Notations and Background Function central limit theorems Applications for testing epidemic change

Functional central limit theorems for nearly nonstationary processes and applications for testing epidemic change

Jurgita Markevičiūtė^{a,b} Alfredas Račkauskas^a, Charles Suguet^b

^aDepartment of Mathematics and Informatics, Vilnius University, ^bLaboratoire P. Painlevé, UMR 8524 CNRS Université Lille I

11th of June. 2012

Table of contents

AR(1) process definition Definition of nearly nonstationary process

First order autoregressive processes

2 Notations and Background

- 3 Function central limit theorems
- Applications for testing epidemic change

< 6 >

(E)

AR(1) process

AR(1) process definition Definition of nearly nonstationary process

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1, \tag{1}$$

where (ε_k) are the innovations at time k, and ϕ is an unknown parameter.

< A >

< 3 > < 3 >

AR(1) process

AR(1) process definition

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1, \tag{1}$$

where (ε_k) are the innovations at time k, and ϕ is an unknown parameter. **(**) $|\phi| < 1$, then (1) is stationary process

< 3 > < 3 >

AR(1) process

AR(1) process definition Definition of nearly nonstationary process

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1, \tag{1}$$

where (ε_k) are the innovations at time k, and ϕ is an unknown parameter.

- **(**) $|\phi| < 1$, then (1) is stationary process;
- $|\phi| > 1$, then (1) is explosive process

< 3 > < 3 >

p. 3 of 27

AR(1) process

AR(1) process definition Definition of nearly nonstationary process

First order autoregressive AR(1) process is generated according to the scheme

$$y_k = \phi y_{k-1} + \varepsilon_k, \quad k \ge 1, \tag{1}$$

where (ε_k) are the innovations at time k, and ϕ is an unknown parameter.

- **(**) $|\phi| < 1$, then (1) is stationary process;
- 2 $|\phi| > 1$, then (1) is explosive process;
- $\phi = 1$, then (1) is nonstationary process.

4 3 5 4 3 5 5

AR(1) process definition Definition of nearly nonstationary process

ϕ is "close" to 1

• For $|\phi| \leq 1$ the asymptotics :

$$\left(\sum_{k=1}^{n} y_{k-1}^{2}\right)^{1/2} \left(\widehat{\phi} - \phi\right) \xrightarrow[n \to \infty]{\mathbb{R}} \mathfrak{N}(0, 1).$$
(2)

2 For $\phi = 1$

$$\left(\sum_{k=1}^{n} y_{k-1}^{2}\right)^{1/2} \left(\widehat{\phi} - 1\right) \xrightarrow[n \to \infty]{\mathbb{R}} \frac{\frac{1}{2}(W^{2}(1) - 1)}{\left(\int_{0}^{1} W^{2}(t) \,\mathrm{d}t\right)^{1/2}}$$
(3)

Because of P(τ ≤ 0) = P(W²(1) ≤ 1) = 0.684, (2) may not be a satisfactory approximation when φ is "close" to 1 and the sample size is moderate. Also (3) could be used. However, neither (2) nor (3) seems to be intuitive approximations.

AR(1) process definition Definition of nearly nonstationary process

Nearly nonstationary process

Suppose we have first-order autoregressive process $(y_{n,k})$ given by

$$y_{n,k} = \phi_n y_{n,k-1} + \varepsilon_k, \quad k \ge 1, \quad n \ge 1,$$
(4)

where

$$\begin{array}{l} \bullet & \phi_n \to 1, \text{ as } n \to \infty, \\ \bullet & (\varepsilon_k) \text{ is a sequence of i.i.d.random variables with } \mathbb{E}\varepsilon_k = 0 \text{ and } \\ \mathbb{E}\varepsilon_k^2 = 1, \end{array}$$

• $y_{n,1} \dots, y_{n,n}$ are observations and *n* is a sample size,

• for simplicity
$$y_{n,0} = y_0 = 0$$
.

4 D b 4 A b

< ∃ > < ∃ >

AR(1) process definition Definition of nearly nonstationary process

Parametrisation of ϕ_n

Case 1

 $\phi_n = e^{\gamma/n}$ with constant $\gamma < 0$. This parametrisation was suggested by Phillips (1987 m.).

Case 2

 $\phi_n = 1 - \frac{\gamma_n}{n}$, $\gamma_n \to \infty$ slower than *n*. This parametrisation was suggested by Phillips and Giraitis (2006 m.)

