Beveik nestacionarių procesų dalinių sumų funkcinės ribinės teoremos

Jurgita Markeviči $\bar{\mathrm{u}}$ tė 1,2 Alfredas Račkauskas 1 , Charles Suquet 2

¹Vilniaus Universitetas

²Université des Sciences et Technologies de Lille

2012 Spalio 16 d.

FCLT for nearly nonstationary processes

Table of contents

- Structure
- 2 First order autoregressive processes
- 3 Nearly nonstationary processes
- Preliminaries
- 5 Functional central limit theorems for sums of process
- 6 Ideas of the proofs

First order autoregressive processes

- First order autoregressive processes
- Nearly nonstationary processes

- First order autoregressive processes
- Nearly nonstationary processes
- Preliminaries

- First order autoregressive processes
- Nearly nonstationary processes
- Preliminaries
- Functional central limit theorems for sums of process

- First order autoregressive processes
- Nearly nonstationary processes
- Preliminaries
- Functional central limit theorems for sums of process
- Ideas of the proofs

16/10/12

Table of contents

- Structure
- 2 First order autoregressive processes
- Nearly nonstationary processes
- 4 Preliminaries
- 5 Functional central limit theorems for sums of process
- 6 Ideas of the proofs

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1 \tag{1}$$

16/10/12

where (ε_k) are innovations and ϕ is an unknown parameter.

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1 \tag{1}$$

16/10/12

where (ε_k) are innovations and ϕ is an unknown parameter.

lacksquare if $|\phi| < 1$, then (1) is stationary process

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1 \tag{1}$$

16/10/12

where (ε_k) are innovations and ϕ is an unknown parameter.

- lacktriangledown if $|\phi| < 1$, then (1) is stationary process;
- ② if $|\phi| > 1$, then (1) is explosive process

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1 \tag{1}$$

16/10/12

where (ε_k) are innovations and ϕ is an unknown parameter.

- lacksquare if $|\phi| < 1$, then (1) is stationary process;
- $oldsymbol{0}$ if $|\phi|>1$, then (1) is explosive process;
- **3** if $\phi = 1$, then (1) is nonstationary process.

Estimate of the coefficient ϕ

The least-squares estimate (LSE) of ϕ based on observations y_1, \ldots, y_n is

$$\widehat{\phi} = \frac{\sum_{k=1}^{n} y_k y_{k-1}}{\sum_{k=1}^{n} y_{k-1}^2}.$$

16/10/12

Alternative ways are

- Yule Walker equations (method of moments);
- maximum likelihood estimate.

Some notations

- We denote $\xrightarrow[n\to\infty]{F}$ the convergence in distribution in the metric space F.
- ② Classical convergence in distribution of a sequence of random variables is denoted by $\xrightarrow[n\to\infty]{\mathbb{R}}$.
- **3** Convergence in probability is denoted by $\xrightarrow[n\to\infty]{P}$.
- $W = (W(t), t \in [0,1])$ is a standard Brownian motion.
- $U_{\gamma}(s) = \int_0^s e^{\gamma(s-r)} dW(r)$ is an Ornstein-Uhlenbeck process.
- **1** $\mathfrak{N}(0,\sigma^2)$ denotes normal distribution with mean 0 and variance σ^2 .

Asymptotic behaviour of $\widehat{\phi}$

When $|\phi|<1$ it is well known (see, for example, Mann and Wald (1943) and Anderson (1959)) that the standardized LSE is asymptotically normal :

$$\tau_n := \left(\sum_{k=1}^n y_{k-1}^2\right)^{1/2} (\widehat{\phi} - \phi) \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0,1).$$

Remark, that with another standardization

$$\sqrt{n}(\widehat{\phi}-\phi) \xrightarrow[n\to\infty]{\mathbb{R}} \mathfrak{N}(0,1-\phi^2).$$

Asymptotic behaviour of $\widehat{\phi}$

For $\phi > 1$, Anderson (1959) showed that

$$au_n := \left(\sum_{k=1}^n y_{k-1}^2\right)^{1/2} (\widehat{\phi} - \phi) \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0,1)$$

is true when the ε_k 's are i.i.d. For general ε_k 's he showed that limiting distribution of τ_n may not exists.

