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First order autoregressive processes

AR(1) process

First order autoregressive AR(1) process is generated according to the
scheme

Yk = Oyk-1+ex, k=1 (1)

where (gx) are innovations and ¢ is an unknown parameter.
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AR(1) process

First order autoregressive AR(1) process is generated according to the
scheme

Yk = Oyk-1+ex, k=1 (1)

where (gx) are innovations and ¢ is an unknown parameter.

@ if || < 1, then (1) is stationary process;
@ if |¢| > 1, then (1) is explosive process
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AR(1) process

First order autoregressive AR(1) process is generated according to the
scheme

Yk = Oyk-1+ex, k=1 (1)

where (gx) are innovations and ¢ is an unknown parameter.
@ if || < 1, then (1) is stationary process;
@ if |¢| > 1, then (1) is explosive process;
@ if ¢ =1, then (1) is nonstationary process.
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First order autoregressive processes
AR(1) process defmmon
Asympt

Estimate of the coefficient ¢

The least-squares estimate (LSE) of ¢ based on observations yi, ..., y, is

$ Zk 1)/k}’k 1
Zk lyk 1

Alternative ways are
@ Yule Walker equations (method of moments);

@ maximum likelihood estimate.
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First order autoregressive processes
AR(1) process definition
Asympt @

Some notations

F e .
©@ We denote —— the convergence in distribution in the metric
n—o0
space F.
@ Classical convergence in distribution of a sequence of random

. . R
variables is denoted by ——.
n—oo

© Convergence in probability is denoted by %x
Q@ W= (W(t),t€]0,1]) is a standard Brownian motion.

Q Uy(s)=J; ¥~ AW(r) is an Ornstein-Uhlenbeck process.
@ 91(0,02) denotes normal distribution with mean 0 and variance o2.
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First order autoregressive processes
AR(1) process definition
Asymptotics of ¢

Asymptotic behaviour of ¢

When |¢] < 1 it is well known (see, for example, Mann and Wald (1943)
and Anderson (1959)) that the standardized LSE is asymptotically
normal :

n 1/2
Ty = <Zy£1> (6 - ¢) —— N(0,1).
k=1

Remark, that with another standardization

Vi(é — ¢) —— (0,1 — ¢?).

n—oo
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First order autoregressive processes
AR(1) process definition
Asymptotics of ¢

Asymptotic behaviour of ¢

For ¢ > 1, Anderson (1959) showed that
1/2

=Y vEa)| (6—¢) —— M(0,1)
k=1

n—o0

is true when the g's are i.i.d. For general £¢'s he showed that limiting
distribution of 7, may not exists.
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First order autoregressive processes
AR(1) process definition
Asymptotics of ¢

Asymptotic behaviour of ¢

However when ¢ = 1, the limit distribution of the properly standardized
sequence of the least-squares estimators is non-normal, and it was shown
by White (1958) (see also Rao (1978)) that
R 1/2 i
~ R 3(W=(1) -1)
(So) @y ore
—1 n— o0

(fol W2(t) dt) i

or

oy _® Jo WD dw(r)
(-1 "= Jy W2(t)dt

where (W(t),0 < t < 1) is a standard Brownian motion.
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First order autoregressive processes
AR(1) pre definition
Asymptotics of ¢

¢ is "close" to 1

Q P(r <0)=P(W3(1) < 1) = 0.684.
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Asymptotics of ¢

¢ is "close" to 1

Q@ P(r <0)=P(W?3(1) <1)=0.684.
@ This indicates that
1/2

=Y v | (6—0) —— 9N(0,1). (2)
k=1

n—oo

may not be a satisfactory approximation when ¢ is "close" to 1 and
the sample size is moderate.
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First order autoregressive processes
AR(1) process definition
Asymptotics of ¢

