TWO-SAMPLE PROBLEM
FOR FUNCTIONAL DATA




EXAMPLE

Example 5.1 Figure 5.1 displays the reconstructed individual curves of the
progesterone data: (a) nonconceptive and (b) conceptive, obtained by the lo-
cal linear reconstruction method described in Section 3.2.3 of Chapter 3 with
bandwidth h* = 1.40 selected by the GCV rule (3.10). The progesterone data
were introduced in Section 1.2.1 of Chapter 1. The nonconceptive progesterone
curves were from the women who were not pregnant after the ovulation day
(Day 0) when they discharged their ova, while the conceptive progesterone
curves were from those women who were pregnant. The horizontal axis shows
the days before and after the ovulation day. Of interest is to know if there is
a significant difference between the mean functions of the nonconceptive and
conceptive progesterone curves before or after the ovulation day or over the

whole experimental period. This knowledge may be used to detect if a woman
is pregnant after the ovulation day.
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GENERAL PROBLEM

A general two-sample problem for functional data with a common covari-
ance function can be formulated as follows. Suppose we have two functional

samples

t.i.d.

t.1.d

yll(t)a"'aylnl(t) ~ SP(”LP}/), 921(75)5"':3}2712(@ NSP(”Za’)’)a

(5.1)

where 1;(t) and 72(t) are the unknown mean functions of the two samples,
and vy(s,t) is their common covariance function, which is usually unknown.
We wish to test the following hypotheses:

versus

Hy
H,

m(t) = na(t),t €T,
$ () 7 m2(t),

for some t € T,

(5.2)

where 7 is the time period of interest, often a finite interval [a,b] say with

-0 <a<b< .
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ESTIMATORS

Based on the two functional samples (5.1), the unbiased estimators of the
mean functions n,(t), 72(¢) and the common covariance functions ~(s,t) are

given by

ﬁz(t) - yz()_n 123 1?-}13( )% 1= 1,2, (53)
Y(s,t) = (n—=1)7 30 30 (i (s) — Bals)] [y () — Bs(t)]. '

which are known as the sample mean and pooled sample covariance functions
of the two samples, respectively, where and throughout this section, n = ny +

no denotes the total sample size of the two samples.
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Equal covariance

Table 5.1 Traces of the sample covariance functions 4,(s,t) and 9,(s,t) and their

cross-square functions Y2°(s,t) and 4$°(s,t) calculated with resolution M = 1,000
over various periods.

[a, b =8, 0] =X [—8,15]

() 1 2 1 2 1 2

tr(3;) 251 264 512 536 728 760

tr(%2%) 51,076 62,308 191,475 191,688 368,392 361,410

Table 5.2 Traces of the pooled sample covariance function ¥(s,t) and its cross-square
function 4%%(s,t) calculated with resolution M = 1,000 over various periods.
[a,b] [—8,0] [-8,8] [-8,15]
tr(9) 255 518 736
tr(4%2) 53,577 190,990 365,544
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Two-Sample Problem Assumptions (TS)

The two samples (5.1) are with 71 (¢),72(t) € £2(T) and tr(v) < co.
The two samples (5.1) are Gaussian.

As n — oo, the sample sizes satisfy ni/n — 7 such that 7 € (0,1).

VSO U I N B

The subject-effect functions v;;(t) = y;;(t) —ni(t). 7 =1,2,- -+, ni11 =
1,2 are i.i.d..
5. The subject-effect function vy, (t) satisfies

2
Ellvn|* =E [/T U%1(t)dt} < 0.

6. The maximum variance p = max, 7 (t,t) < oo.

7. The expectation E[v?,(s)v?,(t)] is uniformly bounded. That is, for

any (s,t) € T2, we have E[v?,(s)v},(t)] < C < oo, where C' is some
constant independent of (s,t) € T2.
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THEOREM 5.1

1. The two samples (5.1) are with n1(t),n2(t) € £2(T) and tr(y) < oco.
2. The two samples (5.1) are Gaussian.

Theorem 5.1 Under Assumptions TS1 and TS2, we have

[ A(t) ~ GP(a,7), and (n—2)3(s,t) ~ WP(n—2,7). |  (5.6)
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Proof of Theorem 5.1

