ONE-SAMPLE PROBLEM
FOR FUNCTIONAL DATA
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INTRODUCTION AND
GENERAL SETTING



Example 4.14 Figure 4.11 (a) displays the reconstructed functions of the
conceptive progesterone data introduced in Section 1.2.1 of Chapter 1. Their
sample mean and covariance functions were computed using the formulas
(4.42) given below and are displayed in panels (b) and (c), respectively. From
panel (b), it is observed that before the ovulation day (Day 0), the sample
mean function of the logarithm of the conceptive progesterone data is near
a constant —0.50. But after the ovulation day, the sample mean function is
no longer a constant; it increases over time. It is then of interest to test the
following one-sample problem:

Hy :n(t)=-0.50, t € [a,b],

versus | Hy :n(t) # —0.50, for somet € [a,b], (4.39)

where [a,b] is any time period of interest. When [a,b] = [—8,0],[0,15] and
[—8,15], we are interested in testing if the underlying mean function of the
logarithm of the conceptive progesterone data is a constant —0.50 before the
ovulation day, after the ovulation day, and over the whole observation period,

respectively.
3
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GENERAL ONE-SAMPLE PROBLEM

A general one-sample problem for functional data can be described as
follows. Suppose we have a functional sample

[ yl(t): "y Un (t) Lkd. SP(?’I hl’f): ] (440)

and we wish to test the following hyvpothesis testing problem:

[Hg :n(t) =no(t), te€T, versus Hj:n(t) # no(t), for some t € T, }4.41)

where 7)9(%) is some known function that is prespecified based on related physi-
cal theories, past experiences, or past experimental results. In many situations,
no(t) is specified as 0 to test if the sample is purely noise or if there is some
time-effect over 7.
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UNBIASED ESTIMATOR OF THE
MEAN AND COVARIANCE
FUNCTIONS

Based on the sample (4.40), the unbiased estimators of 7n(¢) and (s, 1),

that is, the sample mean and covariance functions, are respectively

nt) =

y(t) =n~" Z:L L Yi(t),
(n = 1)1 S lr(s) — )i(8) — (D)) (4.42)
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ONE-SAMPLE PROBLEM

ASSUMPTIONS (OS)

1. The functional sample (4.40) is with n(t) € £2(7) and |tr(vy) < co.

2. The functional sample (4.40) is|Gaussian.

3. The subject-effect function vy (t) satisfies E|jv1||* = E [f/}- T_J%(t)dt]g <

Q.

4. The maximum variance p = max, 7 7(t,1) < co.

on

. The expectation E[v?(s)v?(t)] is uniformly bounded. That is, for any

(s,t) € T?, we have E[vi(s)v?(t)] < C < oo, where C is some con-
stant independent of any (s,t) € T>.

17/03/2015
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INSERTION 1

Throughout this book, let 7 be a finite interval and we use || f|| to denote the
L?-norm of a function f(t),t € 7:

[ I = | | o] " J

If ||f]] < co, we say that f(t),t € T is a squared integrable function. In this
case, we write f(t) € £*(T), where £2(T) denotes the Hilbert space formed by
all the squared integrable functions over 7 and the associated inner-product
is defined as

< f,9>= /Tf(t)g(t)dt, f(t),g(t) € LX(T). J

17/03/2015 J. Markeviciaté 10



INSERTION 2

Let y(t),t € T be a stochastic process having mean function n(t),t € 7
and covariance function v(s,t),s,t € 7, where 7 is a compact support of ¢.

' ~ SP(n,~) for simplicity. When ~(s, ) has finite trace:
f’T (t,t)dt < oof it has the following singular value decomposition (SVD

(Wahba 1990, D. 3):

Y(s,t) = A (5) (1), (4.1)
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INSERTION 3

A process y(t),t € T is Gaussian with mean function 7(¢),t € 7 and
covariance function v(s,t), s,t € 7, denoted as GP(n, ), if and only if for any
p time points, t..7 = 1.2.---.p. the random vector [y(t,).---.y(t,)]T follows

a multivariate normal distribution N;n( n.I'). where n = [n(t{).---.n( t.‘,,HT and
I' = (y(ti,t;)) : p X p. Throughout this book, X 2y denotes that X and Y

have the same distribution, and f(¢) = 0,¢ € 7 denotes f(t) =0 forallt € 7.
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THEOREM 4.14

