ONE-WAY ANOVA FOR
FUNCTIONAL DATA
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GENERAL PROBLEM

We can define the one-way ANOVA problem for functional data as follows.
Suppose we have k independent samples:

yil(t):"':yin-t-(t)! i=1,--- k. (523)

These k samples satisfy

(5.24)

where 7y (t),n2(t), - -,nk(t) are the unknown group mean functions of the k
samples, v;;(t),7 = 1,---,n;:1 = 1,2,---,k are the subject-effect functions,
and v(s,t) is the common covariance function.
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GENERAL PROBLEM

We wish to test the following
one-way ANOVA testing problem:

Hy : ??l(r) = ’?E(f) == ??k(t): t € T (525)

where again 7 is some time period of interest, often specified as [a,b| with
—o0 < a<b<oo.

17/03/2015 J. Markeviciaté 4



MAIN-EFFECT TEST

Main-Effect Test Set n;(t) = n(t)+«;(t),i = 1,2,---, k, where n(t) is known
as the overall mean function of the k samples and «;(%) is the ith main-effect
function for ¢ = 1,2,---,k. Then the model (5.24) can be further written as
the following standard one-way ANOVA model for functional data:

?ftj(t) — T?(t) + ﬁb(t) + T-"ij(t)a J — 1:«21' "ty Mgy = 1121' o k (526)

In this formulation, the null hypothesis (5.25) can be equivalently expressed

as

a1(t) =ax(t)=---=ar(t) =0,t € T, (5.27)

that is, to test if the main-effect functions are the same and are equal to 0.
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POST HOC TEST

Post Hoc Test When the test (5.27) is accepted, the one-way ANOVA model
(5.26) is not significant. When it is rejected, further investigation is often

required. For example, one may want to know if any two main-effect functions

a;(t) and a;(t) are the same, where ¢ and j are any two integers such that
1 <12 < j < k. This test can be written as

Hﬂ . ﬂ'i(t) — CEJ(t)..t cT (5 28)
Versus Hy : a(t) # aj(t), for somet e 7. '

The above test is known as a post hoc test. Obviously, it can be equivalently
written as

Versus Hy : ni(t) #n;(t), for some t e 7. '
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CONTRAST TEST

Contrast Test The post hoc tests are special cases of contrast tests. Let

[

ai,---,a be k constants such that they add up to 0, that is, i—1 @i =

a’l, = 0] where a = [aq, - ,ak]T and 1, is a column vector of k£ ones. A

contrast is defined as Ele a;a;(t) = al'a(t), a linear combination of the
main-effect functions «;(t),i = 1,2,---,k, where a(t) = [ai(t), -, ar(t)]’
consists of all the main-effect functions. A simple contrast is the difference of
two main-effect functions, for example, a;(t) — as(t). Another simple example
of contrast is[a; () — 3aa(t) + 2a5(¢) |when k > 5. For a given a € R* such
that a’1;, = 0, a contrast test is defined as

Hy:a'a(t)=0,t€T versus H;:ala(t)#0, for some t € 7. |(5.30)

As al'1; = 0, the above test can be equivalently written as

Hy:a'n(t)=0,t€T versus H;:a'n(t)#0, for somet e T, [(5.31)

where n(t) = [11(t), n2(t), - - -, mi(t)] 7.
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ESTIMATION OF GROUP
MEAN AND COVARIANCE
FUNCTIONS
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UNBIASED ESTIMATORS

ﬁi(t) = Y (f) - ”_12;31%3@) 1=1,2,---k, -
/(s, ) (n= k)~ i 20t i (s) — 7. ()] [ (1) — 3. (1)),

»

Eiy(t) = (1), _cov[iu(s) iult)] = 9(s,t)/niri = 1,2, k.

Set #(t) = [ (t)

Mo (), -+ M (t )]T It is an unbiased estimator of m(t).
Then we have Ef(t) =

( ) and Cov[f}(,@):ﬁ(t)] = v(s,t)D, where D =

diag(1/n1,1/ns,---,1/n;) is a diagonal matrix with diagonal entries 1/n;,7 =
1,2,---,k. That is, f(t) ~ SPi(n,yD), where SPy(n,I') denotes a k-
dimensional stochastic process having the vector of mean functions n(¢) and
the matrix of covariance functions I'(s, ).
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ASSUMPTIONS

One-Way ANOVA Assumptions (KS)

1. The k samples (5.23) are with |91 (¢),n2(t), -, ne(t) € L£3(T)
|t1‘('}x) < Q. |

and

. The k samples (5.23) are baussia,n.

