

Student Study Guide for

Discrete Structures,
Logic, and
Computability
Third Edition

James L. Hein
Portland State University

iii

Preface

This study guide is written to accompany Discrete Structures, Logic, and Computability,
Third Edition, by James L. Hein.

The study guide contains learning objectives, review questions, and a set of solved
problems for each section of the book. Most of the learning objectives are statements of
the form, “Be able to” The review questions ask about the key ideas and notations
from each section. The solutions to the problems, often with details included, are given at
the end of each section for easy reference.

Some Notes On Learning The Material
1. Study each day. Read the text, and do problems, problems, and more problems. Prob-

lem solving skills are developed by practice. In other words, learn by doing.
2. Read ahead, so that your subconscious has plenty of time to process the symbols,

definitions, ideas, and examples. Look at problems early too, so your subconscious
can be working on them.

3. Include some time for review every day. Be sure you understand the meanings of the
symbols and expressions in the symbol glossary and the definitions and results from
the text. These items are the vocabulary for the textbook. Test your knowledge by us-
ing the vocabulary to restate ideas in your own words. You will also benefit by using
the examples and problems given in the textbook as a guide to make up similar ex-
amples and problems of your own.

4. Don’t cram. Problem solving skills can’t be learned the night before an exam. On the
other hand, if you have studied every day and solved a good number of the problems,
then you should not need much preparation for exams.

5. Use the study guide as a supplement to the textbook. Be aware of the learning objec-
tives for each section. After you have finished reading for the day, try to answer the
appropriate review questions. Always try to solve a problem before looking at the so-
lution.

I will be most grateful for suggestions or criticisms about the material in this study guide.

J. L. H.

Portland, Oregon

v

Contents

 1 Elementary Notions and Notations 1

1.1 A Proof Primer 1
1.2 Sets 2
1.3 Ordered Structures 6
1.4 Graphs and Trees 10

 2 Facts About Functions 13
2.1 Definitions and Examples 13
2.2 Constructing Functions 15
2.3 Properties of Functions 17
2.4 Countability 19

 3 Construction Techniques 21
3.1 Inductively Defined Sets 21
3.2 Recursive Functions and Procedures 23
3.3 Grammars 26

 4 Equivalence, Order, and Inductive Proof 30
4.1 Properties of Binary Relations 30
4.2 Equivalence Relations 33
4.3 Order Relations 36
4.4 Inductive Proof 38

 5 Analysis Techniques 41
5.1 Analyzing Algorithms 41
5.2 Summations and Closed Forms 43
5.3 Permutations and Combinations 47
5.4 Discrete Probability 49
5.5 Solving Recurrences 53
5.6 Comparing Rates of Growth 58

 6 Elementary Logic 61
6.1 How Do We Reason? 61
6.2 Propositional Calculus 61
6.3 Formal Reasoning 66
6.4 Formal Axiom Systems 69

vi Contents

 7 Predicate Logic 71
7.1 First-Order Predicate Calculus 71
7.2 Equivalent Formulas 74
7.3 Formal Proofs in Predicate Calculus 76

 8 Applied Logic 80
8.1 Equality 80
8.2 Program Correctness 82
8.3 Higher-Order Logics 87

 9 Computational Logic 90
9.1 Automatic Reasoning 90
9.2 Logic Programming 95

 10 Algebraic Structures and Techniques 102
10.1 What Is an Algebra? 102
10.2 Boolean Algebra 104
10.3 Abstract Data Types as Algebras 106
10.4 Computational Algebras 108
10.5 Other Algebraic Ideas 111

 11 Regular Languages and Finite Automata 115
11.1 Regular Languages 115
11.2 Finite Automata 116
11.3 Constructing Efficient Finite Automata 120
11.4 Regular Language Topics 125

 12 Context-Free Languages and Pushdown Automata 128
12.1 Context-Free Languages 128
12.2 Pushdown Automata 129
12.3 Context-Free Parsing 134
12.4 Context-Free Language Topics 139

 13 Turing Machines and Equivalent Models 143
13.1 Turing Machines 143
13.2 The Church-Turing Thesis 146

 14 Computational Notions 151
14.1 Computability 151
14.2 A Hierarchy of Languages 152
14.3 Complexity Classes 154

1

Chapter 1
Elementary Notions and Notations

1.1 A Proof Primer
Learning Objectives
Be able to describe the truth tables for simple logical statements.

Be able to use a variety of proof techniques to write short informal proofs about integers.

Review Questions
 1. What is the converse of “A implies B”?

 2. What does d | n mean?

 3. What is a prime number?

 4. What does it mean for an integer to be even?

 5. What does it mean for an integer to be odd?

 6. What is proof by exhaustive checking?

 7. What is conditional proof?

 8. Why is proving the contrapositive important?

 9. What is proof by contradiction?

 10. What is an iff proof?

Solved Problems
 1. Fill in the truth table for

((A implies B) and (B implies C) implies (A implies C)).

 2. Prove that if x is even, then x2 + 3 is odd.

2 Chapter 1

 3. Prove or give a counterexample for the following statement about the integers.
If d | m and d is odd, then m is odd.

 4. Prove that if x = 5m + 2 and y = 5n + 2, where m and n are integers, then xy does not
have the form 5k + 2 for some integer k.

Solutions
 1. All eight entries of the table are True.
 2. If x is even, then it has the form x = 2k for some integer k. Therefore,

x2 + 3 = (2k)2 + 3 = 4k2 + 3 = 4k2 + 2 + 1 = 2(2k2 + 1) + 1,
 which is in the form of an odd integer.

 3. The statement is false. For a counterexample, let d = 3 and m = 6.
 4. Assume that statement is false. Then there are integers m, n, and k such that

(5m + 2)(5n + 2) = 5k + 2.
 Expand the left side to obtain the equation

25mn + 10m + 10n + 4 = 5k + 2.
 Now collect terms, putting the variables on the left side to obtain the equation

25mn + 10m + 10n – 5k = –2.
 Factor the left side of this equation to obtain

5(5mn + 2m + 2n – k) = –2.
 This equation tells us that 5 divides –2, which is a contradiction. Therefore the

given statement is true.

1.2 Sets
Learning Objectives
Be able to describe basic properties of sets and operations on sets.

Be able to describe characteristics of bags.

Be able to count finite sets using inclusion-exclusion.

Review Questions
 1. What are the two characteristics of a set?