1. The functional sample (4.40) is with n(t) € £*(7) and tr(y) < oo.

2. The functional sample (4.40) is Gaussian.

Theorem 4.14 Under Assumptions OS1 and OS2, we have

\/ﬁ{ﬁ(t) - 'T?(f)} ~ GP(U:T): (n - 1)%(‘9&) ~ {WP(H — 1, ﬂf')']
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WISHART PROCESS

Wishart processes are natural generalizations of Wishart random matrices.
Throughout, we use WP(n,y) to denote a Wishart process with n degrees of

freedom and a covariance function (s, t). A general Wishart process W (s,t) ~
WP(n,~) can be written as

[ W (s, t) = Z Wi(s,t) = Zvé(smm,} (4.11)

1=1 1=1

where Wi;(s.t) = wv;(s)v;(t).i = 1.2.---.n, L WP(1.v) and v;(t).1 =
1,2,---,n, i GP(0,~). By the definition, we have the following obvious but

useful result.

Theorem 4.4 Let W;(s,t) ~ WP(n;,v), i =1,2,---, k. Then we have

Wl(S}f) + I’V'Q(S,?f) + - Wk(s,t) ~ Wp(ﬂl +no 4+ -+ ﬂ-k}“'}‘).
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PROOF OF THEOREM 4.14

Proof of Theorem 4.14 Under the given conditions, the functional sample
(4.40) is Gaussian. The first assertion follows from the fact that En(t) = n(t)
and Cov(7(s),7n(t)) = ~v(s,t)/n. To show the second assertion, let y(t) =
[y1(t),y2(t), - -, yn(t)]T. Then y(t) ~ GP,(nl,,~1,). We have

(n=1)3(s,t) = y(5)" (In = In/n)y(t) = v(s)" (L — In/n)v (),

where J,, = 1,11 is an n x n matrix of ones and v(t) = y(¢) — n(t)1, ~
GP,(0,~1,). Notice that I,, — J,,/n is an idempotent matrix of rank n — 1.
The second assertion then follows from Theorem 4.8 immediately.

17/03/2015 J. Markeviciuté




THEOREM 4.8

Theorem 4.8 Assume y(t) ~ GP,(n,v1,) and A : n x n is an idempotent
matriz of rank k, having the SVD (4.17). Then the quadratic form q(s,t) =
y(s)T Ay(t) has the following random expression:

k

a(s,t) =) zi(s)zi(t), (4.18)

1=1

where z1(t),-- -, 2,(t) are the entries of z(t) = Uly(t) ~ GP,,(U'n,1,). In
particular, when n(t) = 0.

q(s,t) ~ WP(k,~). (4.19)
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THEOREM 4.15

1. The functional sample (4.40) is with n(t) € £*(7) and tr(y) < oo.

Theorem 4.15 Under Assumption OS1, as n — 0o, we have

d

v {i(t) —n(t)} = GP(0,y),

i d ) o
where and throughout, “—” denotes “convergence in distribution.”
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PROOF OF THEOREM 4.15

Proof of Theorem 4.15 Under the given conditions, we have E||y|* =

n]|? + tr(7) < oo and the functional sample (4.40) is i.i.d. The assertion fol-
lows from Theorem 4.12 immediately.

Theorem 4.12 If y1(t),y2(t), -, yn(t) bt SP(n,~) such that El||y:||* < oo
where t € T, then as n — oo, we have

Valg(t) — n(t)] % GP(0,~),

where ?;( ) =n~t Y, yi(t) is the usual sample mean function of y;(t),i =
1,2,
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THEOREM 4.16

1. The functional sample (4.40) is with n(t) € £*(7) and tr(y) < oo.

3. The subject-effect function vy () satisfies E|jv1[|* = E | [1 U%(t)dt]g <
0.

4. The maximum variance p = max,_7 v(t,t) < oo.

Theorem 4.16 Under Assumptions OS1, OS3, and 0S4, as n — oo, we have

Vi {A(s,t) = (s, 1)} = GP(0,w),

where

w {(s1,%1), (s2,t2)} = E{vi(s1)vi(t1)vi(s2)vi(te)} — v(s1,t1)7(s2,t2).