¢ is "close" to 1

Q@ P(r <0)=P(W?3(1) <1)=0.684.
@ This indicates that

n—oo

n 1/2
Tn = (Z y> (6 — 6) —— M(0,1). (2)
k=1

may not be a satisfactory approximation when ¢ is "close" to 1 and
the sample size is moderate.
Q Also

(W?(1) 1)
(fol W2(t)d1r)1/2

could be used to approximate the distribution of 7, when ¢ is close
to one (Evans and Savin (1981)).

n 1/2
(Zy£_1> (6—1) —— (3)
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First order autoregressive processes
AR(1) process definition
Asymptotics of ¢

¢ is "close" to 1

Q@ P(r <0)=P(W?3(1) <1)=0.684.
@ This indicates that

n—oo

n 1/2
Tn = (Z y> (6 — 6) —— M(0,1). (2)
k=1

may not be a satisfactory approximation when ¢ is "close" to 1 and
the sample size is moderate.
Q Also

(W?(1) 1)
(fol W2(t)d1r)1/2

could be used to approximate the distribution of 7, when ¢ is close
to one (Evans and Savin (1981)).
@ However, neither (2) nor (3) seems to be intuitive approximations.

n 1/2
(Zy£_1> (6—1) —— (3)
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Nearly nonstationary processes Definition of nearly nonstationary process
Sc fe o

Nearly nonstationary process

Suppose we have first-order autoregressive process (y, «) given by

Ynk = (bn}/n,kfl +ew, k=1, n>1, (4)

where

Q ¢,— 1 asn— oo,

@ (e«) is a sequence of i.i.d.random variables with Ee, = 0 and
]Esi =1,

© Yn1...,Ynn are observations and n is a sample size,

@ yn,0 random variable.
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Nearly nonstationary processes ionary process
Sy S 0 thors

Parametrisation of ¢,

¢n = /" with constant v < 0. $p=1—1, v, —+00asn— o0
This parametrisation was suggested and v,/n — 0, as n = oo
by Phillips (1987 m.). This parametrisation was suggested

by Phillips and Giraitis (2006 m.)

Another parametrizations :

Q@ ¢n=1—-721 ~>0 (Proposed by Chan & Wei (1987), Cox & Llatas
(1991), etc.)

Q ¢n=1—- "2, v, — v (Proposed by Andrews & Guggenberger
(2007))

©Q ¢,—1—72 ~,— 0 (Proposed by Andrews & Guggenberger (2007))

J.Markevi¢iaté, A. Ra¢kauskas, Ch. Suquet VU, Lille 1 16/10/12 FCLT for nearly nonstationary processes p. 14 of 45



Nearly nonstationary processes Definition of nearly nonstationary process

Some results by other authors

Some results (Phillips (1987))

If (yx) is a nearly nonstationary process generated by (4) and ¢, = /",

Yno = op(n'/2) and (gx) are i.i.d. random variables with Ecy = 0 and
Ee3 = 02, then :

n_l/2 Yint] M O'U,y(t),

1
*3/25 i — / Uy (r)dr,
n oo 0

A. Ratkauskas, Ch. Suquet VU, Lille 1 16/10/12 FCLT for nearly nonstationary processes
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Nearly nonstationary processes Definition of nearly nonstationary proc
Some results by other authors

Some results (Phillips and Giraitis (2006))

Suppose (yk) is a nearly nonstationary process generated by (4) and (ex)
are i.i.d. random variables with Ecg = 0 and Ec3 = 2. Under
assumptions n(1 — ¢,) = 0o, as n — oo and Ey? = o(n*/?) :

J.Markevi¢iiite, A. Rackauskas, Ch

Suquet VU, Lille 1 16/10/12

(1 . ¢2)1/2 n

R 4
nl/2 Z;€j)/j—l n—>oo> ‘ﬁ(O,a )7
J:

1—¢%zn:2 P 2
Y 1—>U7

FCLT for nearly nonstationary processes
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Nearly nonstationary processes Definition of nearl >nstationary proc

early nonstation:
Some results by other authors

Some results (Andrews & Guggenberger (2007))