Proof of Theorem 5.1 Under the Gaussian assumption, the first asser-
tion is obvious. To show the second assertion, notice that (n — 2)%(s,t) =
(n1 — 1)Aq(s,t) + (ng — 1)A5(s,t), where 44(s,t) and 4,(s,t) are the sam-
ple covariance functions of the two functional samples (5.1), respectively.
By Theorem 4.14 in Chapter 4, we have (n; — 1)%,(s,t) ~ WP(n; —1,7),
(ng —1)%5(s,t) ~ WP(ng — 1,7) and they are independent. By Theorem 4.4,
we have (n — 2)5(s,t) ~ WP(n — 2,~). The theorem is proved.

Theorem 4.4 Let W;(s,t) ~ WP(n;,~), i =1,2,---,k. Then we have

Wi(s,t) + Wa(s,t) + - Wi(s,t) ~ WP(n1 +ns + - - + ng, ).
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PIVOTAL TEST FUNCTION

To test the two-sample problem (5.2) based on the two samples (5.1), a natural
pivotal test function is

A(t) = v/mna/n|i(t) - G2(1) (5.4

sample problem (5.2). Notice that A(¢) has its mean and covariance functions
as

na(t) = EA(t) = \/nins/n [nl(t) — nz(t)]j and
Cov [A(s), A(t)] = ~(s,1).

Under the null hypothesis of (5.2), we have EA(t) =0,t € 7.

(5.5)

In fact, under Hy and the Gaussian assumption TS2, by Theorem 5.1, it is
easy to see that

Vmnz/n|Gi() = §a(t)| ~ GP(0,7). (5.7)
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THEOREM 5.2

1. The two samples (5.1) are with 71 (t),72(t) € £2(T) and tr(y) < oo.
3. As n — oo, the sample sizes satisfy ny/n — 7 such that 7 € (0, 1).

4. The subject-effect functions v;;(¢t) = y;;(t) —n:(t), 7 =1,2,-- -, n;;i =
1,2 are i.i.d..

Theorem 5.2 Under Assumptions TS1, TS3, and TS/, as n — oo, we have

A(t) = nalt) S GP(0,7),

where na(t) is as defined in (5.5).
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Proof of Theorem 5.2

Proof of Theorem 5.2 Notice that

A(t) —na(t) = vna/nyn [ () — m(@)] + vV /nyng [s(t) —n2(t)] .

Under Assumptions TS1, TS3, and TS4, as n — oo, we have n;/n —
7,n9/n — 1 — 7 and by Theorem 4.15 in Chapter 4, we have

VL [ () — m(6)] 5 GP(0,7), vz [Aa(t) — 12(t)] = GP(0, 7).

The theorem is then proved.

Theorem 4.15 Under Assumption OS1, as n — oo, we have

Vr{i(t) = n(t)} S GP(0,7),

d ) .
where and throughout, “—7 denotes “convergence in distribution.”
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THEOREM 5.3

1. The two samples (5.1) are with 11 (t),n2(t) € £*(7T) and tr(y) < .
3. As n — oo, the sample sizes satisfy n;/n — 7 such that 7 € (0,1).

4. The subject-effect functions v;;(t) = y;;(t) —n:(t), 7 = 1,2, -, n;11 =
1,2 are i.i.d..

5. The subject-effect function vy, (%) satisfies

2
EHUM”*‘:EUT@(@&] < o0.

6. The maximum variance p = max, 7 (t,t) < oco.

Theorem 5.3 Under Assumptions TS1 and TS3 through TS6, as n — oo,
we have

Vi {A(s,t) = (s, t)} = GP(0,),
where @ {(s1,t1), (s2,t2)} = E{vi1(s1)v11(t1)v11(s2)vi1(t2) }—v(s1,t1)7(s2, t2).