. As n_— oo, the k sample sizes satisfy|n;/n — 7, i = 1,2,--- K
that| 71, 7.+, 7% € (0, 1)|

such

. The subject-effect functions
1,2,---,k are i.i.d..

vii(t) =yij()—mi(t),j =1,2,--- . n1i =

. The subject-effect function

v11(t) satisfies E||vyy||* < oo.

. The maximum variance p = max, 7 v(t,t) < co.

. The expectation E[v?,(s)v?,(t)] is uniformly bounded.
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1. The k samples (5.23) are with 7y (t),n2(t),---,me(t) € £3(T) and

tr(y) < oo.

THEOREM 5.5

2. The k samples (5.23) are Gaussian.

Theorem 5.5 Under Assumptions KS1 and KS2, we have

17/03/2015

D—lfi) [ﬁ(t) o ﬂ(t)] ™~ GPR(U ’:’Ik% and
(n—k)¥(s,t) ~ WP(n — k,~).
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PROOF OF THE THEOREM 5.5

Proof of Theorem 5.5 Notice that D™Y/2[5(t)—n(t)] = [21(t), 22(t), - - -, zx(t)]T .
where z;(t) = /nin;(t) — ni(t)],7 = 1,2,---,k are independent and by
Theorem 4.14, we have z;(t) ~ GP(0,v),i = 1,2,---,k. It follows that
D~ 2[f(t)—n(t)] ~ GPx(0,~I;) as desired. To show the second assertion, no-
tice that (n—k)5(s,t) = Zle(ni —1)5,(s,t), where 4,(s,t),t = 1,2, ---, k are
the sample covariance functions of the k functional samples (5.23). By Theo-
rem 4.14, we have (n; —1)7,(s,t) ~ WP(n; —1,7v),7 = 1,2,---, k and they are
independent. Then by Theorem 4.4, we have (n — k)5(s,t) ~ WP(n — k,~).
The theorem is proved.

Theorem 4.4 Let W;(s,t) ~ WP(n;,v), i=1,2,---,k. Then we have

Wi(s,t) + Wa(s,t) 4+ - Wi(s, t) ~ WP(ny +ng + - 4 ng, ).
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THEOREM 5.6

1. The k samples (5.23) are with 7, (¢),72(t), -+, nk(t) € £3(T) and
tr(vy) < oo.

3. As n — oo, the k sample sizes satisfy n;/n — 7;, 1 = 1,2,---, k such
that 71,7, -+, 7% € (0,1).

4. The subject-effect functions v;;(t) = yi;(t) —ni(t).j = 1,2,-- -, n;;i =
1,2,---, k are i.i.d..

Theorem 5.6 Under Assumptions KS1, KS3, and KS/, as n — oo, we have

D~'/2 [iy(t) — n(t)] > GP(0,71x).
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PROOF OF THE THEOREM 5.6

Proof of Theorem 5.6 Notice that D~Y/2[5(t)—n(t)] = [21(t), z2(t), - - -, 2z ()] 7.

where z;(t) = /ni[n;(t) — ni(t)],i = 1,2,---,k are independent. Under

. .y d
the given conditions and by Theorem 4.15, as n — oo, we have z;(t) —

GP(0,7),i = 1,2, -, k. It follows that D~Y/2[f(t) — n(t)] A GPr(0,~1;) as
desired. The theorem is then proved.



THEOREM 5.7

1. The k samples (5.23) are with n1(¢),m2(t),---,me(t) € £*(T) and
tr(vy) < oo.

3. As n — oo, the k sample sizes satisfy n;/n — 7;, i = 1,2,---  k such
that 7, 7,---, 7 € (0,1).

4. The subject-effect functions v;;(t) = yi;(t) —ni(t),j = 1,2,-- -, n;;i =
1,2,---,k are i.i.d..

The subject-effect function vy, (t) satisfies Eljvq1[|* < oo.

o

6. The maximum variance p = max, 7 v(t,t) < oc.

Theorem 5.7 Under Assumptions KS1, KS3, KS4, KS5, and KS6, as n —

00, we have

Vi {A(s,t) — (s, 1)} % GP0, @), (5.34)

where @ {(s1,t1), (s2,t2)} = E{vi1(s1)v11(t1)vi1(s2)vi1(t2) }—y(s1,t1)v(s2, t2).
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PROOF OF THE THEOREM 5.7