 2. What is the meaning of each of the following symbols or expressions?

 a. x ∈ S?

 b. x ∉ S?

 Chapter 1 3

 c. ∅.

 d. ℕ.

 e. ℤ.

 f. ℚ.

 g. ℝ.
 h. {x | P}.
 i. A

!

" B.

 j. A

!

" B.

 k. A – B.

 l. A ⊕ B.

 m. A′.

 n. |A|.

 3. How do you show A ⊆ B?

 4. How do you show A = B?

 5. What are the two characteristics of a bag or multiset?

 6. Describe the union rule for counting sets.

 7. Describe the difference rule for counting sets.

 8. What is the inclusion-exclusion principle?

Solved Problems
 1. Describe each set by listing each element.

 a. {x | x ∈ ℕ and x divides 12}.

 b. {x | x ∈ ℤ and x3 < 60}.

 2. Write down the power set for each set.
 a. {a}.

 b. {a, {a}}.
 c. {a, ∅, {a, b}}.

 3. Find the smallest set S such that {{a}, {b}, {{a, b}}} ⊆ power(S).

 4. Write true or false for each of the following statements about sets.

4 Chapter 1

 a. A ∩ (B ∪ A) = A ∩ B.

 b. A ∪ (B ∩ C) = (A ∩ B) ∪ (A ∩ C).

 c. A – (B ∩ A) = A.

 5. Write down an expression to describe the set indicated by the x’s in the following
Venn diagram.

 a. b.

 6. Given three sets A, B, and C. Suppose we know that the union of the three sets has

cardinality 182. Further, |A| = 92, |B| = 41, |C| = 118. Also, |A ∩ B| = 15, |A ∩ C| =
42, and |A ∩ B ∩ C| = 10. Find |B ∩ C|.

 7. Evaluate each expression.

 a. {a, b, c, d} ⊕ {b, d, e, g}.

 b. [a, b, b, c, c, c] ∪ [a, a, a, b, b, c].

 c. [a, b, b, c, c, c] ∩ [a, a, a, b, b, c].

 8. Prove the following statement about sets by letting x be an element of the left side
and showing that x is an element of the right side.

((A ∩ B) – C) ∪ ((B ∩ C) – A) ⊆ B ∩ (A ∪ C).

 9. For each integer n let An = {x | x ∈ ℤ and 10n ≤ x < 10(n + 1)}.

 a. Find the intersection of the collection of sets {An | n ∈ ℕ}.

 b. Find the union of the collection of sets {An | n ∈ ℕ}.

 10. For any natural number n let An = {x | x ∈ ℕ and n ≤ x <10n}. Describe each of the
following sets.

 a.

!

A
n

n= 0

"

U .

 b. Am – An, where m > n.
 c. Am – An, where m ≤ n.

 11. Given the following two subsets of the rational numbers:

A = {3n + 4 | n ∈ ℕ} and B = {3n + 1 | n ∈ ℕ}.

 Prove that A ⊆ B.

x

x

x x

A

C

B

C

x

x

A B

 Chapter 1 5

Solutions
 1. a. {1, 2, 3, 4, 6, 12}.
 b. {0, 1, –1, 2, –2, 3, –3}.

 2. a. {∅, {a}}.

 b. {∅, {a}, {{a}}, {a, {a}}}.

 c. {∅, {a}, {∅}, {{a, b}}, {a, ∅}, {a, {a, b}}, {∅, {a, b}}, {a, ∅, {a, b}}}.

 3. S = {a, b, {a, b}}

 4. a. False. For example, let A = {a} and B = {b}. With these choices, the equation
becomes {a} = ∅, which is false.

 b. False. For example, let A = {a} and B = C = ∅. With these choices, the equation
becomes {a} = ∅, which is false.

 c. False. For example, let A = B = {a}. With these choices, the equation becomes
∅ = {a}, which is false.

 5. a. One of several answers is (C ∪ (A ∩ B)) – (A ∩ B ∩ C).

 b. One of several answers is (B ∩ (A ∪ C) – (A ∩ B ∩ C).

 6. Use the inclusion-exclusion principle for three sets (1.12) and solve for the un-
known to obtain |B ∩ C| = 22.

 7. a. {a, c, e, g}.
 b. [a, a, a, b, b, c, c, c].

 c. [a, b, b, c].
 8. If x is an element of the left side, it follows that either x ∈ (A ∩ B) – C or x ∈ (B ∩

C) – A. If x ∈ (A ∩ B) – C, then x ∈ A ∩ B and x ∉ C. So x ∈ A and x ∈ B. Since x
∈ A, it follows that x ∈ A ∪ C. Therefore x is an element of the right side. If x ∈ (B
∩ C) – A, then a similar argument also puts x in the right side. Therefore the left
side is a subset of the right side.

 9. a. ∅.

 b. ℤ. The answers follow because each set An consists of 10 consecutive digits
starting at 10n. For example, A0 = {0, 1, ..., 9} and A1 = {10, 11, ..., 10}.

 10. a. ℕ.

b. {x | x ∈ ℕ and 10n ≤ x < 10m}.

c. {x | x ∈ ℕ and m ≤ x < n}.

6 Chapter 1

 11. Let x ∈ A. Then x = 3n + 4 for some natural number n. Now rewrite the expression
as

x = 3n + 4 = 3n + 3 + 1 = 3(n + 1) + 1.

 The latter expression represents a natural number since n + 1 is a natural number.
So we have A ⊂ B. Notice that A is a proper subset of B because 1 ∈ B – A.

1.3 Ordered Structures
Learning Objectives
Be able to describe basic properties of tuples, lists, strings, languages, and relations.

Be able to count tuples.

Review Questions
 1. What are the two characteristics of a tuple?

 2. What is the Cartesian product A

!

" B?

 3. How do lists differ from tuples?

 4. What is a string?

 5. What is a language?

 6. What does concatenation mean?

 7. What is the product LM of two languages L and M?

 8. If A is an alphabet, what is A*?

 9. If L is a language, what is Ln?

 10. If L is a language, what is L*?

 11. If L is a language, what is L+?

 12. What is a relation?

 13. What is a binary relation?

 Chapter 1 7

 14. What is the product rule for counting tuples?

 15. What is the meaning of each of the following symbols or expressions?

 a. ().

 b. 〈 〉.

 c. Λ.

 d. cons(x, t).

 e. a R b.

 f. R(a, b, c).