19
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PROOF OF THEOREM 4.16

Proof of Theorem 4.16 Let y(t) = [yi(t), -, yn(t)]F. Then y(t) ~
SP,(nl,,v1,). Set v(t) = y(t) — n(t)1,,. Then v(t) ~ SP,(0,~1,). Set
J, =1,1%. Then

(s, 1) (n=1)"ty(s) (I — Jn/n)y(t)
(n—1)~tv(s)" (In_']n/n’) (2)

(n—=1)"" Y 2i(s,t) — 22 7 0(s)o(t),

where 9(t) = n~1 Y " vi(t) and z(s,t) = vi(s)vi(t),i = 1,2,---,n are i.i.d.
with E(z1(s,t)) = (s, ) and

w|(s1,t1), (s2,t2)] = cov(zi(s1,t1),21(52,t2))
= E|vi(s1)vi(t1)vi(s2)vi(te)] — v(s1,t1)v(s2,t2)-

20
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PROOF OF THEOREM 4.16

By the central limit theorem of i.i.d. stochastic processes, Theorem 4.12, as
n — 00, we have

T

Vvn [nl Z zi(s,t) — '}f(stt)] A GP(0, =),

=1

as by Assumption OS3, we have

2
E||z1]|> =E / 2[1}1(5)@1(t)]2d3df =E [/:}_ 'Uf(t)dt] = E|jvy|* < .

[t remains to show that ©(t) = opyp(l), that is, ©¥(¢) converges to 0 in

probability uniformly over 7. This is actually true as Ev(tf) = 0 and
Cov(v(s),v(t)) = v(s,t)/n < v(t,t)/n < p/n. Thus under Assumption OS4,

we have ©9(t) = oy p(1). The theorem is then proved.
- -
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POINTWISE
TESTS



GENERAL IDEA

Pointwise tests aim to test the null hypothesis in the one-sample problem
(4.41) at each time point ¢t € 7. For any fixed ¢, the sub-problem is

[ Hot :n(t) = no(t), versus Hyy:n(t) # no(t). ] (4.43)

Based on the estimators (4.42), the pivotal test statistic for the above local
hypothesis testing problem is

Alt)  _ vnly®) —n@®)] (4.44)

z(t) = =
" VAt 1) V(L. t)
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TESTING

When the functional sample (4.40) is Gaussian, by Theorem 4.14, for each
t € T, we have

2(t) ~ tp1. (4.45)

When the Gaussian assumption is not valid, for large samples,
one can use the pointwise z-test. Notice that for any fixed

L e i L

t €T, asn — oo, by Theorem 4.15, we have

[ 2(t) S N(0,1),t € T.] (4.47)
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L2— NORM-BASED
TEST



IDEA OF THE TEST

L?-norm-based test uses the squared L?-norm of A(t) as its test statistic:

[ T, = 1812 = n [ (50 - m(o)de J (4.50)

It is easy to see that T}, will be small under the null hypothesis and it will be
large under the alternatives. By Theorem 4.2 and under Hy,

To £ MAr A RN

r=1

which is valid when the Gaussian assumption holds or is asymptotically valid

when n is large.
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The null distribution of 7,, can then be approximated using the meth-
ods described in Section 4.3. For example, by the Welch-Satterthwaite y?-
approximation, we have

tr(v*?) tr ()

K =

tr(y) ’ tr(y®2)

Remark 4.10 The parameters 3 and k depend on the underlying covariance
function ~y(s,t) only. They not only depend on the variances ~y(t,t),t € T
via tr(7y), but also depend on the covariances ~v(s,t), s # t, s,t € T by
tr(y®?). In this sense, the L?-norm-based test and the F-type test defined in
the next subsection do partially take into account the dependence of functional
data. The parameter (3 is proportional to the scale of the functional data while
the parameter k is scale invariant. Later in this book we shall see that the
approrimate degrees of freedom of many test statistics for functional data are
proportional to k. That is why Shen and Faraway (2004) called k the degrees
of freedom adjustment factor.

T, ~ Bx% approximately, where 3 = (4.51)




17/03/2015

(f ®g)(s,
f@Z(S:

=J7(

t)
t)

DEFINITIONS

fT f(S? U)g(ﬂ.? t)d'ﬂ-:
fT f(s,u)f(u,t)du.