Proof of Theorem 5.7 Notice that

k
\/ﬁ [ﬁx(‘g: f) o T(S: f)] — Z IRV [ﬁii (S: f) T T(S: f)] ;
i=1
where 4.(s,t),7 = 1,2,---, k are the sample covariance functions of the k

functional samples (5.23) respectively, and a; = [v/n(n; —1)]/[\/ni(n—k)],i =
1,2,---,k. Asn — oo, we have a; — /7; and ZLI a? — 1. In addition, under
the given conditions, by Theorem 4.16, we have

\/EH’L (S: t) o ﬁl’(g*t)] i GP(U m)! 1 =1, 2: T T k:

where w((s1,%1), (S2,t2)) = Evi1(s1)v11(t1)v11(s2)vir(ta) — v(s1,t1)Y(s2, t2).
The theorem is then proved.
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NOTATIONS

For the main-effect, post hoc, or contrast tests, we do not need to iden-
tify the main-effect functions «;(t),7 = 1,2,---,k defined in (5.26). In fact,
they are not identifiable unless some constraint is imposed. If we do want to
estimate these main-effect functions, the most commonly used constraint is

nioy(t (5.35)

M?-

i=1

involving the k sample sizes. Under this constraint, it is easy to show that the
unbiased estimators of the main-effect functions are

where

T

k k
7. ( —1 Z > yi(t)=n"" Z i (t) (5.37)

1=1 7=1
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NOTATIONS

Let

SSH, () = Zi“_lmlym—ﬂ..(t)]% and
SSEn(t) - Z;, 1Zn1 [Jij(t)_gi.(t)]i):

denote the pointwise between- qubject and within-subject variations, respec-

(5.38)

tively, where @; (t),7 = 1,2,---,k are the group sample mean functions as
~ — -1 Tig .
T}"i(t) = ¥i(t) = n; Zj:l yij(t): 1=1,2,--- Kk,
and y_(t) is the qample grand mean functmn as
P 2
0.0 = 33 ) = 0 Ym0
=1 3=1 1=1
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NOTATIONS

Under the constraint (5.35), it is easy to see that

.EE
SSH,, (t) = » mi&i (t),
1=1

From (5.32), we can see that

SSE,.(t) = (n — k)4(t, 1). (5.40)
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THEOREM 5.8

1. The k samples (5.23) are with 71 (t),n2(t),---,me(t) € L£*(7) and
tr(y) < oo.

2. The k samples (5.23) are Gaussian.

Theorem 5.8 Suppose Assumptions KS1 and KS2 hold. Then under the null
hypothesis (5.25), we have

J7 SSH,(t)dt % S NA, Ay TRE N2

r=1
|7 SSE,(t)dt S ONE., B RN N2

where A, E.,7 = 1,2,---,m are independent of each other, and \i,---, A\m
are all the positive eigenvalues of v(s,t).
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Proof of Theorem 5.8 Under the one-way ANOVA model (5.26) and the
null hypothesis (5.25), we can further express

k
SSH,(t) = Y n;[0; (t) — 7. (1)]* = 2, (t)" (I — b,b! /n)z,(t), (5.145)

i=1
where o; (1) = n;l Z;;l v;;(t) and T _(t) = n—1 Z?:l n;v; (t), b, =
[niﬂ, n;zz, E ,niﬂ]T, and z,(t) = [n}ﬂﬁl_(t)? e niﬂﬁk.(t)]T. On the one

hand, under Assumption KS2, the k£ samples (5.23) are Gaussian, we have
z,(t) ~ GP%(0,7I%). On the other hand, it is easy to verify that I, — b, bl /n
is an idempotent matrix of rank k£ — 1. The first assertion of the theorem
follows immediately from|Theorem 4.10 of Chapter 4.

To show the second assertion of the theorem, notice that by (5.40), we

have [7SSE,(t)dt = (n — k)tr(¥) and by Theorem 5.5, we have (n —

k)y(s,t) ~ WP(n — k,7). By [Theorem 4.5(b), we have [ SSE,(t)dt 4

ST ME., E, S x2_,. Notice that 7,(¢),i = 1,2,---,k and #(s,t) are
independent. So are A,,r=1,2,---,mand E,.,r = 1,2,---,m. The theorem
is proved.