We will use LSE estimate

$$\widehat{\phi}_n = \frac{\sum_{k=1}^n y_k y_{k-1}}{\sum_{k=1}^n y_{k-1}^2}$$

based on observations y_1, \ldots, y_n with $y_0 = 0$ for convenience.

Table of contents

2 Notations and Background

3 Function central limit theorems

Applications for testing epidemic change

4 E > 4

Process built on the y_k 's

We focus on polygonal line processes built on the y_k 's :

$$S_n^{\mathrm{pl}}(t) := \sum_{k=1}^{[nt]} y_{k-1} + (nt - [nt]) y_{[nt]}, \quad t \in [0,1], \quad n \ge 1.$$

and on polygonal line process built on the $\widehat{\varepsilon}_k{\,}'{\rm s}$:

$$\widehat{W}_n^{\mathrm{pl}}(t) := \sum_{k=1}^{[nt]} \widehat{\varepsilon}_k + (nt - [nt])\widehat{\varepsilon}_{[nt]+1}, \quad t \in [0,1], \quad n \ge 1,$$

where $\widehat{\varepsilon}_k$ are residuals of the process y_k defined by

$$\widehat{\varepsilon}_k = y_k - \widehat{\phi}_n y_{k-1}$$

Function spaces

The polygonal line process $S_n^{\rm pl}$ can be viewed as a random element in Hölder space ${\rm H}^o_{\alpha}[0,1]$. For $\alpha \in (0,1)$

$$\mathrm{H}^{o}_{lpha}[0,1]:=\left\{f\in \mathcal{C}[0,1]:\lim_{\delta
ightarrow0}\omega_{lpha}(f,\delta)=0
ight\},$$

endowed with the norm $\|f\|_{lpha}:=|f(0)|+\omega(f,1)$, where

$$\omega_{lpha}(f,\delta):=\sup_{\substack{s,t\in[0,1]\0< t-s<\delta}}rac{|f(t)-f(s)|}{|t-s|^{lpha}}$$

is a separable Banach space.

FCLT for sums of process : Case 1 FCLT for sums of process : Case 2 FCLT for residuals of the process : Case 1 FCLT for residuals of the process : Case 2

Table of contents

- First order autoregressive processes
- 2 Notations and Background
- 3 Function central limit theorems
- 4 Applications for testing epidemic change

< 17 >

4 E > 4

FCLT for sums of process : Case 1 FCLT for sums of process : Case 2 FCLT for residuals of the process : Case 1 FCLT for residuals of the process : Case 2

Convergence in $H^o_{\alpha}[0, 1]$ spaces

Theorem

Suppose that (y_k) is generated by (4), $\phi_n = e^{\gamma/n}$ with $\gamma < 0$ and that the sequence of polygonal lines $n^{-1/2}W_n^{\rm pl}$ converges weakly to the standard Brownian motion W in $\mathrm{H}^o_{\alpha}[0,1]$ for some $0 < \alpha < 1/2$. Then $n^{-3/2}S_n^{\rm pl}$ converges weakly in the space under consideration to the integrated Ornstein-Uhlenbeck process J defined by :

$$J(t) := \int_0^t U_\gamma(s) \,\mathrm{d}s, \quad 0 \le t \le 1,$$
 (5)

where $U_{\gamma}(s) = \int_0^s e^{\gamma(s-r)} dW(r)$.

FCLT for sums of process : Case 1 FCLT for sums of process : Case 2 FCLT for residuals of the process : Case 1 FCLT for residuals of the process : Case 2

Convergence in $H^0_\beta[0,1]$ space

Theorem

Suppose (y_k) is generated by (4) and $\phi_n = 1 - \gamma_n/n$, where (γ_n) is a sequence of non negative numbers, $\gamma_n \to \infty$ and $\gamma_n/n \to 0$ as $n \to \infty$. Assume also that the innovations (ε_k) are i.i.d. and satisfy condition $\lim_{t\to\infty} t^p P(|\varepsilon_0| > t) = 0$ for some p > 2. Put $\alpha = \frac{1}{2} - \frac{1}{p}$. Then for $0 < \beta < \alpha$,

$$n^{-1/2}(1-\phi_n)S_n^{\mathrm{pl}} \xrightarrow[n \to \infty]{\mathrm{H}^0_\beta[0,1]} W,$$

provided that

$$\liminf_{n\to\infty}\gamma_n n^{-\frac{\beta}{\alpha}}>0.$$

FCLT for sums of process : Case 1 FCLT for sums of process : Case 2 FCLT for residuals of the process : Case 1 FCLT for residuals of the process : Case 2