(t,t)dt < oo,
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NAIVE ESTIMATOR

In practice, the parameters 3 and k must be estimated based on the func-
tional data (4.40). A natural way to do this is to replace (s, t) in tr(y), tr?(v)
and tr(y®?) with its unbiased estimator 9(s,t) so that

tr(5%%) i ()

A ) L A®R24 452)
r(3) (%) (

B =

where 4(s,t) is given in (4.42) based on the sample (4.40). In this case, we
have

[ T ~ Bxf? approximately. ] (4.53)
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BIAS-REDUCED ESTIMATOR

o (n—1) | 2t (AEE)\
2/~ o n—1)n 202\ _ 2y )
tr ( f) o (n—2)(n+1) tr (ﬁ'l/) Ll (4 54)
— n—1)>2 i ~ ®2 tr* (4 |
tr(’}@z) — {Tl{—2:}{?'3-+1:] _tr(ﬂf ) _ n—{fly)] )

- J

Replacing tr?(v) and tr(7®?) in (4.51) by their unbiased estimator defined
above results in the so-called bias-reduced method for estimating the param-

eters 3 and d:
(B2 2(A
= T0®) o ) (4.55)
tr () tr(y®2)

-2
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PROPERTIES OF THE ESTIMATORS

1. The functional sample (4.40) is with n(t) € £*(7) and tr(y) < oo.

3. The subject-effect function v, (t) satisfies E||v1||* = E | [7 T.J%(t)df]z <
0.

4. The maximum variance p = max, 7 7(t,t) < oo.

. The expectation E[vZ(s)v#(t)] is uniformly bounded. That is, for any

(s,t) € T*, we have E[vi(s)v?(t)] < C < oo, where C' is some con-
stant independent of any (s,%) € T2,

o

Theorem 4.17 Under Assumptions OS1 and OS3 through OS5, as n — oo,
we have tr(%) = tr(vy) and tr(3%*) 5 tr(v®2). Furthermore, as n — oo, we

. P % P s I . . .
have 3 — 3 and k — k, where 3 and & are the naive or bias-reduced estimators

of B and K.
17/03/2015 - - - 33
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Proof of Theorem 4.17 Under the given conditions, by Theorem 4.16, as
n — 0o, we have E[J(s,t) — v(s,t)]? = w[(s’i‘(s‘t” [1 + o(1)]. By Assumptions
0S4 and OS5, we have

lw[(s,t), (s, t)]| < E?(s)v3(t)] +72(s,t) < C 4 p, forall (s,t) € T>.

Thus, we have 4(s,t) = v(s,t) + Oyp(n~2), (s,t) € T?, where Oy p means
“uniformly bounded in probability.” It follows that 4(s,t) = ~(s,t) uniformly
over T2. Therefore,

lim tr(4) = f lim A(t,t)dt :f v(t, t)dt = tr(y),
TL— %0 T — 2 T
lim tr(3%%) = f / lim 4%(s,t)dsdt

- f;r /:r 7 (s, t)dsdt = tr(y%?).

It follows from (4.52) and (4.54) that as n — oo, 32 B and & & k. The
theorem is proved.
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Naive

Bias-
reduced

Naive

Bias-
reduced

EXAMPLE

[-8,0]
[0,15]
[-8,15]
[-8,0]
[0,15]
[-8,15]
[-8,0]
[0,15]
[-8,15]
[-8,0]
[0,15]
[-8,15]

28.48
46967
46996
28.48
46967
46996
752.54
15962
16037
752.54
15962
16037

J. Markevicitté

—~

B

235.26
370.74
460.81
213.45
334.38
408.63
202.99
381.03
368.75
196.48
505.70
488.02

1.13
1.24
1.58
1.15
1.28
1.68
1.24
1.25
1.44
1.25
1.26
1.46
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IDEA OF THE TEST

Then it is natural to t@(d.éﬂ) using the following test statistic:

_AI? _ nflat) — no())*dt J
tr(%) tr(4) '

-FTI-

Hy:n(t)=mno(t), t €T, versus H;:n(t)# no(t), for some t € T,
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IDEA OF THE TEST

When the variation of tr(4) is not taken into account, the above test statis-
tic F,, is equivalent to the L?-norm-based test statistic 7}, defined in (4.50).