Asymptotic behaviour of ϕ

However when $\phi=1$, the limit distribution of the properly standardized sequence of the least-squares estimators is non-normal, and it was shown by White (1958) (see also Rao (1978)) that

$$\left(\sum_{k=1}^{n} y_{k-1}^{2}\right)^{1/2} (\widehat{\phi} - 1) \xrightarrow[n \to \infty]{\mathbb{R}} \tau := \frac{\frac{1}{2} (W^{2}(1) - 1)}{\left(\int_{0}^{1} W^{2}(t) dt\right)^{1/2}}$$

or

$$n(\widehat{\phi}-1) \xrightarrow[n\to\infty]{\mathbb{R}} \frac{\int_0^1 W(t) \,\mathrm{d}W(t)}{\int_0^1 W^2(t) \,\mathrm{d}t},$$

16/10/12

where $(W(t), 0 \le t \le 1)$ is a standard Brownian motion.

- This indicates that

$$\tau_n := \left(\sum_{k=1}^n y_{k-1}^2\right)^{1/2} (\widehat{\phi} - \phi) \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0, 1). \tag{2}$$

may not be a satisfactory approximation when ϕ is "close" to 1 and the sample size is moderate.

- This indicates that

$$\tau_n := \left(\sum_{k=1}^n y_{k-1}^2\right)^{1/2} (\widehat{\phi} - \phi) \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0, 1). \tag{2}$$

may not be a satisfactory approximation when ϕ is "close" to 1 and the sample size is moderate.

Also

$$\left(\sum_{k=1}^{n} y_{k-1}^{2}\right)^{1/2} (\widehat{\phi} - 1) \xrightarrow[n \to \infty]{\mathbb{R}} \frac{\frac{1}{2}(W^{2}(1) - 1)}{\left(\int_{0}^{1} W^{2}(t) dt\right)^{1/2}}$$
(3)

could be used to approximate the distribution of τ_n when ϕ is close to one (Evans and Savin (1981)).

- This indicates that

$$\tau_n := \left(\sum_{k=1}^n y_{k-1}^2\right)^{1/2} (\widehat{\phi} - \phi) \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0, 1). \tag{2}$$

may not be a satisfactory approximation when ϕ is "close" to 1 and the sample size is moderate.

Also

$$\left(\sum_{k=1}^{n} y_{k-1}^{2}\right)^{1/2} (\widehat{\phi} - 1) \xrightarrow[n \to \infty]{\mathbb{R}} \frac{\frac{1}{2}(W^{2}(1) - 1)}{\left(\int_{0}^{1} W^{2}(t) dt\right)^{1/2}}$$
(3)

could be used to approximate the distribution of τ_n when ϕ is close to one (Evans and Savin (1981)).

16/10/12

• However, neither (2) nor (3) seems to be intuitive approximations.

Table of contents

- Structure
- 2 First order autoregressive processes
- Nearly nonstationary processes
- 4 Preliminaries
- 5 Functional central limit theorems for sums of process
- 6 Ideas of the proofs

Nearly nonstationary process

Suppose we have first-order autoregressive process $(y_{n,k})$ given by

$$y_{n,k} = \phi_n y_{n,k-1} + \varepsilon_k, \quad k \ge 1, \quad n \ge 1, \tag{4}$$

where

- \bullet $\phi_n \to 1$, as $n \to \infty$,
- **②** (ε_k) is a sequence of i.i.d.random variables with $\mathbb{E}\varepsilon_k = 0$ and $\mathbb{E}\varepsilon_k^2 = 1$,
- \emptyset $y_{n,1}, \dots, y_{n,n}$ are observations and n is a sample size,
- $y_{n,0}$ random variable.

Parametrisation of ϕ_n

Case 1

 $\phi_n = e^{\gamma/n}$ with constant $\gamma < 0$.

This parametrisation was suggested by Phillips (1987 m.).

Case 2

 $\phi_n=1-\frac{\gamma_n}{n},\ \gamma_n\to\infty$ as $n\to\infty$ and $\gamma_n/n\to0$, as $n\to\infty$ This parametrisation was suggested by Phillips and Giraitis (2006 m.)