Solved Problems
 1. Let A = {a, b}, B = {2, 3}, and C = {c} . Construct each of the following sets.
 a. A × B × C.

 b. A × (B × C).

 2. Evaluate each of the following expressions.

 a. {x | x ∈ lists({a, b}) and length(x) ≤ 2}.

 b. {x | x ∈ {a, b, c}* and |x| = 2}.

 c. |abba|.

 3. Write out the elements in the product {Λ, a, ba}{a, b}.

 4. Solve the language equation for L.

{Λ, c, ab}L = {Λ, a, c, ab, bc, ca, aba, cbc, abbc}.

 5. Describe, in words, the strings in the following set.

({a, b}* ∪ {b, c}*) – {b}*.

 6. Let L and M be two languages and let x ∈ M* ∪ L. Describe the general form of x
by writing it as a concatenation of strings, where each string is in either L or M.

 7. Let L and M be two languages. Let x ∈ L ∪ M. Use only the definition of language
product and the definition of set intersection to prove that

x ∈ L*M ∪ LM*.

 8. Write out the tuples in the set {(x, y) | x, y ∈ ℕ and 0 ≤ x + y ≤ 2}.

 9. Write down the “greater than” relation over the set {1, 3, 5, 7, 9}.

8 Chapter 1

 10. The following two tables represent two relational databases for Farms and Harvests.

Farms
Name Crop Acres County
Jones corn 1500 Washington
Jones barley 2500 Washington
Smith wheat 600 Lincoln
Appleby soybeans 2000 Washington
Nelson corn 500 Jefferson
Nelson soybeans 3500 Jefferson
Hein hops 2000 Adams
Hein grapes 200 Adams
Truman corn 2500 Madison
Hill wheat 3000 Lincoln

Harvests
Crop Month
corn July
barley June
wheat May
soybeans June
grapes September
hops August

 Answer each of the following questions by writing out the appropriate set of tuples.
 a. What crops are harvested in June?

 b. When is wheat harvested?
 c. What is the list of acreages planted in corn?

 d. What months does the Nelson farm harvest their crops?
 e. What crops are planted in Washington county?

 f. What counties plant corn?
 g. What are the harvest months in Adams and Lincoln counties?

 11. Find an expression for the number of strings of length 5 over the alphabet {a, b, c,
d} that contain at least one d.

 12. Calculate the number of strings over the alphabet {a, b, c, d} that have length 8 and
such that the second letter in each string is either a or c, and in which each string
contains at least one d.

 Chapter 1 9

Solutions
 1. a. A × B × C = {(a, 2, c), (a, 3, c), (b, 2, c), (b, 3, c)}.

 b. A × (B × C) = {(a, (2, c)), (a, (3, c)), (b, (2, c)), (b, (3, c))}.

 2. a. {〈 〉, 〈a〉, 〈b〉, 〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉}.

 b. {aa, ab, ac, ba, bb, bc, ca, cb, cc}.

 c. 4.
 3. {a, b, aa, ab, baa, bab}.

 4. {Λ, a, bc}.

 5. The set consisting of any string over the alphabet {a, b} that contains at least one a
or any string over the alphabet {b, c} that contains at least one c.

 6. Either x = Λ, or x = u1...um where ui ∈ M, or x ∈ L.

 7. Let x ∈ L ∩ M. Then x ∈ L and x ∈ M. Since Λ ∈ L* and Λ ∈ M*, it follows that x
= Λx ∈ L*M and x = xΛ ∈ LM*. Therefore x ∈ L*M ∩ LM*.

 8. {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0)}.

 9. {(9, 1), (9, 3), (9, 5), (9, 7), (7, 5), (7, 3), (7, 1), (5, 3), (5, 1), (3, 1)}.
 10. a. {(barley), (soybeans)}.

 b. {(May)}.
 c. {(1500), (500), (2500)}.

 d. {(June), (July)}.
 e. {(corn), (barley), (soybeans)}.

 f. {(Washington), (Jefferson), (Madison)}.
 g. {(May), (August), (September)}.

 11. 45 – 35.
 12. The answer can be found by taking the number of strings of length 8 whose second

letter is a or c, which is 4·2·46 = 2·47, and subtracting the number of these strings
that do not contain any d’s, which is 2·37. This gives the answer 2·47 – 2·37.

10 Chapter 1

1.4 Graphs and Trees
Learning Objectives
Be able to describe basic properties of graphs and trees.

Be able to perform traversals of graphs and to construct spanning trees for graphs.

Review Questions
 1. What is a graph?

 2. What is a complete graph?

 3. What is a planar graph?

 4. What does it mean to color a graph?

 5. What is a directed graph?

 6. What is a path in a graph?

 7. What is a depth-first traversal of a graph?

 8. What is a breadth-first traversal of a graph?

 9. What is a weighted graph?

 10. What is a tree?

 11. What is the level of a node?

 12. What is a binary tree?

 13. What is a binary search tree?

 14. What is a spanning tree for a weighted graph?

 15. Describe Prim’s algorithm.

 Chapter 1 11

Solved Problems
 1. Draw a graph to represent the relation R = {(a, b), (a, c), (b, c), (c, a)}.
 2. Given the following graph.

 a. Write down the vertices of the graph in the order that they are vis ited by some

breadth-first search of the graph that starts at vertex a.

 b. Write down the vertices of the graph in the order that they are vis ited by some
depth-first search of the graph that starts at vertex a.

 3 Write down the tuple representation of the following binary tree.

 4. Draw the binary tree to represent the following algebraic expression.

2 + (3 – (4 – 5)).

Solutions
 1. Each pair (x, y) is represented by an edge from x to y, so the graph has the following

form.

 2. a. For example, a d e b c f h i g j.
 b. For example, a d e i h b c g j f.

a b c

12 Chapter 1

 3. The tuple representation for the tree has the form 〈L, a, 〈 〉〉, where L is the tuple rep-
resentation of the left subtree of a. We can write L as the tuple

〈〈〈 〉, c, 〈 〉〉, b, 〈〈 〉, d, 〈 〉〉〉.

 Therefore, the tuple representation of the given binary tree is
〈L, a, 〈 〉〉 = 〈〈〈〈 〉, c, 〈 〉〉, b, 〈〈 〉, d, 〈 〉〉〉, a, 〈 〉〉.