[ FnNFl,n—l]

[ F, ~ F R,(n—1)& appruximat.ely,]

- tr?(%) R 2~
d=Fk=——g3 d=Fk = tlf(j)
tr(y°°) tr(v®2)
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EXAMPLE

Conceptive  Naive [-8,0] 0.107 1.13 23.65 0.776
[0,15] 101.85 124 2612  2.6578e-011
[-8,15] 6473 158  33.09  3.8508e-011
Bias- [-8,0] 0107 116 2406  0.776
reduced [915]  101.85 1.28 2696  1.3507e-011
[-8,15] 6473  1.68 3531  9.5934e-012

Nonconcepti Naive [-8,0] 2.99 1.24 84.29 0.079
ve [0,15] 33474 1.25 85.10 0
[-8,15] 220.15 144 97.95 0

Bias- [-8,0] 2.99 1.25 85.08 0.078

reduced 19151 33474 1.26 85.93 0
[-815] 220.15 1.46 99.50 0

17/03/2015 J. Markeviciaté - - 39




BOOTSTRAP TEST




GENERAL IDEA

Based on the bootstrap sample (4.49) randomly generated from (4.40), we
can construct the sample mean and sample covariance functions as §*(¢) and

*(s,t), computed as in (4.42).

n_l Z?:l yi(t)r
)7 [yi(s) — ()] [wi(t) — A(t)].
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L2 — NORM - BASED
BOOTSTRAP TEST

The L2-norm-based bootstrap test computes

the bootstrap test statistic 77 = ||[A*|| with the bootstrapped pivotal test
function A*(t) = /n|[y*(t) — §(t)]. Repeat this process a large number of
times so that one can obtain a bootstrap sample of T'* that can be used to

estimate the 100(1 — a)-percentile of T),.
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F-TYPE BOOTSTRAP TEST

Similarly, the F -type bootstrap test

1A%
_ _ tr(y )
number of times so that one can obtain a bootstrap sample of F* that allows
to estimate the 100(1 — a)-percentile of F,.

computes the bootstrap test statistic F" = . Repeat this process a large
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EXAMPLE

LZ test

Conceptive  Naive [-8,0] 28.48 0.828 0.107 0.833

[0,15] 46967 0 101.85 O

[-8,15] 46996 0 64.73 0
Nonconcepti Naive [-8,0] 752.54  0.076 2.99 0.085
ve [0,15] 15962 0 334.74 0

[-8,15] 16037 0 220.15 0
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NUMERICAL
IMPLEMENTATION




DISCRETIZATION

In practice, we have to discretize the continuous functions A(¢) and (s, 1)
in the computation of ||Al|%, tr(%) and tr(3®?). Let the resolution number be
M, a large number, say, M = 1,000, and let ¢;,t2,---,t)s be M resolution
time points that are equally spaced in 7. Then the functional sample (4.40)
is discretized accordingly as

yi = [yi(t1),yi(te), - yi(ta)]*, i=1,2,---,n, (4.58)

and the one-sample problem (4.41) is discretized as

Hy:m=mny, versus H;:m #ny. (4.59)

where i = [n(t1),---,n(tar)]? and ny = [o(t1), -+, mo(tar)]*

--46
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DISCRETIZATION

_ 2 _ 2(t)dt =~ ©
I = |A” _’;’}'A ’T;ﬁg M A (t:) (4.61)
— 1‘-,1 ||‘&” Trm
where v(7) denotes the volume of 7 and T = ||A||? denotes the usual squared

L?-norm of A. When 7 = [a, b], one has v(7) = b — a. Similarly, we have

[ D) oy (T
In addition, we have
M M 2
. A -(T |
tr(5%?) :/Zf}ﬁg(s,t)dsdt IQ ZZ Ve tr(I' ).
1i=1 3=1

When 7 = |a, b], which is often the case, one has v(7~)

17/03/2015 0 J. Markeviciaté .
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NOTATIONS

A(ty) Y(t1,t1) Y(t1,tnm)
A(ts) ) Y(to,t1) - Alta,tar)

A = , , and I' = , , , , (4.60)
| A(tar) | Y(tarst1) Y(tar,tar)
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DISCRETIZATION

this case, the estimated parameters 5’ and R defined in (4.52) for the Welch-
Satterthwaite y2-approximation can be approximately expressed as

~ 2 2 T
s VD) W) o B (E‘) _ 20,
M (T M tr(I")

~0
where 3 and &° denote the estimated 3 and x when the Welch-Satterthwaite
y?-approximation is applied to the discretized one-sample problem (4.59)
based on the discretized one sample (4.58). It follows that

[ P (1.2 i) = P (570 2 U000 ) = P (102 ') J

M "= M

We then have the following remark.