17/03/2015 J. Markeviciaté 21
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THEOREM 5.9

1. The k samples (5.23) are with n,(¢),n2(t),---,ne(t) € £*(T) and
tr(y) < oo.

3. As n — oo, the k sample sizes satisfy n;/n — 7;, i = 1,2,---, k such
that 7, 7,---. 7 € (0,1).

4. The subject-effect functions v;;(t) = vi;(t) —ni(t),7 = 1.2,--- . n;;1 =
1,2,---,k are i.i.d..

Theorem 5.9 Suppose Assumptions KS1, KS3, and KS4 hold. Then under
the null hypothesis (5.25), as n — oo, we have

Tt

d t.1.d.
/T SSHTL(t)dt — Z )"]"AT‘! AT' ~ X?ﬁ:—l?

1=1

where A1, -+, A\, are all the positive eigenvalues of y(s,1).
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Proof of Theorem 5.9 By (5.145), we have SSH,(t) = z,(t)T(Ix —
bnbg/n)zn(t), where z,,(t) and b,, are as defined in the proof of Theorem 5.8.
It is easy to see that as n — oo, we have

I, — b,b’ /n — I — bb”,

where b = lim, ..o b,/ = [/ Tgﬁ,---,Tﬂfﬂ]T. [t is obvious that
I, — bb? is an idempotent matrix of rank k — 1 and has the singular value
decomposition

I, — bb? = Udiag(Ix_;,0)U7’,

where U is an orthonormal matrix. In addition, under the given conditions,
by Theorem 5.6, and under the null hypothesis (5.25), as n — oo, we have

Zn (1) <, GP(0,~1). It follows that we have

SSH,, (¢) % z(t)T (I — bbT)z(t) = w(t)Tw(t), (5.146)

where w(t) ~ GPy_1(0,7Ix_1), consisting of the first (k — 1) component of
U”z(t) ~ GP.(0,~I;). The theorem then follows immediately from Theo-
rem 4.10 of Chapter 4.

1//UD/4ZU1lD J. IVidI KevILluLle 4D



MAIN-EFFECT TEST
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POINTWISE
TESTS
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TEST DEFINITION

Pointwise Tests We consider the pointwise F-test, the pointwise x?-test,
and the pointwise bootstrap test. The pointwise F-test for (5.25) was adopted

by Ramsay and Silverman (2005, Section 13.2.2., Chapter 13), naturally ex-
tending the classical F-test to the context of functional data analysis. The

pointwise F-test is conducted for (5.25) at each t € 7 using the following
pointwise F' statistic:

~ SSH,,(t)/(k —1)
~ SSE,(t)/(n — k)

F,(t) : (5.41)
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GAUSSIAN SAMPLE

From the classical linear model theory, it is easy to see that when the k samples
(5.23) are Gaussian, under the null hypothesis (5.25), we have

F.(t) ~ Fr—1pn—k,t€T. (5.42)

The pointwise F-test is then conducted by rejecting (5.25) at each t € 7
whenever F,(t) > Fr_1,—k(1l — a) for any given significance level a or by
computing the pointwise P-values at each ¢ € 7 based on the pointwise F-
distribution (5.42).
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NON GAUSSIAN SAMPLE

When the k-samples are not Gaussian, for large samples, one may use the

ointwise y2-test. It is easy to see that as Ny, = min®_ n; — 00, asymptot-
i'-—l ®

ically we have

Fo(t) ~ xj—1/(k=1), teT. (5.43)

This is because as npyin — o0, the denominator SSE,,(t)/(n — k) = A(t,t)
of F,(t) tends to ~y(t,t) almost surely while the numerator SSH,,(t)/(k — 1)
tends to y(¢,¢)x%_,/(k — 1). The pointwise y*-test is conducted by rejecting
(5.25) at any given ¢ whenever F,,(t) > x2_,(1 —a)/(k — 1) or by computing
the pointwise P-values of F,,(f) at any given ¢ based on the distribution (5.43).
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L2 NORM-BASED
TEST
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TEST DEFINITION

L?-Norm-Based Test The L?-norm-based test for the two-sample problem
(5.2) can now be extended for the main-effect testing problem (5.25). The

associated test statistic is defined as the integral of the pointwise between-
subject variations:

Tn—/ SSH,, (t)dt = Z /T;i — 7. (t)]%dt. (5.46)
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UNDER H,