Another parametrizations :

- $\phi_n=1-\frac{\gamma}{n},\ \gamma>0$ (Proposed by Chan & Wei (1987), Cox & Llatas (1991), etc.)
- ② $\phi_n=1-\frac{\gamma_n}{n}$, $\gamma_n\to\gamma$ (Proposed by Andrews & Guggenberger (2007))

If (y_k) is a nearly nonstationary process generated by (4) and $\phi_n = e^{\gamma/n}$, $y_{n,0} = o_{\mathbb{P}}(n^{1/2})$ and (ε_k) are i.i.d. random variables with $\mathbb{E}\varepsilon_0 = 0$ and $\mathbb{E}\varepsilon_0^2 = \sigma^2$, then :

$$n^{-1/2}y_{[nt]} \xrightarrow{D[0,1]} \sigma U_{\gamma}(t),$$

$$n^{-3/2} \sum_{j=1}^{n} y_{j} \xrightarrow{\mathbb{R}} \sigma \int_{0}^{1} U_{\gamma}(r) dr,$$

$$n^{-2} \sum_{j=1}^{n} y_{j}^{2} \xrightarrow{\mathbb{R}} \sigma^{2} \int_{0}^{1} U_{\gamma}^{2}(r) dr,$$

$$n^{-1} \sum_{j=1}^{n} y_{j-1} \varepsilon_{j} \xrightarrow{\mathbb{R}} \sigma^{2} \int_{0}^{1} U_{\gamma}(r) dW(r).$$

Suppose (y_k) is a nearly nonstationary process generated by (4) and (ε_k) are i.i.d. random variables with $\mathbb{E}\varepsilon_0 = 0$ and $\mathbb{E}\varepsilon_0^2 = \sigma^2$. Under assumptions $n(1 - \phi_n) \to \infty$, as $n \to \infty$ and $\mathbb{E}y_{n,0}^2 = o(n^{1/2})$:

$$\frac{\left(1-\phi_n^2\right)^{1/2}}{n^{1/2}} \sum_{j=1}^n \varepsilon_j y_{j-1} \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0, \sigma^4),$$

$$\frac{1-\phi_n^2}{n} \sum_{j=1}^n y_{j-1}^2 \xrightarrow[n \to \infty]{\mathbb{R}} \sigma^2,$$

$$\frac{\left(1-\phi_n\right)}{n^{1/2}} \sum_{j=1}^n y_j \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0, \sigma^2).$$

If (y_k) is a nearly nonstationary process generated by (4) and $\phi_n=1-\frac{\gamma_n}{n}$, where $\gamma_n\to\gamma\in[0,\infty)$, (ε_k) are i.i.d. random variables with $\mathbb{E}\varepsilon_0=0$ and $\mathbb{E}\varepsilon_0^2=\sigma^2$, then :

$$n^{-1/2}y_{[nt]} \xrightarrow{D[0,1]} \sigma U_{\gamma}(t),$$

$$n^{-3/2} \sum_{j=1}^{n} y_{j} \xrightarrow{\mathbb{R}} \sigma \int_{0}^{1} U_{\gamma}(r) dr,$$

$$n^{-2} \sum_{j=1}^{n} y_{j}^{2} \xrightarrow{\mathbb{R}} \sigma^{2} \int_{0}^{1} U_{\gamma}^{2}(r) dr,$$

$$n^{-1} \sum_{j=1}^{n} y_{j-1} \varepsilon_{j} \xrightarrow{\mathbb{R}} \sigma^{2} \int_{0}^{1} U_{\gamma}(r) dW(r).$$

Some results (Andrews & Guggenberger (2007))

If (y_k) is a nearly nonstationary process generated by (4) and $\phi_n=1-\frac{\gamma_n}{n}$, where $\gamma_n\to\gamma\in[0,\infty)$, (ε_k) are i.i.d. random variables with $\mathbb{E}\varepsilon_0=0$ and $\mathbb{E}\varepsilon_0^2=\sigma^2$ and $y_{n,0}=\sum_{i=0}^\infty\phi_n^j\varepsilon_{-j}$ then :

$$n^{-1/2}y_{[nt]} \xrightarrow{D[0,1]} \sigma U_{\gamma}^{*}(t),$$

$$n^{-3/2} \sum_{j=1}^{n} y_{j} \xrightarrow{\mathbb{R}} \sigma \int_{0}^{1} U_{\gamma}^{*}(r) dr,$$

$$n^{-2} \sum_{j=1}^{n} y_{j}^{2} \xrightarrow{\mathbb{R}} \sigma^{2} \int_{0}^{1} (U_{\gamma}^{*})^{2}(r) dr,$$

$$n^{-1} \sum_{j=1}^{n} y_{j-1} \varepsilon_{j} \xrightarrow{\mathbb{R}} \sigma^{2} \int_{0}^{1} U_{\gamma}^{*}(r) dW(r),$$

where $U_{\gamma}^{*}(t) = U_{\gamma}(t) + (2\gamma)^{-1/2} e^{-\gamma t} Z$ and Z is standard normal random variable.