17/03/2015 J. Markeviciaté - - 49



REMARK

Remark 4.13 When we conduct the L?-norm-based test, the constant factor

o(T)

< n 1, and 3’ can be omitted at the same time in computation. This will
not affect the test result.
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DISCRETIZATION

The above remark is also true for the F-type test. In fact, by (4.61) and
(4.62), the F-type test statistic (4.57) can be approximately expressed as

2 2
[ F, = ”“A”F ~ 1Al = FY, J (4.63)

where Ff: denotes the test statistic for the F-type test applied to the dis-
cretized one-sample problem (4.59) based on the discretized one sample (4.58)

so that

[ P(Fm > F&.,(n—l)ﬁz) ~ P(F?’? = FF{-D (Tl—l)ﬁn)' ]

¥
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REMARK

Remark 4.14 From the above, it is seen that in practice, we have to dis-

cretize the functional data so that the various tests described in this sec-

tion are a,ctuaﬂy applied to the discretized sample (4.58) by computing
~0

T°, FP, tr(TD), tT(I‘ ), 3 ,k", etc. Therefore, when the functional data are very

.l'l Uy drd (LTLTLOL U CEC0T] [l g 01 [ [JLeEL/LOd DTODOS €3 . aple )

hey can be observed simultaneously over a common grid of time points so that

a samplf’ of vectors like (4.58) can be obtained, then the various tests described

wn this section can be applied directly to the observed functional data. This is
true for all the methodologies investigated in this book.
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REMARK

Remark 4.15 When M is large and n is relatively small, we can simplify the
computation using the following technique. Note that

y(s,t) = (n — 1)—121,:1 (n— 1)~ (s)T¥(t),

i=1

where V(t) = [01(t), -, 0, (t)]T with 9;(t) = y;(t) — y(t),i = 1,2,---,n being
the estimated subject-effect functions. It follows that

o~

= (mn—1)VV ,
where V = [V(t1), V(t2), -+, v(ta)]T : M x n. Thus

(n —1)"1tr(S),

") = (n—1)"1 (W _
vV } (n — 1)~2r(S?),

(
"D 5
() = (n—1) tr[
where S = V'V is an n x n matriz so that the needed operations for com-

puting tr(T') and t’r(f‘g) are O(n) and O(n?) instead of O(M) and O(M?),
respectively. This saves a lot of computation.
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TEMPERATURE
EXAMPLE




We want to test a hypothesis about the
mean of Canadian Temperature Data

Hy:p = —0.0011¢% + 0.44t — 29.44,
t € [0,365]
Hy:p # —0.0011t% + 0.44t — 29.44,
for somet € |0,365]

We investigate this hypothesis in three different
regions: North; East; West.




(a) Reconstructed curves of the East temperature data
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(a) Reconstructed curves of the

West temperature data
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(a) Reconstructed curves of the North temperature data
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B | Figure 1
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oi ntwi se t- and z-tests using the pivotal test function (East )

o 15 ' ! ' ' ' ' ' —— pivotal test funct.
1 t-test crit. ling
'§ B z-test crit. line
=
U —
c
3
(e
- |
0
o)
I_
-5 1 | | 1 | | 1
0 50 100 150 200 250 300 350 400
Dayti me
(b) Pointwise t- and z-tests using the pointwi se P-val ues (East )
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>0i ntwi se t- and z-tests using the pivotal test function (North )
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EXAM PLE

East Naive 301370 8836.1 1.44 1.3901e-008
Bias-reduced 301370 7467.3 1.57 7.5075e-010
Bootstrap 301370 --- --- 0

West Naive 175430 2957.6 1.21 0.020
Bias-reduced 175430 25454 @ 1.27 0.013
Bootstrap 175430 --- --- 0.0256

North Naive 779090 2419.8 1.31 2.7778e-008
Bias-reduced 779090 1447.3 1.69 1.0874e-012
Bootstrap 779090 --- 0

-- 63
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EXAMPLE

East Naive 23.61 1.44 20.22 2.1142e-005
Bias-reduced 23.61 1.57 21.92 1.0749e-005
Bootstrap 23.61 --- --- 0

West Naive 4.89 1.21 16.99 0.035
Bias-reduced 4.89 1.27 17.74 0.033
Bootstrap 4.89 --- 0.038

North Naive 24.61 1.31 5.23 0.003
Bias-reduced 24.61 1.69 6.75 0.001
Bootstrap 24.61 0.33

64
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NEXT WEEK

TWO-SAMPLE
PROBLEMS FOR
FUNCTIONAL DATA
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