
1

Section 5.1 Analyzing Algorithms
Let P be a problem and A an algorithm to solve P. The running time of A can be analyzed
by counting the number of certain operations that are performed during its execution.
This count may also depend on the size of an input, which depends on the problem.

Example. If P asks whether a given item is in a given list, then we might count the
comparison operations executed by A, which will depend on the length of the list.

A worst-case input of size n is an input that causes A to execute the largest number of
operations.

Example. A worst-case input for an algorithm to search a list for an item would be a list
without the item.

Let WA(n) denote the maximum running time of A over all inputs of size n. WA is called
the worst-case function for A.

An algorithm A to solve P is optimal in the worst case if every algorithm B to solve P
satisfies the inequality WA(n) ≤ WB(n) for all n > 0.

Method to find optimal algorithm in the worst case:
1. Find an algorithm A to solve P and do some analysis to find WA(n).
2. (lower bound) Find a function F where F(n) ≤ WB(n) for all n > 0 and all B to solve P.
3. Compare F and WA. If F(n) = WA(n) for all n, then A is optimal in the worst case.

Otherwise try to find a better lower bound or a better algorithm.

2

A decision tree for an algorithm is a tree whose nodes represent decision points in the
algorithm and whose leaves represent outcomes.
Example/Quiz. Given a set of nine coins, one of which is heavier than the others, use a
pan-balance to find the heavy coin.
A Solution. Let the coins be 1, 2, …, 9. The numbers on either side of each internal node
of the decision tree represent coins on the pan balance. The 9 outcomes are 1H, …, 9H.

1 2 3 4 5 6 7 8

5 6 7 81 2 3 4
9H

1 2 3 4 5 6 7 8

1H 2H 3H 4H 5H 6H 7H 8H

The worst-case performance of this algorithm
is 3 weighings.
Is the algorithm optimal in the worst case? A
ternary decision tree with depth d has at most
3d leaves. Since there are 9 possible outputs, it
follows that 3d ≥ 9. Take log3 to get d ≥ log39.
Since d is a natural number, d ≥ ⎡log39⎤ = 2.
So a lower bound is 2.

Is there a better lower bound or a better algorithm?
Here’s an optimal worst-case algorithm: 1 2 3 4 5 6

1 3 7 9

1H 2H 3H 7H 8H 9H 4H 5H 6H

4 6

3

Example. Given a set of nine coins, one of which is bad, meaning that it is heavier or
lighter than the others. Find a good lower bound for a pan-balance algorithm that finds
the bad coin and states whether it is heavy or light.

A Solution. A lower bound: If the coins are numbered 1, 2, …, 9 and we let H mean
heavy and let L mean light, then there are 18 possible outputs: 1H, 1L, …, 9H, 9L. A
ternary decision tree with depth d has at most 3d leaves. It follows that 3d ≥ 18. Take
log3 to obtain d ≥ log318. Since d is a natural number, we have d ≥ ⎡log318⎤ = 3. So 3 is
a good lower bound on the number of weighings.

Quiz. Find an optimal worst-case pan-balance algorithm to detect the one bad coin among
a set of nine coins, where the output states whether the bad coin is heavy or light.

A Solution:

1H 2H 3H 6L 5L 4L 7H 8L 9L 9H 8H 7L 4H 5H 6H 3L 2L 1L

1 3 4 6 7 9 7 9 7 9 1 34 6

7 81 2 3 7 8 9 1 2 3 7 8 9

1 2 3 4 5 6