If (y_k) is a nearly nonstationary process generated by (4) and $\phi_n=1-\frac{\gamma_n}{n}$, where $\gamma_n\to 0$, (ε_k) are i.i.d. random variables with $\mathbb{E}\varepsilon_0=0$ and $\mathbb{E}\varepsilon_0^2=\sigma^2$ and $y_{n,0}=\sum_{i=0}^\infty \phi_n^i\varepsilon_{-i}$ then :

$$(2\gamma_n)^{1/2} n^{-3/2} \sum_{j=1}^n y_{n,j-1} \xrightarrow{\mathbb{R}} \sigma Z,$$

$$2\gamma_n n^{-2} \sum_{j=1}^n y_{n,j-1}^2 \xrightarrow[n \to \infty]{\mathbb{R}} \sigma^2 Z^2,$$

$$(2\gamma_n)^{1/2} n^{-1} \sum_{i=1}^n y_{j-1} \varepsilon_j \xrightarrow[n \to \infty]{\mathbb{R}} \sigma^2 Z Z^*,$$

where Z and Z^* are independent standard normal random variables.

The asymptotic behaviour of ϕ_n

Phillips (1987):

$$n(\widehat{\phi}_n - \phi_n) \xrightarrow[n \to \infty]{\mathbb{R}} \frac{\int_0^1 U_{\gamma}(r) dW(r)}{\int_0^1 U_{\gamma}^2(r) dr}$$

Phillips and Giraitis (2006):

$$\frac{n^{1/2}}{(1-\phi_n^2)^{1/2}}(\widehat{\phi}_n-\phi_n)\xrightarrow[n\to\infty]{\mathbb{R}}\mathfrak{N}(0,1)$$

The asymptotic behaviour of ϕ_n

Chan and Wei (1987) :

$$\left(\sum_{k=1}^{n} y_{k-1}^{2}\right)^{1/2} \left(\widehat{\phi}_{n} - \phi_{n}\right) \xrightarrow[n \to \infty]{\mathbb{R}} \mathcal{L}(\gamma)$$

where

$$\mathcal{L}(\gamma) = \frac{\int_0^1 (1 + (\mathrm{e}^{2/\gamma} - 1)t)^{-1} W(t) \, \mathrm{d}W(t)}{\left(\int_0^1 (1 + (\mathrm{e}^{2/\gamma} - 1)t)^{-2} W^2(t) \, \mathrm{d}t\right)^{1/2}}.$$

Chan (1988) showed that

$$\mathcal{L}(\gamma) \equiv_{\mathcal{D}} \frac{\int_0^1 U_{\gamma}(r) \, \mathrm{d}W(r)}{\left(\int_0^1 U_{\gamma}^2(r) \, \mathrm{d}r\right)^{1/2}}.$$

The asymptotic behaviour of ϕ_n

Andrews & Guggenberger (2007), $\phi_n = 1 - \gamma_n/n$ and $\gamma_n \to 0$, $y_{n,0} = \sum_{i=0}^{\infty} \phi_n^i \varepsilon_{-i}$:

$$(2\gamma_n)^{-1/2}n(\widehat{\phi}_n-\phi_n)\xrightarrow[n\to\infty]{\mathbb{R}}C$$

where C is a Cauchy random variable.