If (k) is a nearly nonstationary process generated by (4) and

¢n=1— 12 where v, = v € [0,00), (¢x) are i.i.d. random variables
with Ecg = 0 and ]Ea% = o2, then :

—1/2 DI[0,1]
n Y[nt] m O-U’Y(t)a

n 1
nfa/zzyj La/ U,(r)dr,
0

n—o0
Jj=1

n 1
. R
n—? g yj2 —>o2/ Ui(r)dr,
" n— oo 0

J=1

n 1
Y yiag % 02/0 U, (r) dW(r).
j=1

J.Markevi¢iiite, A. Rackauskas, Ch
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Nearly nonstationary processes Definition of nearly nonstationary proc
Some results bv other authors

Some results (Andrews & Guggenberger (2007))

If (k) is a nearly nonstationary process generated by (4) and
¢n=1—"2, where % — 7 € [0,00), (gk) are i.i.d. random variables
with Eeg = "0 and Ee§ = 0% and yn0 = > 7 dhe—j then :

1/2 D[0,1]

n- Yint] —> O'U;k(t),

1
3/22)/ —>U/ U:;(r)dr
n—oo

Jj=1

n 1
_ R «
n—2 E y? —— 02/ (U2)*(r)dr,

j=1 0
n R 1
—1 2 *
n Zlyj_lz-:j ——0 /0 Uy (r)dw(r),
=

where U3(t) = U,(t) + (2)"Y/2e=7tZ and Z is standard normal random
variable.
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Nearly nonstationary processes Definition of nearly nonstationary process
Some results by other authors

Some results (Andrews & Guggenberger (2007))

If (yk) is a nearly nonstationary process generated by (4) and
¢n=1—12 where 7, — 0, (g4) are i.i.d. random variables with Ecq = 0

and Ec§ = 0% and y, 0 = Y7 ¢hej then :

1/2 -3/2 ) R
(2’7n) n ;}/n,rl m UZ;
j=

n— o0

n
722 2 R 252
27"" yn,j—l oz )
j=1

where Z and Z* are independent standard normal random variables.
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Nearly nonstationary processes Definition of nearly nonstationary proc
Some results bv other authors

The asymptotic behaviour of ¢,

Phillips (1987) :

R fol ( W(r)

n—oo fO UA2/ dl’

n(a;n - an)

Phillips and Giraitis (2006) :

nl/2
W(éf’ — én) —> 91(0,1)
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Nearly nonstationary processes Definition of nearly nonstationary proc
Some results by other authors

The asymptotic behaviour of ¢,

Chan and Wei (1987) :

n 1/2
(Z WE—l) ((gn - ¢n) % E(’Y)
k=1
where
Jo (L4 (27 = 1)) W(t) dW(t)

E(’Y) = 1/2°
(fol(l + (e2/7 — 1)8)2W2(t) dt)

Chan (1988) showed that
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Nearly nonstationary processes Definition of nearly nonstationary proc
Some results by other authors

The asymptotic behaviour of ¢,

Andrews & Guggenberger (2007), ¢, =1 —,/n and 7, — 0,
Yno = Zj’io Phe_j:
(290)72n(¢n — 6n) —— C

n— o0

where C is a Cauchy random variable.
Andrews & Guggenberger (2007), ¢, =1 —,/n and v, — v € (0, ],
Yno = D00 Phe—j

Q@ 7€ (0,00)
- [2 Uz (8) dW(r)
n(¢n - ¢n) = 0 -
oo (U )(t) dt
Q@ =
(1= ¢3)72n"%(dn = 6n) —— Z.
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Preliminaries

Process built on the y;'s

We focus on polygonal line processes built on the yy's :

[nt]

SEE) =D yker + (nt = [0y, t€[0,1], n>1.  (5)
k=1

The definition of the SP! is quite unusual with a general term y,_; were
one would expect yx. However, asymptotic results remains true with yy_1
replaced by yj as well.

