall prove the theorem for |b| = 1. Suppose first that b = −1 and |a| � 4. Then, by
Lemma 8, there are five distinct primes p1, . . . , p5 dividing u2, u3, u4, u6, u12, respectively. Since D =
a2 −4 > 0, the theorem follows from Lemma 10 applied to the covering system (18). Similarly, if b = 1
and |a| � 2 we also have D = a2 + 4b = a2 + 4 > 0, so the theorem follows by Lemmas 9 and 10.

Recall that the cases b = −1, |a| � 2 and b = 1, a = 0 have been considered in Section 2. In
Section 1 we already described the literature concerning the case (a,b) = (1,1). So three cases that
remain to be considered are (a,b) = (−1,1), (a,b) = (−3,−1), (a,b) = (3,−1).

We begin with the case (a,b) = (−1,1). Vsemirnov’s pair (2) of two composite relatively prime
integers

V 1 := 106276436867, V 2 := 35256392432

shows that the numbers

Vn = Vn−1 + Vn−2 = Fn−1 V 2 + Fn−2 V 1, n � 2, (20)

are all composite. Here, Fn is the nth Fibonacci number, F0 := 0. For the sequence xn+1 = −xn + xn−1,
we clearly have

xn = (−1)n Fn−1x2 + (−1)n−1 Fn−2x1, n � 3. (21)

Selecting x1 := −V 2 + V 1 = 71020044435 and x2 := V 1 = 106276436867, one can easily check that x1
and x2 are relatively prime composite integers. Moreover, by (20) and (21),

xn = (−1)n Fn−1 V 1 + (−1)n−1 Fn−2(−V 2 + V 1) = (−1)n Fn−2 V 2 + (−1)n Fn−3 V 1

= (−1)n(Fn−2 V 2 + Fn−3 V 1) = (−1)n Vn−1

for n � 3. Thus |xn| = Vn−1 is also composite integer for each n � 3.

For (a,b) = (−3,−1), we use the covering system

1 (mod 2), 1 (mod 3), 0 (mod 4),

6 (mod 8), 6 (mod 12), 2 (mod 24).

The divisibility sequence (un)∞n=1 is given by u1 := 1, u2 := −3 and un+1 = −3un − un−1, n = 2,3, . . . .

We select the following primes dividing u2, u3, u4, u8, u12, u24, respectively: 3,2,7,47,23,1103. By
the method described in Lemma 10, we calculated the pair

(x1, x2) = (13271293,219498)

satisfying the conditions of the theorem.
For (a,b) = (3,−1), we use the covering system

0 (mod 2), 0 (mod 3), 3 (mod 4),

5 (mod 8), 5 (mod 12), 1 (mod 24).
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As above, the primes dividing u2, u3, u4, u8, u12, u24 are 3,2,7,47,23,1103, respectively. This time,
using the method described in Lemma 10, we found the pair

(x1, x2) = (7373556,2006357)

satisfying the conditions of the theorem. The proof of Theorem 1 is thus completed.
Below, we shall find smaller solutions for (a,b) = (±3,−1). Instead of using Lemma 10, we may

directly search for a pair of relatively prime positive integers x1, x2 such that each of the first 24
elements of the sequence (1) is divisible by at least one of the primes 3,2,7,47,23,1103. Then we
may choose a covering system ri (mod mi), where m1 = 2, m2 = 3, m3 = 4, m4 = 8, m5 = 12, m6 = 24,
and i = 1, . . . ,6, such that, for each n in the range 0 � n � 23 and each i in the range 1 � i � 6,
n + 1 ≡ ri (mod mi) implies pi |xn+1. This would be enough for pi |xn+1 to hold for any n + 1, n � 0,
belonging to the residue class ri (mod mi). Using this direct method, we found smaller pairs (x1, x2)

producing sequences consisting of composite numbers.
For (a,b) = (−3,−1), by selecting the residues of the covering system as

(r1, r2, r3, r4, r5, r6) = (1,1,0,2,6,14)

and searching over x1 divisible by 7 and x2 divisible by 2 and 3, we found the pair

(x1, x2) = (35,3294).

One can easily check that

1 (mod 2), 1 (mod 3), 0 (mod 4),

2 (mod 8), 6 (mod 12), 14 (mod 24)

is indeed a covering system. Also, if n + 1, where n � 0, belongs to the residue class ri (mod mi)

we use the fact that pi |xn+1. This explains why we take x1 divisible by 7 and x2 divisible by 6. It
is clear that gcd(x1, x2) = gcd(35,3294) = 1. Also, |xn| > max(p1, . . . , p6) = 1103 for n � 2, so |xn| is
composite for each n ∈ N.

Selecting (r1, r2, r3, r4, r5, r6) = (0,0,1,7,7,11), we found the symmetric pair (x1, x2) = (3294,35).
Similarly, taking (r1, r2, r3, r4, r5, r6) = (0,2,1,3,3,7), we established that

(x1, x2) = (2367,3031)

is also such a pair. Note that 3294 + 35 < 2367 + 3031. On the other hand, max(3294,35) >

max(2367,3031). In the same way, using (r1, r2, r3, r4, r5, r6) = (1,2,0,6,10,18), we found the sym-
metric pair (x1, x2) = (3031,2367).

For (a,b) = (3,−1), selecting (r1, r2, r3, r4, r5, r6) = (0,2,1,3,7,15), we found the pair

(x1, x2) = (3399,35).

Choosing the residues (r1, r2, r3, r4, r5, r6) = (1,2,0,6,6,10), we arrived to the symmetric pair
(x1, x2) = (35,3399).
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