Andrews & Guggenberger (2007), $\phi_n = 1 - \gamma_n/n$ and $\gamma_n \to \gamma \in (0, \infty]$,

$$y_{n,0} = \sum_{j=0}^{\infty} \phi_n^j \varepsilon_{-j}$$
:

$$n(\widehat{\phi}_n - \phi_n) \xrightarrow[n \to \infty]{\mathbb{R}} \frac{\int_0^1 U_{\gamma}^*(t) \, \mathrm{d}W(r)}{\int_0^1 (U_{\gamma}^*)^2(t) \, \mathrm{d}t}$$

$$(1-\phi_n^2)^{-1/2}n^{1/2}(\widehat{\phi}_n-\phi_n)\xrightarrow[n\to\infty]{\mathbb{R}}Z.$$

Table of contents

- Structure
- 2 First order autoregressive processes
- Nearly nonstationary processes
- Preliminaries
- 5 Functional central limit theorems for sums of process
- 6 Ideas of the proofs

Process built on the y_k 's

We focus on polygonal line processes built on the y_k 's :

$$S_n^{\mathrm{pl}}(t) := \sum_{k=1}^{[nt]} y_{k-1} + (nt - [nt]) y_{[nt]}, \quad t \in [0,1], \quad n \ge 1.$$
 (5)

16/10/12

Remark

The definition of the $S_n^{\rm pl}$ is quite unusual with a general term y_{k-1} were one would expect y_k . However, asymptotic results remains true with y_{k-1} replaced by y_k as well.

Function spaces

The polygonal line process $S_n^{\rm pl}$ can be viewed as a random element either in ${\rm C}[0,1]$ or in ${\rm H}^o_\alpha[0,1]$. Continuous function space ${\rm C}[0,1]$ is endowed with the uniform norm

$$\|f\|_{\infty} = \sup_{0 \le t \le 1} |f(t)| \quad f \in \mathbb{C}[0,1].$$

For $\alpha \in (0,1)$ the Hölder space

$$\operatorname{H}_{lpha}^{o}[0,1] := \left\{ f \in C[0,1] : \lim_{\delta o 0} \omega_{lpha}(f,\delta) = 0
ight\},$$

endowed with the norm $\|f\|_{\alpha}:=|f(0)|+\omega_{\alpha}(f,1)$, where

$$\omega_{lpha}(f,\delta) := \sup_{\substack{s,t \in [0,1]\\0 < t - s < \delta}} rac{|f(t) - f(s)|}{|t - s|^{lpha}}$$

16/10/12

is a separable Banach space.

Process built on the ε_k 's

The polygonal line process built on i.i.d. random variables (ε_j) is

$$W_n^{\mathrm{pl}}(t) = \sum_{j=1}^{\lfloor nt \rfloor} \varepsilon_j + (nt - \lfloor nt \rfloor) \varepsilon_{\lfloor nt \rfloor + 1}, \quad t \in [0, 1].$$

By classical Donsker-Prohorov invariance principle

$$n^{-1/2}W_n^{\mathrm{pl}} \xrightarrow[n \to \infty]{\mathrm{C}[0,1]} W.$$

Invariance principle in Hölder space

By the classical Levy's result on the modulus of continuity of W, $W \in \mathrm{H}^o_\alpha[0,1]$ with probability one for every $0 \le \alpha < 1/2$. Račkauskas and Suquet (2004) proved that for $0 < \alpha < 1/2$ the convergence

$$n^{-1/2}\sigma^{-1}W_n^{\text{pl}} \xrightarrow[n \to \infty]{\text{H}_\alpha^{\text{pl}}[0,1]} W$$
 (6)

holds if and only if

$$\lim_{t \to \infty} t^{1/(1/2 - \alpha)} P(|\varepsilon_1| \ge t) = 0.$$
 (7)

Initial condition

Let us associate to each autoregressive process $(y_{n,k})$ satisfying

$$y_{n,k} = \phi_n y_{n,k-1} + \varepsilon_k, \quad k \ge 1, \quad n \ge 1, \tag{8}$$

the process $(y'_{n,k})$ defined by

$$y'_{n,k} = y_{n,k} - \phi_n^k y_{k,0}.$$

16/10/12

Then $(y'_{n,k})$ satisfies (8) with initialization $y'_{n,0} = 0$.