 4. The binary tree to represent 2 + (3 – (4 – 5)) is

13

Chapter 2
Facts About Functions

2.1 Definitions and Examples
Learning Objectives
Be able to describe the parts of a function and to give examples of functions.

Be able to describe the floor, ceiling, gcd, and mod functions.

Be able to calculate values of functional expressions.

Review Questions
 1. What are ƒ, A, and B in the expression ƒ : A → B?

 2. What is the arity of a function?

 3. What is ƒ(C), the image of C under ƒ?

 4. What is the range of a function?

 5. What is ƒ–1(D), the pre-image of D under ƒ?

 6. What is a partial function?

 7. What is the meaning of each of the following symbols or expressions?
 a.

!

x" #.

 b.

!

x" #.

 c. gcd(a, b).

 d. a mod b.

 e. logb x.

14 Chapter 2

 f. ℕn.

 g. χB .

Solved Problems
 1. Let ƒ : ℕ → ℕ be defined by ƒ(x) = if x is odd then x – 1 else x + 1. Evaluate each of

the following expressions:
 a. ƒ({0, 2, 4, 6, 8, 10}).

 b. Range(ƒ).
 c. ƒ–1({0}).

 d. ƒ–1({1, 3, 5, 7, 9}).
 2. Evaluate each of the following expressions:

 a.

!

–5.1" #.

 b.

!

7.9" #.

 c.

!

–5.9" #.

 d.

!

7.1" #.

 3. Evaluate each of the following expressions:
 a. gcd(135, 210).

 b. gcd(117, 65).
 4. Evaluate each of the following expressions:

 a. –23 mod 3.
 b. –23 mod 5.

 c. 28 mod 6.
 d. 77 mod 8.

 5. Evaluate each of the following expressions:
 a. log2(2048).

 b. log2(812).
 c. log2(1/16).

 6. Given the function ƒ : ℕ → ℕ defined by ƒ(x) = 2x mod 5, describe each of the fol-
lowing sets:

 a. The image of the set {1, 3, 5}. i.e., ƒ({1, 3, 5}).

 b. range(ƒ). i.e., ƒ(ℕ).
 c. The preimage of the set {0}. i.e., ƒ–1({0}).

 Chapter 2 15

 7. Given the function ƒ : ℕ → ℕ defined by ƒ(x) = 3x mod 4, describe each of the fol-
lowing sets:

 a. The image of {1, 3, 5} under ƒ. i.e., ƒ({1, 3, 5}).

 b. range(ƒ). i.e., ƒ(ℕ).

 c. The pre-image of {0} under ƒ. i.e., ƒ–1 ({0}).

Solutions
 1. a. {1, 3, 5, 7, 9, 11}. b. ℕ. c. {1}. d. {0, 2, 4, 6, 8, 10}.

 2. a. –6. b. 7. c. –5. d. 8.

 3. a. 15. b. 13.

 4. a. 1. b. 2. c. 4. d. 5.

 5. a. 11. b. 36. c. –4.

 6. a. {0, 1, 2}. b. ℕ5 = {0, 1, 2, 3, 4}. c. {5n | n ∈ ℕ}.

 7. a. {1, 3}. b. ℕ4 = {0, 1, 2, 3}. c. {4n | n ∈ ℕ}.

2.2 Constructing Functions
Learning Objectives
Be able to construct simple functions by composition of known functions.

Be able to use the map function.

Review Questions
 1. What does ƒ º g mean?

 2. What is the map function?

Solved Problems
 1. Evaluate each of the following expressions.

 a. dist(3, seq(5)).
 b. map(ƒ, 〈a, b, c, d〉).

 c. pairs(seq(2), seq(2)).

16 Chapter 2

 d. ceiling(log2(25)).
 e. floor(log2(19)).

 2. Describe the set of natural numbers x such that floor(log2(x)) = 10.
 3. Describe the set of natural numbers x such that ceiling(log2(x)) = 10.

 4. Let ƒ be defined by ƒ(n, g) = 〈g(n), g(n – 1), ..., g(0)〉, where n ∈ ℕ and g : ℕ → ℕ.

 a. Write down the type of ƒ.

 b. Write ƒ as a composition of known functions.
 5. Describe the set of integers x that satisfy the following equation.

gcd(x, x mod 5) = 3.

Solutions
 1. a. 〈(3, 0), (3, 1), (3, 2), (3,3), (3, 4), (3, 5)〉.

 b. 〈ƒ(a), ƒ(b), ƒ(c), ƒ(d)〉.

c. 〈(0, 0), (1, 1), (2, 2)〉.

d. 5. e. 4.

 2. {x | x ∈ ℕ and 210 ≤ x < 211}.

 3. {x | x ∈ ℕ and 29 < x ≤ 210}.

 4. a. ℕ × (ℕ → ℕ) → lists(ℕ).

 b. Transform the definition as follows:
 ƒ(n, g) = 〈g(n), g(n – 1), ..., g(0)〉

 = map(g, 〈n, n – 1, ..., 0〉)

 = map(g, 〈n – 0, n – 1, ..., n – n〉)

 = map(g, map(–, 〈(n, 0), (n, 1), ..., (n, n)〉))

 = map(g, map(–, dist(n, seq(n)))).
 Therefore, ƒ(n, g) = map(g, map(–, dist(n, seq(n)))).

 5. Since x mod 5 can take on only the values 0, 1, 2, 3, and 4, it follows that gcd(x, x
mod 5) = 3 implies x mod 5 = 3. So x must have the form 3 + 5k for some integer k.
So the equation becomes gcd(3 + 5k, 3) = 3. This implies that 3 + 5k is divisible by
3. Thus 5k must be divisible by 3. Since 5 and 3 are relatively prime, it must be the
case that k is divisible by 3. Therefore x has the form x = 3 + 15n for any integer n.

 Chapter 2 17

2.3 Properties of Functions
Learning Objectives
Be able to determine whether simple functions are injective, surjective, or bijective.

Review Questions
 1. What is an injective function?

 2. What is a surjective function?

 3. What is a bijective function?

 4. What does ƒ–1 mean?

 5. What is the pigeonhole principle?

 6. What is a hash function?

 7. What properties of a function are useful in ciphers?

Solved Problems
 1. In each case, find an example of a function ƒ : ℤ → ℤ satisfying the given condi-

tion.

 a. Injective but not surjective.
 b. Surjective but not injective.

 c. Bijective but not the identity function.
 d. Neither injective nor bijective.