J.Markevi¢iaté, A. Ratkauskas, Ch. Suquet VU, Lille 1 16/10/12 FCLT for nearly nonstationary processes p. 24 of 45



Preliminaries

Function spaces

The polygonal line process SP!' can be viewed as a random element either
in C[0,1] or in H3[0, 1]. Continuous function space C[0, 1] is endowed
with the uniform norm

Ifll.. = sup |f(¢)] feC[o0,1].
0<t<1
For o € (0,1) the Hélder space
HZ[0,1] == {f € C[0,1] : lim wa(f,8) = 0} 7
5—0

endowed with the norm ||f]|, := |f(0)| + wa(f,1), where

f(t)—f
wa(f,d8) ;== sup M
s,t€[0,1] ‘t - S|
0<t—s<d

is a separable Banach space.

J.Markevi¢iaté, A. Rackauskas, Ch. Suquet VU, Lille 1 16/10/12 FCLT for nearly nonstationary processes p. 25 of 45



Preliminaries

Process built on the g/'s

The polygonal line process built on i.i.d. random variables (&;) is

[nt]

WPrl(t) = Zej + (nt — [nt])epg41, t€[0,1].
j=1

By classical Donsker-Prohorov invariance principle

/2yl ol

n—oo

J.Markevi¢iiite, A. Rackauskas, Ch. Suquet VU, Lille 1 / FCLT for nearly nonstationary processes p. 26 of 45



Preliminaries

Invariance principle in Holder space

By the classical Levy's result on the modulus of continuity of W/,
W € H?|[0, 1] with probability one for every 0 < ar < 1/2.
Rac¢kauskas and Suquet (2004) proved that for 0 < v < 1/2 the

convergence
nY2gtpt ey (6)
holds if and only if
lim t¥//2=9)p(jg;| > t) = 0. (7)

t—o00

J.Markevi¢iaté, A. Rackauskas, Ch. Suquet VU, Lille 1 16/10/12 FCLT for nearly nonstationary processes p. 27 of 45



Preliminaries

Initial condition

Let us associate to each autoregressive process (y, k) satisfying
Ynk = d)nyn,kfl + &k, k> 1, n> 17 (8)
the process (y; ) defined by

/ k
Ynk = Ynk = PnYk.0-

Then (y; ,) satisfies (8) with initialization y; , = 0.

J.Markevi¢iiite, A. Rackauskas, Ch. Suquet VU, Lille 1 / FCLT for nearly nonstationary processes p. 28 of 45



Preliminaries

Initial condition

Proposition 1

Let 5}5,’1/ be the polygonal line process obtained by substituting in (5) the
Ynj's by the y,’w-'s. Assume that c,,S,F,’ll converges in distribution in

H¢ [0, 1], where the ¢,'s are some positive normalizing constants. Then
c,SP! converges in distribution in H2[0, 1] to the same limit provided that

(63

Chh
Yno —— 0. (9)

n
1— "™ 5o

FCLT for nearly nonstationary processes p. 29 of 45
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Functional central limit theorems for sums of process

Convergence in C[0, 1] and HZ[O, 1] spaces

Theorem 1

In the case 1 where (yx) is generated by (4) with ¢, = ¢"/", v <0,
suppose that the sequence of polygonal lines (n’l/ 2WPY) converges
weakly to the standard Brownian motion W either in C[0, 1] or in
H2 [0, 1] for some 0 < a < 1/2. Suppose moreover that y, o = op(n'/?)
Or Yno = 0p(n1/ 2=) according to the function space considered. Then
n—3/2SP! converges weakly, as n — oo, in the space under consideration
to the integrated Ornstein-Uhlenbeck process J defined by :

A(t) = /Ot U (s)ds, 0<t<1, (10)

where Uy (s) = [5 7= dW/(r).
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Functional central limit theorems for sums of process

Convergence with i.i.d. innoovations

Taking into account the classical Donsker-Prohorov invariance principle
and the functional central limit theorem proved by R&S (2004) we have
the following corollary.