Initial condition

Proposition 1

Let $S_n^{\rm pl}{}'$ be the polygonal line process obtained by substituting in (5) the $y_{n,j}$'s by the $y'_{n,j}$'s. Assume that $c_n S_n^{\rm pl}{}'$ converges in distribution in ${\rm H}^o_\alpha[0,1]$, where the c_n 's are some positive normalizing constants. Then $c_n S_n^{\rm pl}{}$ converges in distribution in ${\rm H}^o_\alpha[0,1]$ to the same limit provided that

$$\frac{c_n n^{\alpha}}{1 - \phi_n} y_{n,0} \xrightarrow[n \to \infty]{P} 0.$$
 (9)

16/10/12

Table of contents

- Structure
- 2 First order autoregressive processes
- Nearly nonstationary processes
- 4 Preliminaries
- 5 Functional central limit theorems for sums of process
- 6 Ideas of the proofs

Convergence in C[0,1] and $H^o_\alpha[0,1]$ spaces

Theorem 1

In the case 1 where (y_k) is generated by (4) with $\phi_n = \mathrm{e}^{\gamma/n}$, $\gamma < 0$, suppose that the sequence of polygonal lines $(n^{-1/2}W_n^{\mathrm{pl}})$ converges weakly to the standard Brownian motion W either in $\mathrm{C}[0,1]$ or in $\mathrm{H}^o_\alpha[0,1]$ for some $0<\alpha<1/2$. Suppose moreover that $y_{n,0}=o_P(n^{1/2})$ or $y_{n,0}=o_P(n^{1/2-\alpha})$ according to the function space considered. Then $n^{-3/2}S_n^{\mathrm{pl}}$ converges weakly, as $n\to\infty$, in the space under consideration to the integrated Ornstein-Uhlenbeck process J defined by :

$$J(t) := \int_0^t U_{\gamma}(s) \, \mathrm{d}s, \quad 0 \le t \le 1, \tag{10}$$

16/10/12

where $U_{\gamma}(s) = \int_0^s e^{\gamma(s-r)} dW(r)$.

Convergence with i.i.d. innoovations

Taking into account the classical Donsker-Prohorov invariance principle and the functional central limit theorem proved by R&S (2004) we have the following corollary.

Corollary 2

Assume that (y_k) is generated by (4) with $\phi_n = \mathrm{e}^{\gamma/n}$, $\gamma < 0$ and that the ε_k 's are i.i.d. and centered. Then the weak convergence of $n^{-3/2}S_n^{\mathrm{pl}}$ to J holds

- in C[0,1] provided that $\mathbb{E}\varepsilon_1^2 < \infty$ and $y_{n,0} = o_P(n^{1/2})$;
- in $\mathrm{H}^o_{\alpha}[0,1]$ for $0<\alpha<1/2$ under condition

$$\lim_{t\to\infty}t^{1/(1/2-\alpha)}P(|\varepsilon_1|\geq t)=0.$$

and
$$y_{n,0} = o_P(n^{1/2-\alpha})$$
.

Essential lemma

Lemma 3

Suppose that the process (y_k) is generated by (4) and $\phi_n=1-\gamma_n/n$, where (γ_n) is a sequence of nonnegative numbers such that $\gamma_n\to\infty$ and $\gamma_n/n\to 0$ as $n\to\infty$. Suppose, moreover, that $y_0=0$. Let $p\ge 2$. Assume that the innovations (ε_k) satisfy

$$\lim_{t\to\infty} t^p \mathbb{P}(|\varepsilon_1| > t) = 0 \quad \text{if} \quad p > 2,$$

$$\mathbb{E}\varepsilon_1^2 < \infty \quad \text{if} \quad p = 2.$$

For $p \ge 2$, put $\alpha = 1/2 - 1/p$. Then

$$n^{-1/2} \gamma_n^{\alpha} \max_{1 \le k \le n} |y_k| \xrightarrow{P} 0.$$

Convergence in C[0,1]

Theorem 4

Suppose that the process (y_k) is generated by (4) and $\phi_n=1-\gamma_n/n$, where (γ_n) is a sequence of nonnegative numbers such that $\gamma_n\to\infty$ and $\gamma_n/n\to 0$ as $n\to\infty$. Assume also, that innovations (ε_k) are i.i.d. with $\mathbb{E}\varepsilon_1=0$ and $\mathbb{E}\varepsilon_1^2=1$ and $y_0=o_P(n^{1/2})$. Then

$$n^{-1/2}(1-\phi_n)S_n^{\mathrm{pl}} \xrightarrow[n\to\infty]{\mathrm{C}[0,1]} W.$$