Convergence in $H^o_{\alpha}[0, 1]$

Theorem

Let $\alpha \in (0, 1/2)$. Suppose that (y_k) is generated by (4), $\phi_n = e^{\gamma/n}$. Also (ε_k) are independent identically distributed random variables with $\mathbb{E}\varepsilon_0 = 0$. Then

$$n^{-1/2}\widehat{W}_n^{\mathrm{pl}} \xrightarrow[n \to \infty]{} W - A^{-1}B'J, \qquad (6)$$

if and only if condition

$$\lim_{t\to\infty} t^{1/(1/2-\alpha)} P(|\varepsilon_1| \ge t) = 0.$$
(7)

holds. Here $B' = \int_0^1 U_\gamma(r) dW(r)$, $A = \int_0^1 U_\gamma(r)^2 dr$ and $J(t) := \int_0^t U_\gamma(s) ds$.

< 口 > < 同 >

FCLT for sums of process : Case 1 FCLT for sums of process : Case 2 FCLT for residuals of the process : Case 1 FCLT for residuals of the process : Case 2

Convergence in $H^o_{\alpha}[0, 1]$

Theorem

Suppose (y_k) is generated by (4) and $\phi_n = 1 - \gamma_n/n$, where γ_n is a sequence of non negative constants, $\gamma_n \to \infty$ and $\gamma_n/n \to 0$ as $n \to \infty$. Assume also that the innovations (ε_k) are i.i.d. and satisfy condition

$$\lim_{t \to \infty} t^{\rho} \mathbb{P}(|\varepsilon_0| > t) = 0$$
(8)

for some p > 2. Put $\alpha = \frac{1}{2} - \frac{1}{p}$. Then for $0 < \beta \le \alpha$,

$$n^{-1/2}\widehat{W}_{n}^{\mathrm{pl}} \xrightarrow[n \to \infty]{\mathrm{H}_{\beta}^{0}[0,1]} W, \qquad (9)$$

where W is a standard Wiener process if

$$\liminf_{n \to \infty} \gamma_n n^{-\frac{2\beta}{1+2\alpha}} > 0. \tag{10}$$

Test statistics Testing with γ_k 's Testing with ε_k 's

Table of contents

- First order autoregressive processes
- 2 Notations and Background
- 3 Function central limit theorems
- Applications for testing epidemic change

< ∃ > < ∃ >

< 6 >

Test statistics Testing with $\frac{\gamma_R}{r}$'s Testing with ε_k 's

Epidemic change in mean

Hypothesis for y_k 's

$$z_{n,k} = a_n \mathbf{1}_{\{k^* < k \le k^* + l^*\}} + y_{n,k}$$

$$H_0 : a_n = 0;$$

$$H_A : a_n \neq 0.$$

Hypothesis for ε_k 's

$$\begin{aligned} &H_0: \mathbb{E}\varepsilon_k = 0; \\ &H_A: \mathbb{E}\varepsilon_k = a \mathbf{1}_{\{k^* < k \le k^* + l^*\}}. \end{aligned}$$

イロト イポト イヨト イヨト

Э

Test statistics Testing with γ_k 's Testing with ε_k 's

Test statistics with y_k 's

We construct uniform increment statistics :

$$UI_{\mathsf{S}}(n,\alpha) := \sup_{k^*,l^*} \frac{\left| S_n^{\mathrm{st}}(\mathbb{I}_n^*) - \frac{l^*}{n} S_n^{\mathrm{st}}(n) \right|}{\left| \frac{l^*}{n} \left(1 - \frac{l^*}{n} \right) \right|^{\alpha}}$$

where

$$\mathbb{I}_{n}^{*} = \{k^{*} + 1, \dots, k^{*} + l^{*}\}$$
$$S_{n}^{\mathrm{st}}(\mathbb{I}_{n}^{*}) = \sum_{k \in \mathbb{I}_{n}^{*}} y_{n,k-1}$$
$$S_{n}^{\mathrm{st}}(n) = \sum_{k=1}^{n} y_{n,k-1}$$