Under the null hypothesis (5.25) and under the conditions of Theorem 5.8 or
under the conditions of Theorem 5.9, we have or approximately have

i.i.d. 9
Iy, = Z)*T'A:r': Ar ~ Xk—1;
r=1
where \.,r = 1,2,---,m are all the positive eigenvalues of ~(s,t). It fol-

lows that we can approximate the null distribution of 7, by the Welch-
Satterthwaite y?-approximation method described in Section 4.3 of Chapter
4. By that method, we obtain

tr(y®%)  tr3(y)

To ~ BXG = .
" PX () "0 |

approximately, where 3 = 5.47)

)
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with

APPROXIMATION

N tr ,:.,“,@2 A t;]_'i) -
b= ( Ih ), KR = n(@‘}_? ] (548)
tr(%) tr(4°°)
and by the bias-reduced method, we have
A t -::8?2 t T
p=07) ,_ () (5.49)
tr () tr(v®2)
Eﬁ:x o (n—k)(n—k+1) | QA QtI‘(’:‘?@z)
tr (J’) — (n—=k=1)(n—k+4+2) tr ( ) - n—k+1 } - =
— (nk)? o 23 (5.50)
tr(v*?) = GoE—Dmorry [F(7) - fﬁ] -

17/03/2015
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THEOREM 5.10

1. The k samples (5.23) are with n1(t),72(¢), -+, mk(t) € L£*(T) and
tr(y) < oc.

3. As n — oo, the k sample sizes satisfy n;/n — 7;, 1 = 1,2,k such

that 71,7, -+, 7% € (0,1).

The subject-effect functions v;;(t) = yi;(t) —ni(¢),7 = 1,2,-- -, n;;t =

1,2,---,k are i.i.d..

The subject-effect function vy, (t) satisfies Eljvy1]|* < oc.

o

The maximum variance p = max, 7 7(t,t) < oo.

N oo

The expectation E[v?, (s)v (t)] is uniformly bounded.

Theorem 5.10 Under Assumptions KS1 and KS3 through KS7, as n — oo,

we have tr(y) = tr(y) and tr(3%%) 5 tr(v®2). Furthermore, as n — o0, we
have

5P 5 AP
8= 3, k— K,

where 3 and & are the naive or bias-reduced estimators of 3 and k.
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EXAMPLE

Table 5.6 Traces of the pooled sample covariance functions 4(s,t) and its cross-
square function "}*E'E(s,t) of the Canadian temperature data, calculated with resolu-

tton M = 1,000 over various seasons.

Spring Summer Fall Winter Whole year
[a,b] (60, 151] [152,243] [244,334] [335, 365]&][1, 59] 1, 365]
tr(4) 2,481 859 1,342 4,572 9,255
tr(3%2) 5,081,346 686,818 1,519,203 20,318,974 58,152,749

17/03/2015 J. Markeviciate
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EXAMPLE

Table 5.7 The L*-norm-based test for the one-way ANOVA problem (5.25) for the

Canadian temperature data with resolution M = 1,000.

Method Time period T 3 d P-value

Naive Spring 8.58e4  2.05e3 242 |1.67e—9
Summer 1.87e4 7.99e2 2.15 |1.0le—5
Fall 7.60ed 1.13e3 2.37 |5.44e — 15
Winter 1.22e5 4.44e3 2.06 |1.25e —6
Whole year 3.02e5 6.28e3  2.95 |1.86e — 10

Bias-reduced  Spring 8.58e4 1.91e3 247 |4.24e— 10
Summer 1.87e4 7.50e2 2.17 |4.86e —6
Fall 7.60ed 1.06e3 2.41 |5.55e — 16
Winter 1.22e5 4.18¢3 2.06 |5.29e —7
Whole year 3.02ed 5.82e3 3.0 |3.43e—11

Note: The P-values by the naive method are generally comparable with those by the bias-

reduced method although the former are generally larger than the latter.
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TEST DEFINITION

F-Type Test When the k samples (5.23) are Gaussian, we can conduct an
F-type test for the main-effect test (5.25). The F-type test statistic is defined

as o _ JTSSHA(t)dt/(k — 1)
" [7 SSE.(t)dt/(n— k)

17/03/2015 J. Markevicitté 39



UNDER H,

Under the null hypothesis (5.25) and by Theorems 5.8, we have

i Zinzl )‘TAT/(‘IZ o l)