Corollary 2

Assume that (yy) is generated by (4) with ¢, = ¢¥/", 4 < 0 and that the
ex’s are i.i.d. and centered. Then the weak convergence of n=3/2SP! to J
holds

e in C[0,1] provided that Ec? < oo and y, o = op(n*/?);
e in H2[0,1] for 0 < oo < 1/2 under condition

lim tY/A/2=9)p(|e;| > t) = 0.
t—o0

and yno = op(nt/2~2).

J.Markevi¢iuté, A. Rackauskas, Ch. Suquet VU, Lille 1 16/10/12 FCLT for nearly nonstationary processes p. 32 of 45



Functional central limit theorems for sums of process

Essential lemma

Lemma 3

Suppose that the process (yx) is generated by (4) and ¢, =1 —~,/n,
where (7,) is a sequence of nonnegative numbers such that v, — co and
Yn/n — 0 as n — co. Suppose, moreover, that yo = 0. Let p > 2.
Assume that the innovations (ey) satisfy

lim tPP(le1| > t) =0 if p>2,
t—o00
Ee? < oo if p=2.
Forp > 2, putaa=1/2—1/p. Then

1/2 a
T T ka|—>0

J.Markevi¢iaté, A. Ratkauskas, Ch. Suquet VU, Lille 1 / FCLT for nearly nonstationary processes p- 33 of 45



Functional central limit theorems for sums of process

Convergence in C[0, 1]

Theorem 4

Suppose that the process (yx) is generated by (4) and ¢, =1 — v,/n,
where (~y,) is a sequence of nonnegative numbers such that v, — oo and
Yn/n — 0 as n — oco. Assume also, that innovations () are i.i.d. with
Ee; = 0 and Ee2 = 1 and yo = op(n'/?). Then

Clo,1]

nY2(1 - ¢,)S w.

n— oo

J.Markevi¢iaté, A. Rackauskas, Ch. Suquet VU, Lille 1 / FCLT for nearly nonstationary processes p. 34 of 45



Functional central limit theorems for sums of process

i o
Convergence in Hj

Theorem 5

Suppose that the process (yy) is generated by (4) and ¢, =1 —~,/n,
where (v,) is a sequence of nonnegative numbers such that v, — oo and
Yn/n — 0 as n — oo. Assume also, that innovations () are i.i.d. and
satisfy condition

tli}n;othP’(kl\ >t)=0 if p>2

for some p > 2. Put o =1/2 —1/p. Then for 0 < f < «,

HS[0,1
21— g5t 2

n— o0
provided that yo = op(n*/?>~#) and

lim inf y,n%/® > 0.

n—oo
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Ideas of the proofs

Convergence in C[0, 1] and HZ[O, 1] spaces

Theorem 1

In the case 1 where (yx) is generated by (4) with ¢, = ¢"/", v <0,
suppose that the sequence of polygonal lines (n’l/ 2WPY) converges
weakly to the standard Brownian motion W either in C[0, 1] or in
H2 [0, 1] for some 0 < a < 1/2. Suppose moreover that y, o = op(n'/?)
Or Yno = 0p(n1/ 2=) according to the function space considered. Then
n—3/2SP! converges weakly, as n — oo, in the space under consideration
to the integrated Ornstein-Uhlenbeck process J defined by :

A(t) = /Ot U (s)ds, 0<t<1, (10)

where Uy (s) = [5 7= dW/(r).
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Ideas of the proofs

of the proof 1

@ Since the Banach spaces (C[0,1], || ||,,) and (HS, || ||,) are
isomorphic, the unified proof proposed here for the spaces H2 [0, 1],
0 < a < 1/2, includes the special case of the space C[0,1].