Theorem 5

Suppose that the process (y_k) is generated by (4) and $\phi_n=1-\gamma_n/n$, where (γ_n) is a sequence of nonnegative numbers such that $\gamma_n\to\infty$ and $\gamma_n/n\to 0$ as $n\to\infty$. Assume also, that innovations (ε_k) are i.i.d. and satisfy condition

$$\lim_{t\to\infty}t^{p}\mathbb{P}\big(|\varepsilon_{1}|>t\big)=0\quad \text{if}\quad p>2$$

for some p > 2. Put $\alpha = 1/2 - 1/p$. Then for $0 < \beta < \alpha$,

$$n^{-1/2}(1-\phi_n)S_n^{\mathrm{pl}} \xrightarrow[n\to\infty]{\mathrm{H}_\beta^{\mathrm{o}}[0,1]} W$$

provided that $y_0 = o_P(n^{1/2-\beta})$ and

$$\liminf_{n\to\infty} \gamma_n n^{\beta/\alpha} > 0.$$

16/10/12

VU, Lille 1

Table of contents

- Structure
- 2 First order autoregressive processes
- 3 Nearly nonstationary processes
- Preliminaries
- 5 Functional central limit theorems for sums of process
- 6 Ideas of the proofs

Convergence in C[0,1] and $H^o_\alpha[0,1]$ spaces

Theorem 1

In the case 1 where (y_k) is generated by (4) with $\phi_n = \mathrm{e}^{\gamma/n}$, $\gamma < 0$, suppose that the sequence of polygonal lines $(n^{-1/2}W_n^{\mathrm{pl}})$ converges weakly to the standard Brownian motion W either in $\mathrm{C}[0,1]$ or in $\mathrm{H}^o_\alpha[0,1]$ for some $0<\alpha<1/2$. Suppose moreover that $y_{n,0}=o_P(n^{1/2})$ or $y_{n,0}=o_P(n^{1/2-\alpha})$ according to the function space considered. Then $n^{-3/2}S_n^{\mathrm{pl}}$ converges weakly, as $n\to\infty$, in the space under consideration to the integrated Ornstein-Uhlenbeck process J defined by :

$$J(t) := \int_0^t U_{\gamma}(s) \, \mathrm{d}s, \quad 0 \le t \le 1, \tag{10}$$

16/10/12

where $U_{\gamma}(s) = \int_0^s e^{\gamma(s-r)} dW(r)$.

- Since the Banach spaces $(C[0,1], \| \|_{\infty})$ and $(H_0^o, \| \|_0)$ are isomorphic, the unified proof proposed here for the spaces $H_{\alpha}^o[0,1]$, $0 \le \alpha < 1/2$, includes the special case of the space C[0,1].
- **②** Using Proposition 1 and our assumption $y_{n,0} = o_P(n^{1/2-\alpha})$, it is enough to give the proof in the case where $y_{n,0} = 0$.

16/10/12

Hölder norms of polygonal line is reached at two vertices.

Lemma 6

Let $\rho:[0,1]\to\mathbb{R}$ be a weight function satisfying the following properties.

- i) ρ is concave.
- ii) $\rho(0) = 0$ and ρ is positive on (0,1].
- iii) ρ is non decreasing on [0,1].

Let $t_0 = 0 < t_1 < \cdots < t_n = 1$ be a partition of [0, 1] and f be a real valued polygonal line function on [0,1] with vertices at the t_i 's, i.e. f is continuous on [0,1] and its restriction to each interval $[t_i, t_{i+1}]$ is an affine function. Define

$$R(s,t) := \frac{|f(t) - f(s)|}{\rho(t-s)}, \quad 0 \le s < t \le 1.$$

Then

$$\sup_{0 \le s < t \le 1} R(s, t) = \max_{0 \le i < j \le n} R(t_i, t_j). \tag{11}$$