 2. Let ℚ+ denote the positive rational numbers. Let ƒ : ℚ+ → ℚ+ be the function de-
fined by

ƒ(x) = x/(2x + 1).
 a. Show that ƒ is injective.

 b. Show that ƒ is not surjective.

 3. The function ƒ : ℕ15 → ℕ15 defined by ƒ(x) = 4x mod 15 is bijective. Find the in-
verse of ƒ.

 4. The function ƒ : ℕ15 → ℕ15 defined by ƒ(x) = 2x mod 15 is bijective. Find the in-
verse of ƒ.

18 Chapter 2

 5. Let S = {Oregon, Washington, California, Idaho, Nevada, Hawaii} and let h : S →
{0, 1, 2, 3, 4, 5} be a hash function defined by h(x) = |x| mod 6, where |x| is the
length of string x. In each case, fill in the hash table in the order that the states are
listed in S.

 a. Resolve collisions with linear probing and a gap of 1.

 b. Resolve collisions with linear probing and a gap of 2.

 6. Let P = {10, 12, 17, 19, 23, 25, 28} and let h: P → ℕ7 be the hash function defined
by

h(x) = x mod 7.

 Use h to place each element of P into a hash table indexed by {0, 1, .., 6} starting
with 10, then 12, and so on up to 28.

 a. Resolve collisions by linear probing with a gap of 1.
 b. Resolve collisions by linear probing with a gap of 2.

 7. Let P = {2, 3, 5, 7, 11, 13} and let h: P → ℕ6 be the hash function defined by

h(x) = (2x + 1) mod 6.

 Use h to place each element of P into a hash table indexed by {0, 1, .., 5} starting
with 2, then 3, and so on up to 13.

 a. Resolve collisions by linear probing with a gap of 1.
 b. Resolve collisions by linear probing with a gap of 3.

Solutions
 1. a. e.g., ƒ(x) = 2x. b. e.g., ƒ(x) = if x < 0 then x else x – 1.

 c. e.g., ƒ(x) = x + 1. d. e.g., ƒ(x) = 0 for all x.
 2. a. Let ƒ(x) = ƒ(y). Then x/(2x + 1) = y/(2y + 1). Cross multiply to obtain the equa-

tion 2xy + x = 2xy + y, which after subtracting 2xy from each side yields x = y.
Therefore ƒ is injective.

 b. Notice that x/(2x + 1) < 1 for all x ∈ ℚ+. Therefore ƒ is not surjective. For ex-
ample, ƒ(x) ≠ 1 for all x ∈ ℚ+.

 3. ƒ is bijective because gcd(4, 15) = 1. So by (2.6) ƒ–1(x) = (kx + c) mod 15, where
ƒ(c) = 0 and k is an integer such that 1 = 4k + 15m for some integer m. We can
choose c = 0 since ƒ(0) = 0 mod 15 = 0. Also, we can write 1 = 4·4 + 15(–1). So we
can let k = 4. Thus ƒ–1(x) = 4x mod 15. In other words, ƒ = ƒ–1.

 4. ƒ is bijective because gcd(2, 15) = 1. So by (2.6) ƒ–1(x) = (kx + c) mod 15, where
ƒ(c) = 0 and k is an integer such that 1 = 2k + 15m for some integer m. We can
choose c = 0 since ƒ(0) = 0 mod 15 = 0. Also, we can write 1 = 2·8 + 15(–1). So we
can let k = 8. Thus ƒ–1(x) = 8x mod 15.

 Chapter 2 19

 5. a. The table is represented by the following 6-tuple indexed from 0 to 5.
〈Oregon, Idaho, Nevada, Hawaii, Washington, California〉.

 b. The table is represented as the following 6-tuple indexed from 0 to 5, where ∅
means no entry.

〈Oregon, ∅, California, ∅, Washington, Idaho〉.

 In other words, Nevada and Hawaii cannot be placed in the table.
 6. a. The table is represented by the following 7-tuple indexed from 0 to 6.

〈25, 28, 23, 10, 17, 12, 19〉.

 b. The table is represented by the following 7-tuple indexed from 0 to 6.

〈17, 28, 19, 10, 23, 12, 25〉.

 7. a. The table is represented by the following 6-tuple indexed from 0 to 5.
〈5, 3, 11, 7, 13, 2〉.

 b. The table is represented by the following 6-tuple indexed from 0 to 5, where ∅
means no entry.

〈13, 3, 5, 7, ∅, 2〉.

 In other words, 11 cannot be placed in the table.

2.4 Countability
Learning Objectives
Be able to describe the concepts of countable and uncountable sets.

Be able to apply the diagonalization method to construct elements that are not in certain
countable sets.

Review Questions
 1. What does |A| = |B| mean?

 2. What does |A| ≤ |B| mean?

 3. What does |A| < |B| mean?

 4. What is a countable set?

 5. What does diagonalization technique do?

 6. How many problems are solvable by computers?

20 Chapter 2

Solved Problems
 1. Find the cardinality of the set {x | x ∈ ℕ and 0 ≤ x2 < 500}.

 2. Find the cardinality of the set {5, 9, 13, ..., 145, 149}.

 3. Show that the open intervals of real numbers (0, 1) and (0, 2) have the same cardi-
nality.

 4. Prove that power({a}*) is uncountable.

 5. Suppose that we have the countably infinite set S = {x0, x1, ...} in which each xi is an
infinite list of the form xi = 〈xi0, xi1, ...〉, where each xij ∈ {1, 3, 5, 7, 9}. Describe an
element of this form that is not in S.

Solutions
 1. Notice that 223 = 484 and 233 = 529. So the given set can be described as {0, 1, 2,

..., 22}, which has cardinality 23.

 2. The given set can be described as {5 + 4x | x ∈ ℕ and 0 ≤ x ≤ 36}, which can be de-
scribed as {0, 1, 2, ..., 36}, which has cardinality 37.

 3. Define ƒ : (0, 1) → (0, 2) by ƒ(x) = 2x. To see that ƒ is an injection, let ƒ(x) = ƒ(y).
This means that 2x = 2y, which implies that x = y, so ƒ is an injection. To see that ƒ
is a surjection, let y ∈ (0, 2). Then we have ƒ(y/2) = y, so ƒ is a surjection. There-
fore ƒ is a bijection.