@ Using Proposition 1 and our assumption y, o = op(n'/27%), it is
enough to give the proof in the case where y, o = 0.

© Holder norms of polygonal line is reached at two vertices.
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theorem 1
eorem 4

Ideas of the proofs

Ideas of the proof 2

Let p: [0,1] — R be a weight function satisfying the following properties.
i) p is concave.
i) p(0) =0 and p is positive on (0, 1].
iii) p is non decreasing on [0, 1].
Let tp =0< t; < --- < t, = 1 be a partition of [0,1] and f be a real valued

polygonal line function on [0, 1] with vertices at the t;’s, i.e. f is continuous on
[0,1] and its restriction to each interval [t;, tir1] is an affine function. Define

Rs ) i FO =G

, 0<s<t<l.
p(t —s)

Then

sup R(s,t) = max R(t,t). (11)
0<s<t<1 0<i<j<n
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Ideas of the proofs

Ideas of the proof 3

The idea is to approximate the polygonal line n=3/2SP! by some linear
interpolation of a smooth process J,

t t s
JIn(t) ::/0 n*1/2Wnpl(s)ds+’y/0 /0 =N =2 WPl (r) dr ds.

which is a functional of n=%/2WP!, continuous in Holder topology, with
|n=3/288" — Jo||, = op(1).
As the functional

HS[0,1] — H2[0,1] Xi—>/ ds+7//e7(5’ r)drds

is continuous on H2[0, 1], the convergence of J, to J follows from the
convergence of n~1/2WP! to W.
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Proof of theorem 1
Proof of theorem 4
Pr theorem 5

Ideas of the proofs

Convergence in C[0, 1]

Theorem 4

Suppose that the process (yx) is generated by (4) and ¢, =1 — v,/n,
where (~y,) is a sequence of nonnegative numbers such that v, — oo and
Yn/n — 0 as n — oco. Assume also, that innovations () are i.i.d. with
Ee; = 0 and Ee2 = 1 and yo = op(n'/?). Then

Clo,1]

nY2(1 - ¢,)S w.

n— oo
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Proof of theorem 1
Proof of theorem 4
Proof of theorem 5

Ideas of the proofs

Ideas of the proof

@ Using Proposition 1 and assumption yu = op(n'/?), it suffices to
prove the result when yg =0;
@ In view of the Donsker-Prohorov invariance principle, it suffices to
show that
Hn—1/2(1 — $n)SP' — 112 WgﬂH LN}

0o h—oo

© As supremum norm is reached at one of its vertices and

k
=—Yk+ ij
j=1

1_¢)n

HM»

so it is enough to show that

~1/2 )
lrgkai(n |'yk| n—o00 0. (12)

© And (12) is true because of Lemma 1 with p = 2.
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Proof of theorem

Ideas of the proofs

i o
Convergence in Hj

Theorem 5

Suppose that the process (yy) is generated by (4) and ¢, =1 —~,/n,
where (v,) is a sequence of nonnegative numbers such that v, — oo and
Yn/n — 0 as n — oo. Assume also, that innovations () are i.i.d. and
satisfy condition

tli}n;othP’(kl\ >t)=0 if p>2

for some p > 2. Put o =1/2 —1/p. Then for 0 < f < «,

HS[0,1
21— g5t 2

n— o0
provided that yo = op(n*/?>~#) and

lim inf y,n%/® > 0.

n—oo
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Proof of theorem 5

Ideas of the proofs

Ideas of the proof

@ In view of Holderian invariance principle it is enough to show that

LO.

/3 n—o0

H —1/2( — ) SP - _I/QW},DI

@ As Holderian norms of the polygonal line process is reached at two
vertices, so the proof reduces to
nB—1/2

max vl = 0. (13)

© The convergence (13) holds due to Proposition 1 and Lemma 1 with
condition

limsup n? /7% < oco.

n—o00
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