F, m )
Zr:l )“TE?"/(H N k)

t.1.d. 1.2.

where A4, "~ Xﬁ_l, E, S Xi_k and they are all independent; A1, Aa,---, A,
are all the positive eigenvalues of 7v(s,1). It follows that the null distribution
of F,, can be approximated by the two-cumulant matched F-approximation
method described in Section 4.4 of Chapter 4. By that method, we have

F o~ F{k—l)&__(n—k}ﬁ: apprﬂximately, (554)
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EXAMPLE

Table 5.8 The F-type test for the one-way ANOVA problem (5.25) for the Canadian
temperature data with resolution M = 1,000.

Method Time period F, cfl (iz P-value

Naive Spring 17.30 242 38.76 | 3.09e —4
Summer 10.91 2.15 3441 5.12e — 3
Fall 28.30 2.37 37.99 1.29¢ — 6
Winter 13.31 2.06 3291 1.39¢ — 3
Whole year 16.33 2.95 47.13 9.15e — 4

Bias-reduced Spring 17.30 247 39.46 |3.27Te—4
Summer 10.91 2.17 34.65 5.21e — 3
Fall 28.30 2.41 38.61 1.37e — 6
Winter 13.31 2.06 30.01 1.40e — 3
Whole year 16.33 3.05 48.85 [10.29¢ —4

Note: The P-values by the naive method are generally comparable with those by the bias-

reduced method.
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BOOTSTRAP
TEST
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IDEA

When the sample sizes ni,no,---,n, are large, one can apply some para-
metric bootstrap (PB) methods for testing the main-effect test (5.27). From
(5.146) in the proof of Theorem 5.9, we can see that under the null hypothesis,
as n — 0o, we have

k—1
T, = / SSH,, (t)dt - / w2 (t)dt,
T ; T

where w;(t),i = 1,2,---,k — 1 are the £k — 1 components of w(t) ~
GPr_1(0,71x_1). That is, w;(t),i = 1,-- -, k—1 nEt GP(0, ) which are known

except (s, t). The unbiased estimator (s, t) of v(s, 1) is given in (5.32).
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ALGORITHM

PB Algorithm for One-Way ANOVA (I)

1. Compute #(s,t) using (5.32) based on the k samples (5.23).

2. Re-sample the Gaussian processes w}(t),7 = 1,2,---,k — 1 from
GP(0,%).

3. Compute T = S5~ L 7w (t))at.

4. Repeat Steps 2 and 3 a large number of times to obtain a sequence

of T'; whose sample percentiles can be used to approximate the per-
centiles of T),.

yil(t):-'”:-yin-t-(t)! 1= 11"'1k- (523)

ﬁi(t) — ﬁb(t) - ”_12?1%3@) 1=1,2,---,k, -
(s,t) (n—k)~'3r, > i Yii (8) = Ti.(8)][yis (1) — 3i. ()],

¥

——?

17/03/2015 J. Markeviciate 44



T L B e N

o

ALGORITHM

PB Algorithm for One-Way ANOVA (II)
Compute (s, t) using (5.32) based on the k£ samples (5.23).

.y

Compute the positive eigenvalues A,.,r =1,2,---,m of (s, 1).

Re-sample A,,i =1,2,---,k — 1 from xi_;.
N T?l- -
Compute T5 = > .~ A\ A,

T
Repeat Steps 3 and 4 a large number of times to obtain a sequence
of T'; whose sample percentiles can be used to approximate the per-

centiles of T),.
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IDEA

Vo= > m [ 5.0 - 5 (Pt (5.55)
1<i<j<k T
They imposed Assumption KS3, that is, as n — oo,
n; )
— —71;€(0,1),i=1,2,---, k. (5.56)
n

Under the above condition and under the null hypothesis (5.25), they showed
that

v, 4 3 [T[wz—(t)— i Tyw; (D)d, (5.57)

where w;(t),i = 1,2,---, - GP(0,7). Cuevas, Febrero, and Fraiman
(2004) computed the P—value or the empirical critical value of V,, by re-
sampling w;(t),7 = 1,2,---,k from GP(0,4) a large number of times, where

Y(s,t) is the pooled sample covariance function given in (5.32). In summary,
their PB algorithm can be described as follows:
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ALGORITHM

PB Algorithm for One-Way ANOVA (III)

1. Compute 4(s,t) using (5.32) based on the k samples (5.23).

2. Re-sample the Gaussian processes w} (t),7 = 1,2,---, k from GP(0, 7).
3. Compute Vi = > o, ik Jwi(t) — \/7i/7; u,!;‘(t)]zdt, where 7; =
ni/n,i=12,---,k.