The idea is to approximate the polygonal line $n^{-3/2}S_n^{\rm pl}$ by some linear interpolation of a smooth process J_n

$$J_n(t):=\int_0^t n^{-1/2}W_n^{\mathrm{pl}}(s)\,\mathrm{d}s+\gamma\int_0^t\int_0^s\mathrm{e}^{\gamma(s-r)}n^{-1/2}W_n^{\mathrm{pl}}(r)\,\mathrm{d}r\,\mathrm{d}s.$$

which is a functional of $n^{-1/2}W_n^{\rm pl}$, continuous in Hölder topology, with $\|n^{-3/2}S_n^{\rm pl}-J_n\|_{\alpha}=o_P(1)$. As the functional

$$\mathrm{H}_{\alpha}^{o}[0,1] \to \mathrm{H}_{\alpha}^{o}[0,1] \quad : \quad x \longmapsto \int_{0}^{\bullet} x(s) \, \mathrm{d}s + \gamma \int_{0}^{\bullet} \int_{0}^{s} \mathrm{e}^{\gamma(s-r)} x(r) \, \mathrm{d}r \, \mathrm{d}s$$

is continuous on $\mathrm{H}^o_\alpha[0,1]$, the convergence of J_n to J follows from the convergence of $n^{-1/2}W_n^\mathrm{pl}$ to W.

FCLT for nearly nonstationary processes

Convergence in C[0,1]

Theorem 4

Suppose that the process (y_k) is generated by (4) and $\phi_n=1-\gamma_n/n$, where (γ_n) is a sequence of nonnegative numbers such that $\gamma_n\to\infty$ and $\gamma_n/n\to 0$ as $n\to\infty$. Assume also, that innovations (ε_k) are i.i.d. with $\mathbb{E}\varepsilon_1=0$ and $\mathbb{E}\varepsilon_1^2=1$ and $y_0=o_P(n^{1/2})$. Then

$$n^{-1/2}(1-\phi_n)S_n^{\mathrm{pl}} \xrightarrow[n\to\infty]{\mathrm{C}[0,1]} W.$$

Ideas of the proof

- Using Proposition 1 and assumption $y_0 = o_P(n^{1/2})$, it suffices to prove the result when $y_0 = 0$;
- In view of the Donsker-Prohorov invariance principle, it suffices to show that

$$\left\| n^{-1/2} (1 - \phi_n) S_n^{\mathrm{pl}} - n^{-1/2} W_n^{\mathrm{pl}} \right\|_{\infty} \xrightarrow[n \to \infty]{\mathrm{P}} 0.$$

As supremum norm is reached at one of its vertices and

$$(1 - \phi_n) \sum_{j=1}^k y_{j-1} = -y_k + \sum_{j=1}^k \varepsilon_j$$

so it is enough to show that

$$n^{-1/2} \max_{1 \le k \le n} |y_k| \xrightarrow{P \atop n \to \infty} 0. \tag{12}$$

• And (12) is true because of Lemma 1 with p = 2.

Theorem 5

Suppose that the process (y_k) is generated by (4) and $\phi_n=1-\gamma_n/n$, where (γ_n) is a sequence of nonnegative numbers such that $\gamma_n\to\infty$ and $\gamma_n/n\to 0$ as $n\to\infty$. Assume also, that innovations (ε_k) are i.i.d. and satisfy condition

$$\lim_{t\to\infty}t^{p}\mathbb{P}\big(|\varepsilon_{1}|>t\big)=0\quad \text{if}\quad p>2$$

for some p > 2. Put $\alpha = 1/2 - 1/p$. Then for $0 < \beta < \alpha$,

$$n^{-1/2}(1-\phi_n)S_n^{\mathrm{pl}} \xrightarrow[n\to\infty]{\mathrm{H}_\beta^{\mathrm{o}}[0,1]} W$$

provided that $y_0 = o_{\mathrm{P}}(n^{1/2-\beta})$ and

$$\liminf_{n\to\infty} \gamma_n n^{\beta/\alpha} > 0.$$

VU, Lille 1

In view of Hölderian invariance principle it is enough to show that

$$\left\|n^{-1/2}(1-\phi_n)S_n^{\mathrm{pl}}-n^{-1/2}W_n^{\mathrm{pl}}\right\|_{\beta}\xrightarrow[n\to\infty]{\mathrm{P}}0.$$

As Hölderian norms of the polygonal line process is reached at two vertices, so the proof reduces to

$$n^{\beta-1/2} \max_{1 \le k \le n} |y_k| \xrightarrow[n \to \infty]{P} 0.$$
 (13)

The convergence (13) holds due to Proposition 1 and Lemma 1 with condition

$$\limsup_{n\to\infty} n^{\beta}/\gamma_n^{\alpha} < \infty.$$

FCLT for nearly nonstationary processes

AČIŪ UŽ DĖMESĮ :)