イロト イポト イヨト イヨト

Э

Test statistics Testing with \mathcal{F}_{k} 's Testing with ε_{k} 's

Behaviour under null hypothesis in case 1

Theorem

Suppose that (y_k) is generated by (4), $\phi_n = e^{\gamma/n}$ with $\gamma < 0$ and that the sequence (ε_k) are i.i.d. random variables with mean 0 and satisfy condition $\lim_{t\to\infty} t^{1/(1/2-\alpha)}P(|\varepsilon_1| \ge t) = 0$. Then under hypothesis H_0

$$n^{-3/2}UI_{\mathcal{S}}(n,\alpha) \xrightarrow[n \to \infty]{\mathbb{R}} UI_{\mathcal{S},1}(\alpha).$$
 (11)

Here

$$UI_{S,1}(\alpha) = \sup_{t,s} \frac{|J(t) - J(s) - (t-s)J(1)|}{|(t-s)(1-(t-s))|^{\alpha}}$$

where $J(t) = \int_0^t U_{\gamma}(r) dr$ and $U_{\gamma}(r) = \int_0^s e^{\gamma(r-\nu)} dW(\nu)$.

A B M A B M

Test statistics Testing with γ_k 's Testing with ε_k 's

Consistency of the test in case 1

Theorem

Let $0 < \alpha < 1/2$. Suppose (y_k) is generated by (4) and $\phi_n = e^{\gamma/n}$, where $\gamma < 0$ is a constant. Under alternative H_A , if

$$\lim_{n \to \infty} |a_n| h_n^{1-\alpha} n^{-1/2} = \infty, \quad \text{where} \quad h_n := \frac{l^*}{n} \left(1 - \frac{l^*}{n} \right)$$

then

$$n^{-3/2}UI_{\mathcal{S}}(n,\alpha) \xrightarrow[n \to \infty]{P} \infty.$$

(B) (B)

Notations and Background Function central limit theorems Applications for testing epidemic change

Testing with wh's

Behaviour under null hypothesis in case 2

Theorem

Suppose (y_k) is generated by (4) and $\phi_n = 1 - \gamma_n/n$, where (γ_n) is a sequence of non negative numbers, $\gamma_n \to \infty$ and $\gamma_n/n \to 0$, as $n \to \infty$. Assume also that the innovations (ε_k) are i.i.d. and satisfy condition $\lim_{t\to\infty} t^p P(|\varepsilon_0| > t) = 0$ for some p > 2. Put $\alpha = \frac{1}{2} - \frac{1}{p}$. Also for $0 < \beta < \alpha$ condition $\liminf_{n \to \infty} \gamma_n n^{-\frac{\beta}{\alpha}} > 0$ holds. Then under hypothesis H₀

$$n^{-1/2}(1-\phi_n)UI_S(n,\alpha) \xrightarrow[n\to\infty]{\mathbb{R}} UI_2(\alpha),$$

Here

$$UI_{2}(\alpha) = \sup_{t,s} \frac{|B(t) - B(s)|}{|(t-s)(1-(t-s))|^{\alpha}}$$

where B(t) = W(t) - tW(1) is Brownian bridge.

Test statistics Testing with \mathscr{P}_{k} 's Testing with ε_{k} 's

Consistency of the test in case 2

Theorem

Let $0 < \alpha < 1/2$. Suppose (y_k) is generated by (4) and $\phi_n = 1 - \gamma_n/n$, where (γ_n) is a sequence of non negative numbers, $\gamma_n \to \infty$ and $\gamma_n/n \to 0$, as $n \to \infty$. Under alternative H_A , if

$$\lim_{n \to \infty} |a_n| h_n^{1-\alpha} n^{-1/2} \gamma_n = \infty, \quad \text{where} \quad h_n := \frac{l^*}{n} \left(1 - \frac{l^*}{n} \right)$$

then

$$(1-\phi_n)n^{-1/2}UI_S(n,\alpha) \xrightarrow[n\to\infty]{\mathrm{P}} \infty.$$

Notations and Background Function central limit theorems Applications for testing epidemic change

Testing with ε_k 's

Test statistics with $\hat{\varepsilon}_k$'s

We construct uniform increment statistics :

$$UI_{W}(n,\alpha) := \sup_{k^{*},l^{*}} \frac{\left|\widehat{W}_{n}^{\mathrm{st}}(\mathbb{I}_{n}^{*}) - \frac{l^{*}}{n}\widehat{W}_{n}^{\mathrm{st}}(n)\right|}{\left|\frac{l^{*}}{n}\left(1 - \frac{l^{*}}{n}\right)\right|^{\alpha}}$$

where

$$\mathbb{I}_n^* = \{k^* + 1, \dots, k^* + l^*\}$$
$$\widehat{W}_n^{\mathrm{st}}(\mathbb{I}_n^*) = \sum_{k \in \mathbb{I}_n^*} \widehat{\varepsilon}_k$$
$$\widehat{W}_n^{\mathrm{st}}(n) = \sum_{k=1}^n \widehat{\varepsilon}_k$$