4. Repeat Steps 2 and 3 a large number of times to obtain a sequence
of V5 whose sample percentiles can be used to approximate the per-
centiles of V,,.

17/03/2015 J. Markeviciate 47



BOOTSTRAP FOR NON
GAUSSIAN SAMPLE

Let v;(t),7 = 1,2,---,m;;1 = 1,---,k, be k bootstrap samples ran-
domly genemted from the E‘%tllﬂﬂt?d mb]ect effect functions 0i(t) = yii(t) —

A1), 5 = 1,2, -, nij;t=1,2,---, k. Set
y () = 2:() + v (8),5 = 1,2, i = 1,2, k. (5.61)
Then we can compute the k£ sample group mean functions 47 (¢),---, 75 (¢), the

sample grand mean function §*(¢), and the pooled sample covariance function
4" (s,t) as in (5.32) but based on the k bootstrap samples (5.61). Then we can
compute

SSHi(t) = YF  mi{lgr(t)— g (1)) — [5a.(t) — 7.(1)]}>,
SSEX(t) = (n—k)A4 (t,1).
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BOOTSTRAP FOR NON
GAUSSIAN SAMPLE

For the L?-norm-based bootstrap test or the F-type bootstrap test, we com-
pute

[ SSH;,(t)dt/(k — 1)
T* — N I—J_}‘,E t dt. F$ — -
= J S o i = sk e =

Repeat this process a large number of times to obtain a bootstrap sample of
T or F that can be used to estimate the 100(1 — a)-percentile of T,, or F,.

The L?-norm-based bootstrap test or the F-type bootstrap test can then be
conducted accordingly.
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EXAMPLE

Table 5.9 The L*-norm-based and F-type bootstrap tests for the one-way ANOVA
problem (5.25) with the Canadian temperature data with resolution M = 1,000.
L?-norm-based bootstrap test F-type bootstrap test

Time period T, P-value F,, P-value
Spring 85,815 0 17.30 3e—4
Summer 18,748 0 10.91 2.93e — 2
Fall 76,007 0 28.30 O

Winter 121,670 0 13.31 6e—4
Whole year 302,240 0 16.33 0

Note: The number of bootstrap replicates is N = 10,000. The effect of the number of
bootstrap replicates N = 10,000 on the P-values of the L?-norm-based and F-type bootstrap

tests is noted.
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TEST OF LINEAR
HYPOTHESES
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IDEA

In the previous subsection we presented some methods for the main-effect test
(5.27). In this subsection, we study how to test the post hoc test (5.28) and
the contrast test (5.30) in a unified framework. That is, given the k samples

(5.23), we want to test the following general linear hypothesis testing (GLHT)
problem:

Hy: Cn(t)=c(t),teT, versus Hy: Cn(t)#c(t),teT,| (5.62)

where C : ¢ x k is a known coefficient matrix with rank(C) = ¢, and c(¢) : ¢ x 1
is a known constant function, often specified as 0. In fact, the post hoc test
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Notice that we have E [C#j(t) — c(t)] = Cn(t) — c(t) and

Cov lCﬁ(s) —c(s),Cat) — c(t)} — ~(s,t)CDCT,

where D = diag(%, é e i) as defined earlier. As CDCT is a square
matrix of full rank, we then arrive at the following pivotal test function:
T —1{2 -~

z(t) = (CDCT) [cn(t) —e(t)]. (5.64)

It is easy to see that
z(t) ~ SPy(n.,71y), (5.65)

where

1.(1) = (CDCT)~'2|Cn(t) - c(t)|. (5.66)

Under the null hypothesis in (5.62), n,(t) = 0,¢ € 7. The squared L*-norm
|z(t)||? of z(t) at t € 7 can then be used as the pointwise sum of squares due
to hypothesis:

SSH,,(t) = |Ch(t) — c(t)]T (cpc?) ™! [Cﬁ(t) — )], (5.67)

which, together with SSE,,(t) = (n — k)¥(t,t), the pointwise sum of squares
due to errors, will be used to define various tests for the GLHT problem (5.62).
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THEOREM 5.11