 4. The function ƒ : {a}* → ℕ defined by ƒ(an) = n. ƒ is a bijection. Therefore |{a}*| =
|ℕ|. This tells us that {a}* is countable and infinite. By (2.14) we have |{a}*| <
|power({a}*)|, so power({a}*) must be uncountable.

 5. Pick two elements, say 5 and 9, from the set {1, 3, 5, 7, 9}. By diagonalization
(2.12) we can construct an infinite list 〈y0, y1, ..., yn, ... 〉 that is not in S where yn = if
xnn = 5 then 9 else 5.

21

Chapter 3
Construction Techniques

3.1 Inductively Defined Sets
Learning Objectives
Be able construct inductive definitions for a variety of sets.

Review Questions
 1. What steps are needed to define a set inductively?

 2. Why is the closure case important?

 3. What is the meaning of each of the following symbols or expressions?

 a. x :: t.

 b. tree(L, x, R).

Solved Problems
 1. Describe the set S defined by: 0 ∈ S, and if x ∈ S, then x + 3 ∈ S.

 2. Write an inductive definition for S = {2, 6, 10, ... }.

 3. Write an inductive definition for the set ℤ of integers.
 4. Write an inductive definition for the set S of odd integers.

 5. Write an inductive definition for S = {x | x ∈ ℤ and x mod 4 = 0}.

 6. Write down an inductive definition for the set
B = {1, 3, 5, 7, 9, ... } ∪ {1, 4, 9, 16, 25, ... }.

 7. Describe the set S defined by: a, b ∈ S, and if x ∈ S, then axb ∈ S.

 8. Give an inductive definition for the set S = {ambn+1 | m, n ∈ ℕ}.

 9. Give an inductive definition for the set S of all palindromes over {a, b, c} that have
even length.

 10. Describe the set S defined by: 〈b〉 ∈ S, and if x ∈ S, then cons(a, x) ∈ S.

 11. Write an inductive definition for the set S of all lists over {a, b} of even length.

22 Chapter 3

 12. Write an inductive definition for the set
S = {〈b, a〉, 〈b, a, b〉, 〈b, a, b, b〉, 〈b, a, b, b, b〉, ... }.

 13. Write an inductive definition for the set B of nonempty binary trees over {a} where
the left and right subtrees of each node are identical.

 14. Give an inductive definition of the set ℕ × ℤ.

 15. Write down an inductive definition for the set P = power(B) where B is a finite set.

Solutions
 1. S = {0, 3, 6, 9, ...} = {3k | k ∈ ℕ}.

 2. 2 ∈ S; if x ∈ S, then x + 4 ∈ S.

 3. 0 ∈ ℤ; if x ∈ ℤ, then x + 1, x – 1 ∈ ℤ.

 4. 1 ∈ S; if x ∈ S , then x + 2, x – 2 ∈ S .

 5. 0 ∈ S; if x ∈ S , then x + 4, x – 4 ∈ S .

 6. To make things easier, write B as the union of two sets as follows:

B = {1, 3, 5, 7, 9, ... } ∪ {4, 16, 36, ... }.

 Now the following inductive definition is easier to discover.
 1, 4 ∈ B;

 if x ∈ B, then if x is odd, then x + 2 ∈ B else

!

x + 2()
2

 ∈ B.

 7. S = {a, b, aab, abb, aaabb, aabbb, ...}, which can be written formally as

S = {anbn+1 | n ∈ ℕ} ∪ {an+1bn | n ∈ ℕ} .

 8. b ∈ S; if x ∈ S, then ax, xb ∈ S.

 9. Λ ∈ S; if x ∈ S, then axa, bxb, cxc ∈ S.

 10. S = {〈b〉, 〈a, b〉, 〈a, a, b〉, 〈a, a, a, b〉, ...}.

 11. 〈 〉 ∈ S; if L ∈ S, then for each pair x, y ∈ {a, b}, x :: y :: L ∈ S.

 12. 〈b, a〉 ∈ S; if L ∈ S, then b :: a :: b :: tail(tail(L)) ∈ S.

 13. tree(〈 〉, a, 〈 〉) ∈ B; if T ∈ B, then tree(T, a, T) ∈ B.

 14. (0, 0) ∈ ℕ × ℤ; if (x, y) ∈ ℕ × ℤ, then (x, y + 1), (x, y – 1), (x + 1, y) ∈ B.

 15. ∅ ∈ P; if S ∈ P and b ∈ B, then S ∪ {b} ∈ P .

 Chapter 3 23

3.2 Recursive Functions and Procedures
Learning Objectives
Be able to construct recursive definitions for functions and procedures.

Review Questions
 1. What steps are needed to define a function recursively?

 2. What steps are needed to define a procedure recursively?

 3. What do recursive definitions have to do with inductively defined sets?

Solved Problems
 1. Write down each step in the evaluation of ƒ(13) where ƒ has the following recursive

definition.

 ƒ(0) = ƒ(1) = 0
 ƒ(n) = ƒ(ceiling(n/2)) + n.

 2. Write a recursive definition for the function ƒ : ℕ → ℕ defined by

ƒ(n) = 1 + 5 + 9 + ... + (4n + 1).

 3. Write a recursive definition for the function ƒ defined as follows, where n is a natu-
ral number and a is any number.

ƒ(a, n) = 1 + 2a + 3a2 + ... + (n + 1)an.
 4. Write a recursive definition for the function ƒ to replace each occurrence of the let-

ter a by b in a string over the alphabet {a, b, c}.
 5. Write down each step in the evaluation of ƒ(3, hello) where ƒ has the following re-

cursive definition.
 ƒ(0, x) = 〈 〉

 ƒ(n, x) = x :: ƒ(n – 1, x).
 6. Write a recursive definition for the function g on nonempty lists defined by

g(〈x1, ..., xn〉) = 〈x1, ..., xn – 1〉.

 7. Write a recursive definition for the function “get” that takes an element and a list of
pairs and returns the list of pairs that begin with the given element. For example,
get(a, 〈(b, c), (a, c), (b, d), (a, b)〉) = 〈(a, c), (a, b)〉.

 8. Write down a recursive procedure to print out the elements of a list in reverse order.
 9. Write down an recursive definition for the function “min” that returns the smallest

number in a nonempty list of numbers.