イロト イポト イヨト イヨト

Э

Test statistics Testing with $\hat{\mathcal{T}}_{k}$'s Testing with ε_{k} 's

Behaviour under null hypothesis in case 1

Theorem

Suppose that (y_k) is generated by (4), $\phi_n = e^{\gamma/n}$ with $\gamma < 0$ and that the sequence (ε_k) are i.i.d. random variables with mean 0 and variance 1. Coefficient $\hat{\phi}_n$ is estimated by LSE. Then under hypothesis H_0

$$n^{-1/2}UI_W(n,\alpha) \xrightarrow[n \to \infty]{\mathbb{R}} UI_{W,1}(\alpha).$$
 (12)

Here

$$UI_{W,1}(\alpha) = \sup_{t,s} \frac{|B(t) - B(s) - A^{-1}B'(J(t) - J(s) - (t-s)J(1))|}{|(t-s)(1-(t-s))|^{\alpha}}$$

Here $B' = \int_0^1 U_{\gamma}(r) dW(r)$, $A = \int_0^1 U_{\gamma}(r)^2 dr$ and $J(t) := \int_0^t U_{\gamma}(s) ds$, B(t) is a Brownian bridge.

Notations and Background Function central limit theorems Applications for testing epidemic change

Testing with ε_k 's

Consistency of the test in case 1

Theorem

Let $0 < \alpha < 1/2$. Suppose (y_k) is generated by (4) and $\phi_n = e^{\gamma/n}$, where $\gamma < 0$ is a constant. Under alternative H_A, if

$$\lim_{n \to \infty} |a| h_n^{1-\alpha} n^{1/2} = \infty, \quad \text{where} \quad h_n := \frac{l^*}{n} \left(1 - \frac{l^*}{n} \right)$$

then

$$n^{-1/2}UI_W(n,\alpha) \xrightarrow[n \to \infty]{\mathbb{P}} \infty.$$

Test statistics Testing with $\hat{\mathcal{T}}_{k}$'s Testing with ε_{k} 's

Behaviour under null hypothesis in case 2

Theorem

Suppose (y_k) is generated by (4) and $\phi_n = 1 - \gamma_n/n$, where (γ_n) is a sequence of non negative numbers, $\gamma_n \to \infty$ and $\gamma_n/n \to 0$, as $n \to \infty$. Assume also that the innovations (ε_k) are i.i.d. and satisfy condition $\lim_{t\to\infty} t^p P(|\varepsilon_0| > t) = 0$ for some p > 2. Put $\alpha = \frac{1}{2} - \frac{1}{p}$. Also for $0 < \beta \le \alpha$ condition $\lim_{n\to\infty} \gamma_n n^{-\frac{2\beta}{1+2\alpha}} > 0$ holds. Then under hypothesis H_0

$$n^{-1/2}UI_W(n,\alpha) \xrightarrow[n \to \infty]{\mathbb{R}} UI_2(\alpha),$$

Here

$$UI_{2}(\alpha) = \sup_{t,s} \frac{|B(t) - B(s)|}{|(t-s)(1-(t-s))|^{\alpha}}$$

where B(t) = W(t) - tW(1) is Brownian bridge.

Test statistics Testing with $\hat{\mathcal{T}}_{k}$'s Testing with ε_{k} 's

Consistency of the test in case 2

Theorem

Let $0 < \alpha < 1/2$. Suppose (y_k) is generated by (4) and $\phi_n = 1 - \gamma_n/n$, where (γ_n) is a sequence of non negative numbers, $\gamma_n \to \infty$ and $\gamma_n/n \to 0$, as $n \to \infty$. Under alternative H_A , if

$$\lim_{n \to \infty} |a| h_n^{1-\alpha} n^{1/2} = \infty, \quad \text{where} \quad h_n := \frac{l^*}{n} \left(1 - \frac{l^*}{n} \right)$$

then

$$n^{-1/2}UI_W(n,\alpha) \xrightarrow[n \to \infty]{P} \infty.$$

Function central limit theorems Applications for testing epidemic change

Testing with ε_k 's

AČIŪ UŽ DĖMESĮ :)

Э

イロト イポト イヨト イヨト