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Section 5.6 Comparing Rates of Growth
We often need to compare functions ƒ and g to see whether ƒ(n) and g(n) are about the same
or whether one grows faster as n increases. The functions might represent running times of
algorithms that we need to compare. They might also be approximations with closed forms
are easier to evaluate. To compare functions we need to give precise meanings to the phrases
“about the same” and “grows faster.”

Big Oh. The growth rate of ƒ is bounded above by the growth rate of g if there are
constants d > 0 and m such that

|ƒ(n)| ≤ d|g(n)| for n ≥ m
If this is the case we write ƒ(n) = O(g(n)) and say, “ƒ(n) is big oh of g(n).”
Examples/Quizzes. ƒ(n) = O(ƒ(n)), 200n = O((1/100)n), n = O(n2)

Big Omega. The growth rate of ƒ is bounded below by the growth rate of g if there are
constants c > 0 and m such that

 c|g(n)| ≤ |ƒ(n)| for n ≥ m
If this is the case we write ƒ(n) = Ω(g(n)) and say, “ƒ(n) is big omega of g(n).”
Examples/Quizzes. ƒ(n) = Ω(ƒ(n)), (1/100)n = Ω(200n), n2 = Ω(n)
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Big Theta. ƒ has the same growth rate as g if there are constants c > 0, d > 0 and m such that
c|g(n)| ≤ |ƒ(n)| ≤ d|g(n)| for n ≥ m  (or, if g(n) ≠  0 then c ≤|ƒ(n)/g(n)| ≤ d for n ≥ m)

If this is the case we write ƒ(n) = Θ(g(n)) and say, “ƒ(n) is big theta of g(n).”

Examples.
1. ⎣n⎦ = Θ(⎡n⎤)). Proof: (1/2)⎡n⎤ ≤ ⎣n⎦ ≤ 1·⎡n⎤ for n ≥ 1. QED.

2. n(n + 1)/2 = Θ(n2). Proof: (1/2)·n2 ≤ n(n + 1)/2 ≤ 2·n2 for n ≥ 0. QED.
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= cTheorem. If and c ≠  0 and c ≠  ∞, then ƒ(n) = Θ(g(n)).

Example.
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. So n(n + 1)/2 = Θ(n2).

Example. The converse of the theorem is false. For example, let ƒ(n) = (1 + n mod 2)n2 and
let g(n) = n2. Then ƒ(n) = Θ(g(n)) by letting c = 1, d = 2, and m = 0. But the following limit
does not exist:
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If this is the case we write ƒ(n) = o(g(n)) and say, “ƒ(n) is little oh of g(n).”
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= 0.

Example.
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Quiz. Show that log(n + 1) = Θ(log n).
Solution (using the definition). Since n < n + 1 < n2 for n ≥ 2 it follows that

log n < log (n + 1) < log n2 = 2log n for n ≥ 2. So let c = 1, d = 2, and m = 2.
Therefore, log(n + 1) = Θ(log n). QED.
Solution (using the theorem).

Little oh. ƒ has lower growth rate than g if

(use base e and L’Hospital’s rule)

Therefore, log(log n) = o(log n).
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= 1.

(use base e and L’Hospital’s rule)

Therefore, log(n + 1) = Θ(log n). QED.
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Example/Quiz. Show that if ƒ(n) = o(g(n)), then ƒ(n) = O(g(n)).

Proof: Since ƒ(n) = o(g(n)), it follows that 

So for any ε > 0 there is an m such that |ƒ(n)/g(n)| < ε for n ≥ m. In other words,

 |ƒ(n)| ≤ ε|g(n)| for n ≥ m.

So ƒ(n) = O(g(n)). QED.

Example. Let ƒ and g be defined by
ƒ(n) = if n is odd then 1 else n
g(n) = n.

Show that ƒ(n) = O(g(n)), but ƒ(n) ≠  o(g(n)) and ƒ(n) ≠  Θ(g(n)).
Proof: We have ƒ(n) ≤ g(n) for n ≥ 1. So ƒ(n) = O(g(n)). The limit as n approaches infinity
of ƒ(n)/g(n) does not exist. So ƒ(n) ≠  o(g(n)). Assume, BWOC, that ƒ(n) = Θ(g(n)). Then
there are constants c > 0, d > 0 and m such that

c|g(n)| ≤ |ƒ(n)| ≤ d|g(n)| for n ≥ m

So c|n| ≤ |1| if n is odd and n ≥ m, which is a contradiction. So ƒ(n) ≠  Θ(g(n)). QED.
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ƒ(n)
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= 0.

Example/Quiz. Show that if ƒ(n) = o(g(n)), then g(n) = Ω(ƒ(n)).

Proof: Since ƒ(n) = o(g(n)), it follows that 

So for any ε > 0 there is an m such that |ƒ(n)/g(n)| < ε for n ≥ m. In other words,

 |ƒ(n)| ≤ ε|g(n)| for n ≥ m.

So (1/ ε)|ƒ(n)| ≤ |g(n)| for n ≥ m. So g(n) = Ω( ƒ(n)). QED.

Example/Quiz. ƒ(n) = Ω(g(n)) iff g(n) = O(ƒ(n)).
Proof: c|g(n)| ≤ |ƒ(n)| for n ≥ m iff |g(n)| ≤ (1/c)|ƒ(n)| for n ≥ m. QED.
Example. We saw earlier that a divide and conquer algorithm that splits a problem of
size n = bk into b smaller problems of size n/b, and does this recursively, uses

an = tn + tnlogbn
operations, where tn is the number of operations needed to split up the problem of size n
and put a solution back together. We can now observe that an = Θ(nlogbn),