n.-14

17/03/2015 J. Markeviciaté



Proof of Theorem 5.3

Proof of Theorem 5.3 Notice that

\/H [’:‘}(S, t) o ﬂf(sa t)] — ﬂﬂ\/n_l Hxl (S! t) IR f}/(sr t)] + bn\/n_? [;?2(3: t) IR 'T(S: t)] )

where 4,(s,t) and A,(s,t) are the sample covariance functions of the two
functional samples (5.1), respectively, and a,, = [/n(n1 — 1)|/[{/n1(n — 2)]
and b, = [/n(n2 — 1)]/[/n2(n — 2)]. As n — oo, we have a,, — /7 and
b, — +/1 — 7. In addition, under the given conditions, by Theorem 4.16 in
Chapter 4, we have

VT (s, t) = 7(s,0)] 5 GP(0,), VAiz[Aa(s, 1) — 7(s. )] > GP(0, ),

where @ {(s1,%1), (52,%2)} = Evi1(s1)v11(t1)vi1(s2)vii(ta) — y(s1, t1)7v(s2, t2).
The theorem is then proved.
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IDEA OF THE TEST

The key idea of a
pointwise test is to test the null hypothesis at each time point ¢t € 7. For any

fixed t € 7, the sub-problem is

Hoy 2 mi(t) = ma(t), versus  Hyy : o (t) # ma(2)- (5.8)

Based on the sample mean functions and the pooled sample covariance func-
tion given in (5.3), the pivotal test statistic for (5.8) is

() —5®] _— A@ (5.9)

z(T) = .
( ) \/(l/n’l + 1/”2)%’(]&1 t) ﬁi(t: t)

where A(t) is the pivotal test function defined in (5.4).
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UNDER H,

In many situations, the two samples (5.1) may be approximately Gaussian.
That is, Assumption TS2 is approximately satisfied. By Theorem 5.1 and

under Hy:, we have

z2(t) ~tp_o, t€T. (5.10)

When the Gaussian assumption is not satisfied, for large samples, one may
use the pointwise z-test instead. As ni,no — oo, by Theorem 5.2, we have

=

z(t) < N(0,1), for any fixed t € 7. (5.12)
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BOOTSTRAP

When the two samples (5.1) are not Gaussian while both n; and n, are

small, the above pointwise t- and z-tests are not preferred. In this case, one
may resort to a pointwise bootstrap test. Let L:‘J(t)j =1.2,--- . n;;1=1,2,
be bootstrapped from the estimated subject-effect functions v;;(t) = y;;(t) —
n:(t),j =1,2,--+,m;;i =1,2. Set

y:i;(t) - ﬁz(t) + U;j(t)ﬁj - 1?2: T :Tli;if — 132

(5.13)

Then we can compute the sample mean functions and the pooled sample
covariance function g*(¢),7 = 1,2, and 5" (s,t) as in (5.3) but now based on
the two bootstrapped samples (5.13). For the pointwise bootstrap test, we

compute
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EXAMPLE
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IDEA OF THE TEST

L?-Norm-Based Test For the two-sample problem (5.2), the L?-norm-based
test uses the squared L?-norm of the pivotal test function A(t) (5.4) as the
test statistic:

Inl

T, = [ At ="2 [ () - o) (5.14)
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UNDER H,

If sample is Gaussian

where A1, A2, - -+, A, are all the positive eigenvalues of the common covariance
function (s, t). It follows that the null distribution of 7}, can be approximated
using the methods described in Section 4.3 of Chapter 4. In fact, by the Welch-
Satterthwaite x2-approximation method described there, we have

T, ~ Bx> imatel here g = TO) 4 () (5.15)
~ | approximately, wihiere o = s & = R = 9y * J.1J
n ™ PXa 9PP C | tr(y) tr(7%2)
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CONSISTENCY

Theorem 5.4 Under Assumptions TS1 and TS3 through TS7, as n — oo,

we have tr(%) 2 tr(v) and tr(3%%) & tr(v®2). Furthermore, as n — oo, we
have

B3, k5 k.

where 3 and k are the naive or bias-reduced estimators of 3 and k, respectively.