1. The k samples (5.23) are with 7, (¢),72(t), -+, nk(t) € £3(T) and
tr(vy) < oc.
2. The k samples (5.23) are Gaussian.

Theorem 5.11 Under Assumptions KS1 and KS2 and the null hypothesis in
(5.62), we have

d T d TTrL
SSH, (t)dt £ 3" A A, f SSE,(t)dt £ SN E,.
Jr 2N Iy 2
t.i.d. 9 t.i.d. 9 .
where Ap,r = 1,2,---,m "~ x, and Ep,r = 1,2,---;m ~7 x)_,; are inde-

pendent, and Ay, ---, A\, are all the positive eigenvalues of v(s,t).
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THEOREM 5.12

1. The k samples (5.23) are with 1, (t),n2(t),---,m%(t) € £*(T) and
tr(vy) < oo.

3. As n — oo, the k sample sizes satisfy n;/n — 7, i = 1,2,---,k such
that 7,7, -+, 7 € (0,1).

4. The subject-effect functions v;;(t) = yi;(t) —ni(¢),7 = 1,2, -+, n;;1 =
1,2,---,k are i.i.d..

Theorem 5.12 Under Assumptions KS1, KS3, KS/, and the null hypothesis
in (5.62), as n — oo, we have

Tri

_ SSH, (t)dt = Y M\A,.,
r=—1

i.2.d. < e )
where A,.,Tr =1,2,---,m '~ Xé and A\i,---, A\, are all the positive eigenval-

ues of y(s,t).
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Pnintwise Tests [We describe a pointwise F-test and a pointwise y>-test
here. The test statistic of the pointwise F'-test is defined as

SSH,.(t)/q

F,(t) = : 5.69
(®) SSE,, (t)/(n — k) (5.69)
When the k£ samples (5.23) are Gaussian, under the null hypothesis in (5.62),
we have

Fn(t) ~ Fq;,r,r_k}t e 7.

The pointwise F'-test can be conducted accordingly. When the Gaussian as-
sumption is not valid, for large samples, one may use the pointwise y>2-test.
For large samples, that is, under Assumptions KS3 and KS4, it is standard to
show that

Fo(t) 5 x2/q, teT.

The pointwise y?-test can be conducted accordingly.

When the k samples (5.23) are not Gaussian and nj,---,n; are small,
the above pointwise F' and y2-tests are not preferred. In this case, one may
resort to some bootstrap approaches as described at the end of this subsection.
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test uses the following test statistic

L?-Norm-Based Test |[For the GLHT problem (5.62), the L?-norm-based

T, = f SSH,, (¢)dt.
T

Under the null hypothesis in (5.62) and under the conditions of Theorem 5.11
or under the conditions of Theorem 5.12, we have or approximately have

T

T, =D AArn, A

r=1

id.d. 9
~ Xg>

where Aj, Ao, ---, A\, are all the positive eigenvalues of v(s,t). Then the
null distribution of 7}, can be approximated by the Welch-Satterthwaite y2-
approximation method using the methods described in Section 4.3 of Chapter

4. In fact, by this method, we have

T, ~ 53{3& approximately

where by the naive method, B and & are given in (5.48) and by the bias-
reduced method, they are given in (5.49). The L?-norm-based test can then

be conducted accordingly.
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F-Type Test |As for the main-effect testing problem (5.25), for Gaussian

data, we can also conduct an F-type test for the GLHT problem (5.62) using
the following F-type test statistic:

o JrSSH.()dt/g
"~ [7SSE,(t)dt/(n — k)

By Theorem 5.11 and under the null hypothesis in (5.62), we have
y Zrn /\ A /q

F‘TL — T ¥
ST A E,/(n— )
where A,,r = 1,---,m -y X and E,.,7 = 1,---,m R x2_, are inde-

pendent, and A;, As,---, A, are all the pDSlthE e1genvalues of v(s,t). That
is, under the null hypothesaa F,, is an F-type mixture. It follows that the
null distribution of F),, can be approximated by the two-cumulant matched
F-approximation method described in Section 4.4 of Chapter 4. In fact, by
that method, we have

Fy, ~ Fyi (n—k)s» approximately,

where by the naive method, £ is given in (5.48) and by the bias-reduced
method, & is given in (5.49). The F-type test can then be conducted accord-

ingly.



NEXT TIME

TWO-WAY ANOVA
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