24 Chapter 3

 10. For any binary tree T, the procedure p(T) prints out only those nodes of T that have
two children. Write a recursive procedure for p(T) that traverses the tree in preorder
looking for the nodes to print out.

Solutions
 1. ƒ(13) = ƒ(ceiling(13/2)) + 13

 = ƒ(7) + 13
 = ƒ(ceiling(7/2)) + 7 + 13

 = ƒ(4) + 7 + 13
 = ƒ(ceiling(4/2)) + 4 + 7 + 13
 = ƒ(2) + 4 + 7 + 13

 = ƒ(ceiling(2/2)) + 2 + 4 + 7 + 13
 = ƒ(1) + 2 + 4 + 7 + 13

 = ƒ(ceiling(1/2)) + 1 + 2 + 4 + 7 + 13
 = ƒ(1) + 1 + 2 + 4 + 7 + 13

 = 0 + 1 + 2 + 4 + 7 + 13
 = 27.

 2. An equational definition can be given as follows:
 ƒ(0) = 1

 ƒ(n) = ƒ(n – 1) + 4n + 1.
 3. An equational definition can be given as follows:

 ƒ(a, 0) = 1
 ƒ(a, n) = (n + 1)an + ƒ(a, n – 1).

 4. An equational form for ƒ can be described as follows:
 ƒ(Λ) = Λ

 ƒ(ax) = bƒ(x)

 ƒ(bx) = bƒ(x)
 ƒ(cx) = cƒ(x)

 5. ƒ(3, hello) = hello :: ƒ(2, hello)
 = hello :: hello :: ƒ(1, hello)

 = hello :: hello :: hello :: ƒ(0, hello)
 = hello :: hello :: hello :: 〈 〉

 = hello :: hello :: 〈hello〉

 = hello :: 〈hello, hello〉 = 〈hello, hello, hello〉.

 Chapter 3 25

 6. An equational form for g can be described as follows:
 g(〈x〉) = 〈 〉

 g(h :: t) = h :: g(t).
 An if-then-else form for g can be described as follows:
 g(L) = if tail(L) = 〈 〉 then 〈 〉 else head(L) :: g(tail(L)).

 7. An equational form for get can be described as follows:
 get(x, 〈 〉) = 〈 〉.

 get(x, 〈x, z〉 :: t) = 〈x, z〉 :: get(x, t)

 get(x, 〈y, z〉 :: t) = get(x, t).

 An if-then-else form for get can be described as follows:

 get(x, L) = if L = 〈 〉 then 〈 〉

 else if x = head(head(L)) then

 head(L) :: get(x, tail(L))
 else

 get(x, tail(L)).
 8. Letting rev be the name of the reverse procedure, we have the following definition:

rev(L): if L ≠ 〈 〉 then rev(tail(L)); print(head(L)) fi.

 9. An equational form for min can be described as follows:

min(〈x〉) = x and min(h :: t) = if h < min(t) then h else min(t).

 10. P(T): if T ≠ 〈 〉 then

 if left(T) ≠ 〈 〉 and right(T) ≠ 〈 〉 then

 print(root(T)
 fi;

 P(left(T));
 P(right(T)

 fi.

26 Chapter 3

3.3 Grammars
Learning Objectives
Be able to construct grammars for languages (sets of strings).

Be able to use grammars to derive strings.

Understand the idea of an ambiguous grammar.

Review Questions
 1. What is a grammar production?

 2. What is a grammar?

 3. What is a derivation?

 4. What is a leftmost derivation?

 5. What is a rightmost derivation?

 6. What is a parse tree?

 7. What does it mean to say a grammar is ambiguous?

 8. What is the language of a grammar?

 9. What is the meaning of each of the following symbols or expressions?

 a. A → α.

 b. A → α | β.

 c. A

!

" α.

 d. A

!

"
+ α.

 e. A

!

"
* α.

 f. L(G).

 Chapter 3 27

 10. What is a recursive production?

 11. What is an indirectly recursive production?

Solved Problems
 1. Given the following grammar.

S → a | b | ƒ(S, S) | g(S, S).

 a. Find a leftmost derivation for ƒ(g(a, b), ƒ(b, a)).
 b. Find a rightmost derivation for ƒ(g(a, b), ƒ(b, a)).

 2. Describe the language generated by each of the following grammars.
 a. S → Λ | aaS.

 b. S → Λ | aS | bS.

 c. S → aS | bT

 T → cdT | Λ.

 3. Define a grammar for each of the following languages.

 a. {an+1bcn | n ∈ ℕ}.

 b. {an+1(bc)n | n ∈ ℕ}.

 c. {an | n ∈ ℕ}{bcn | n ∈ ℕ}.

 d. {an | n ∈ ℕ} ∪ {bcn | n ∈ ℕ}.

 e. {abn | n ≥ 0}*.

 4. Show that each of the following grammars is ambiguous:
 a. S → SabS | Λ.

 b. S → SbS | A

 A → a | aA.

 5. Each of the following grammars is ambiguous. Try to find an equivalent grammar
that is not ambiguous.

 a. S → SabS | Λ.

 b. S → SbS | A

 A → a | aA.

28 Chapter 3

Solutions
 1. a. S ⇒ ƒ(S, S) ⇒ ƒ(g(S, S), S) ⇒ ƒ(g(a, S), S) ⇒ ƒ(g(a, b), S)

 ⇒ ƒ(g(a, b), ƒ(S, S)) ⇒ ƒ(g(a, b), ƒ(b, S)) ⇒ ƒ(g(a, b), ƒ(b, a)).

 b. S ⇒ ƒ(S, S) ⇒ ƒ(S, ƒ(S, S)) ⇒ ƒ(S, ƒ(S, a)) ⇒ ƒ(S, ƒ(b, a))

 ⇒ ƒ(g(S, S), ƒ(b, a)) ⇒ ƒ(g(S, b), ƒ(b, a)) ⇒ ƒ(g(a, b), ƒ(b, a)).

 2. a. The set of all strings of a’s that have even length. In other words, the set {(aa)m |
m ∈ ℕ}.

 b. The set of all strings over the alphabet {a, b}. i.e., the set {a, b}*.
 c. The set of all strings that start with any number of a’s followed by b, which is

followed by any number of cd pairs. In other words, the set {amb(cd)n | m, n ∈
ℕ}.