17/03/2015
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Proof

Proof of Theorem 5.4 Under the given conditions, by Theorem 5.3, as
n — oo, we have E[§(s,t) — y(s,1)]* = M[l + o(1)]. By Assumptions
TS6 and TS7, we have

w[(s, ), (s,£)]| < E[v?, ()02, (6)] +72(s,8) < C 4+ p, for all (s, ) € T*.

It follows that, as n — oo, we have 4(s,t) = v(s,t) +Opp(n=?), (s,t) € T,
where Oy p means “uniformly bounded in probability.” Thus, as n — oo, we
have 4(s,t) = (s, t) uniformly over 72. Therefore, as n — co, we have

lim tr(4) = / lim A(t,t)dt = /Tw(t,t)dt = tr(vy),

n—0oC n—0oC

lim tr(5%%) = /f lim 42(s,t)dsdt

= 72 (s, t)dsdt = tr(v®?),
Jr Jy e

in probability. It follows from (5.16) and (5.19) that as n — oo, 3L 3 and
i - k. The theorem is proved.
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EXAMPLE

Table 5.3 The L*-norm-based test for the two-sample problem (5.2) for the proges-
terone data with resolution M = 1, 000.
Method [, b] Tn Jé d=#i P-value
Naive (—8,0] 407.4 2104 1.21  0.208
(—8,8]  513.2 368.6 1.41  0.347
(—8,15] 3,751 496.7 148  0.012
Bias-reduced [—8, 0] 407.4 205.2  1.22 0.203
|
[

88  513.2 3589  1.42 0.343
8,15 3,751 4832  1.50 0.011

Note: The P-values by the naive method are generally comparable with those by the bias-

reduced method although the latter are generally smaller than the former.
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IDEA OF THE TEST

F = w _ o f'f[ﬂl (t) — 72(t)]%dt

tr(%) tr(%)

Fy, ~ F, (n—2), approximately,

17/03/2015 J. Markevicitté
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EXAMPLE

Table 5.4 The F-type test for the two-sample problem (5.2) for the progesterone data
with resolution M = 1,000.

Method la, b] Fn R (n —2)& P-value
Naive [—8,0] 160 121 108 0.211
[—8,8] 099 141 125 0.349
[—8,15] 5.10 1.48 132 0.014
Bias-reduced [—8,0] 1.60 1.22 108 0.211
[—8, 8] 0.99 1.42 126 0.350
[—8,15] 5.10 1.50 134 0.014

Note: The P-values by the naive method are generally comparable with those by the bias-

reduced method.
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IDEA OF THE TEST

For the L2-norm-based bootstrap test, we compute the bootstrap test

statistic T = ||A*||? with the pivotal test function
* nin2 — % — % — —
AT(t) =/ —— F1(t) = 52()) = (7 (t) — 52(1))]

of o

e _ AT
Fi = 5y
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EXAMPLE

Table 5.5 The bootstrap tests for the two-sample problem (5.2) for the progesterone

data with resolution M = 1, 000.
L?-norm-based bootstrap test F-type bootstrap test

a, b] Th P-value Fn P-value
(—8.,0] 4074 0.203 1.60 0.214
[—8, 8] 513.2 0.340 0.99 0.344
(—8,15] 3,751 0.014 5.10 0.016

Note: The number of bootstrap replicates is N = 10,000. The P-values by the bootstrap
method are generally comparable with those by the L?-norm-based test and by the F-type

test, which are presented in Tables 5.3 and 5.4, respectively.
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EXAMPLE

-“ A

Mean(East) Naive 40576 18787 1.29 0.19674
- Bias-reduced 40576 17343  1.33 0.18309
Mean(West)

Bootstrap 40576  --- --- 0.1892

Mean(East) Naive 1.668 1.2948 36.255 0.20676
= Bias-reduced 1.668 1.3312 37.273 0.20651
Mean(West)

Bootstrap 1.668 --- 0.2127

17/03/2015 J. Markeviciaté - - 38



NEXT TIME

ONE-WAY ANOVA
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