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Section 5.5 Solving Recurrences
Any recursively defined function ƒ with domain N that computes numbers is called a
recurrence or recurrence relation. We often denoteƒ(n) by ƒn. The goal is to find a closed
formula for the general term ƒn.
Simple Recurrences
It’s easy to solve simple recurrences of the following form, where ai and bi are
expressions that do not contain r.

r0 = b0
rn = an rn–1 + bn

Substitution Method
Start with the general equation rn = an rn–1 + bn and use the definition to keep substituting
for r on the right side until we discover a general pattern that allows us to skip ahead and
substitute for the basis r0 = b0.
Example. Solve the recurrence

a0 = 1
an = an – 1 + 2n.

Solution. an = an – 1 + 2n
 = an – 2 + 2(n – 1) + 2n

= an – 3 + 2(n – 2) + 2(n – 1) + 2n
…
= a0+ 2 + 2·2 + … + 2(n – 2) + 2(n – 1) + 2n
= 1 + 2 + 2·2 + … + 2(n – 2) + 2(n – 1) + 2n
= 1 + 2(1 + 2 + … + (n – 2) + (n – 1) + n) = 1 + n(n + 1).
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Cancellation Method
Start with the general equation rn = an rn–1 + bn. Then write a new equation whose left
side is the term involving r on the right side of the given equation. Continue this process
by writing a new equation whose left side is the term involving r on the right side of the
previous equation. Do this until we discover a general pattern that allows us to skip ahead
and write the last equation that contains r0 on the right side. Then add up the equations
and cancel the like terms to obtain an expression for rn.
Example. Solve the recurrence

a0 = 1
an = an – 1 + 2n.

Solution. an = an – 1 + 2n
an–1 = an – 2 + 2(n – 1)
an–2 = an – 3 + 2(n – 2)
…
a1 = a0+ 2(1)

Now add up the equations and cancel the like terms on either side to obtain the following
equation for an:

an = a0+ 2(1) + … + 2(n – 2) + 2(n – 1) + 2n
= 1 + 2[1 + … + (n – 2) + (n – 1) + n]
= 1 + n(n+1).
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Divide and Conquer Algorithms. Many divide and conquer algorithms are special cases
of the following general form. To solve a problem with input of size n split it into s smaller
problems each with input of size n/b. To simplify things we assume that n = bk for two
positive integers b and k. Assume that for inputs of size n it takes tn operations to split up
the problem and to do other tasks such as assembling the solution. Let an be the number of
operations to solve the problem with input size n. Then we have the recurrence

a1 = t
an = san/b + tn.

      

! 

an = san / b + tn
san / b = s2an / b 2 + (s / b)tn

s2an / b 2 = s3an / b 3 + (s / b)2 tn
M

sk"1an / b k "1 = skan / b k + (s / b)k"1tn

For example, the closed forms for the cases s = b and s ≠  b are as follows:

    

! 

(s = b) :  an = blog b na1 + tn
i=0

k"1

# = tn + ktn = tn + (logb n)tn = tn(1+ logb n).

(s $ b) :  an = ska1 + tn (s / b)i

i=0

k"1

# = ts log b n + tn (s / b)log b n "1
(s / b)"1

% 

& 
' ' 

( 

) 
* * .

    

! 

an = ska1 + tn (s / b)i

i=0

k"1

# .

Solution (by cancellation):

Since n = bk, we stop with the last equation.
Now add the equations and cancel to obtain
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Generating Functions
The generating function for the infinite sequence a0, a1, …, an, … is given by the following
expression, where x is an indeterminate symbol.

Other names are formal power series and infinite polynomial. They can be added,
multiplied, divided, and equated just like polynomials.

Some generating functions have closed forms. For example, the generating function for
the sequence 1, 1, …, 1, … has the following closed form, which can be verified by
multiplying both sides by 1 – x.

! 

xn
n=0

"

# =
1
1$ x

.

! 

anx
n

n=0

"

# =
3

2x +1
.

Notice that
    

! 

an xn

n=0

"

# =
3

2x +1
= 3 1

1$ ($2x)
% 

& 
' 

( 

) 
* = 3 ($2x)n

n=0

"

# = 3($2)n xn

n=0

"

# .

We can equate coefficients to obtain the solution an = 3(–2)n.

(Geometric Series Generating Function)

Generating functions with closed forms can be used to solve recurrences.
Example. Suppose someone tells us that the generating function for an satisfies the equation

! 

anx
n

n=0

"

# .
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Example. Solve the following recurrence.
a0 = 3
a1 = 5
an = 2an–1 + 3an–2.

Solution. Step 1 tells us to use the recurrence to find an algebraic equation in terms of the
generating function A(x).

! 

A(x) = an x
n

n=0

"

# = a0 +a1x + an x
n

n=2

"

#

= 3+5x + (2an$1+3an$2 )x
n

n=2

"

#

= 3+5x + 2an$1x
n

n=2

"

# + 3an$2x
n

n=2

"

#

= 3+5x +2x an$1x
n$1

n=2

"

# + 3x2 an$2x
n$2

n=2

"

#

= 3+5x +2x an x
n

n=1

"

# + 3x2 an x
n

n=0

"

#

= 3+5x +2x(A(x)$ a0 )+ 3x
2A(x)

= 3+5x +2x(A(x)$ 3)+ 3x2A(x).
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Step 2 tells us to solve the equation for A(x) and try to transform the resulting expression
using known generating functions.

! 

A(x)(1" 2x " 3x2 ) = 3" x.

! 

A(x) = 3+5x +2x(A(x)" 3)+ 3x2A(x)

= 3" x +2xA(x)+ 3x2A(x).

! 

A(x) =
3" x

1" 2x " 3x2 =
3" x

(1+ x)(1" 3x)
=

1
1+ x

+
2

1" 3x
  

=
1

1" ("x)
+ 2 # 1

1" 3x

= ("x)n
n=0

$

% + 2 (3x)n
n=0

$

%

= ("1)n
n=0

$

% xn + 2 3n xn
n=0

$

%

= (("1)n
n=0

$

% + 2 #3n )xn .

Collect terms to obtain

Now solve for A(x):

Step 3 tells us to equate coefficients to get     

! 

an = ("1)n + 2 #3n.

Step 4 tells us to check the answer. (Quiz)
Answer. a0 and a1 check out OK. Assume n > 1 and ak is OK for k < n. Show an is OK.

! 

an = 2an"1 + 3an"2 = 2(("1)n"1 + 2 # 3n"1) + 3(("1)n"2 + 2 # 3n"2) = (("1)n + 2 # 3n ).