 3. a. Each string can be thought of as the string ab surrounded by an equal number of
a’s on the left and c’s on the right. In other words, an(ab)cn. This gives the fol-
lowing grammar:

S → aSc | ab.

 b. Just as in Part (a), each string has the form ana(bc)n. This gives the following
grammar:

S → aSbc | a.

 c. Use the product rule to obtain the following grammar:

 S → AB

 A → aA | Λ

 B → Bc | b.

 d. Use the union rule to obtain the following grammar:
 S → A | B

 A → aA | Λ

 B → Bc | b.

 e. Use the closure rule to obtain the following grammar:

 S → AS | Λ

 A → Ab | a.

 4. a. The string abab has two distinct leftmost derivations as follows:
 S ⇒ SabS ⇒ SabSabS ⇒ abSabS ⇒ ababS ⇒ abab.

 S ⇒ abS ⇒ abSabS ⇒ ababS ⇒ abab.

 Therefore the grammar is ambiguous.

 Chapter 3 29

 b. The string ababa has two distinct leftmost derivations as follows:
 S ⇒ SbS ⇒ SbSbS ⇒ AbSbS ⇒ abSbS ⇒ abAbS ⇒ ababS ⇒ ababA

 ⇒ ababa.

 S ⇒ SbS ⇒ AbS ⇒ abS ⇒ abSbS ⇒ abAbS ⇒ ababS ⇒ ababA ⇒ ababa.

 Therefore the grammar is ambiguous.

 5. a. The language of the grammar is {(ab)n | n ∈ ℕ}. A grammar for the lan-
guage can be written as follows:

S → abS | Λ.

 Since there is at most one nonterminal on the right side of each production,
there can be only one leftmost derivation for each string. Therefore the grammar
is not ambiguous.

 b. The language of the grammar consists of strings that contain substrings of one or
more a’s that are separated by the letter b. A grammar for the language can be
written as follows:

 S → AbS | A

 A → a | aA.

 Any leftmost derivation must start with the step S ⇒ AbS. Then A must be used
to derive one or more a’s. After this, depending on whether there is another b in
the derived string, one of the two productions S → AbS or S → A is used with-
out ambiguity. The process continues in this way. Therefore there is only one
leftmost derivation for any string. So the grammar is not ambiguous.

30

Chapter 4
Equivalence, Order, and Inductive Proof

4.1 Properties of Binary Relations
Learning Objectives
Be able to determine whether a binary relation is reflexive, symmetric, or transitive.

Be able to construct closures with respect to these properties.

Review Questions
 1. What is the meaning of reflexive?

 2. What is the meaning of symmetric?

 3. What is the meaning of transitive?

 4. What is the meaning of antisymmetric?

 5. What is the composition of two binary relations R and S?

 6. What is the meaning of each of the following symbols or expressions?

 a. R°S.

 b. r(R).

 c. Rc.

 d. s(R).

 e. t(R).

 Chapter 4 31

 f. R+.

 g. R*.

 7. What does Warshall’s algorithm do?

 8. What does Floyd’s algorithm do?

 9. What does Floyd’s modified algorithm do?

Solved Problems
 1. Given a nonempty set S and the binary relation R on power(S) defined by

 A R B iff A ∪ B = S.

 Which of the following properties does R possess: reflexive, symmetric, transitive,
irreflexive, and antisymmetric?

 2. Given the binary relation R on ℤ defined by x R y iff |x – y| is even. Which of the
following properties does R possess: reflexive, symmetric, transitive, irreflexive,
and antisymmetric?

 3. Describe each of the following relations over the natural numbers.

 a. = ° <.

 b. > ° <.

 4. Describe each of the following compositions:

 a. isMotherOf ° isFatherOf.

 b. isFatherOf ° isMotherOf.

 c. isChildOf ° isUncleOf.

 d. isAuntOf ° isParentOf.

 5. Give examples of binary relations over the set {a, b} with the stated properties.

 a. Not reflexive.
 b. Not symmetric.

 c. Not transitive.

32 Chapter 4

 6. Given the binary relation R = {(1, 2), (2, 3), (3, 4), (4, 5)}, construct each of the fol-
lowing relations:

 a. R2.
 b. R3.

 c. R4.
 d. R5.

 7. Given the binary relation R = {(1, 2), (3, 1), (3, 2), (2, 4)} over {1, 2, 3, 4}, con-
struct each of the following relations:

 a. r(R).
 b. s(R).

 c. t(R).
 8. Given the binary relation R represented as a directed graph.

 Construct each of the following relations:

 a. r(R).
 b. s(R).

 c. t(R).

Solutions
 1. R is not reflexive because, for example, ∅ ∪ ∅ ≠ S. R is symmetric be cause if A ∪

B = S, then B ∪ A = S. R is not transitive because, for example, we have ∅ ∪ S = S
and S ∪ ∅ = S, but ∅ ∪ ∅ ≠ S. R is not irreflexive because S ∪ S = S. R is not anti-
symmetric because, for example, ∅ ∪ S = S and S ∪ ∅ = S, but S ≠ ∅.

 2. R is reflexive because |x – x| = 0 is even for all integers x. R is symmetric because if
|x – y| is even, then |y – x| = |x – y| is even. R is transitive because if |x – y| is even
and |y – z| is even, then either x and y are both odd or both even and y and z are ei-
ther both odd or both even. Thus x and z must be either both odd or both even,
which tells us that |x – z| is even. R is not irreflexive because it is reflexive. R is not
antisymmetric because, for example, 3 R 5 and 5 R 3, but 3 ≠ 5.

 3. a. The composition = ° < is equal to the < relation. To see this, notice that

x (= ° <) y iff x = x and x < y iff x < y .

 Chapter 4 33

 b. The composition > ° < is equal to the relation (ℕ – {0}) × (ℕ – {0}). To see this,
notice that x (> ° <) y iff x > z and z < y for some z ∈ ℕ. In other words, x (> ° <)
y iff there is a number less than both x and y. Therefore, the pair (x, y) is not in
the composition > ° < exactly when either x = 0 or y = 0.

 4. a. isPaternalGrandMotherOf. b. isMaternalGrandFatherOf.
 c. isFirstCousinOf. d. isGreatAuntOf.

 5. a. Each of the three relations ∅, {(a, a)}, and {(b, b)} is not reflexive.

 b. Each of the relations {(a, b)} and {(b, a)} is not symmetric.

 c. The relation {(a, b), (b, a)} is not transitive.
 6. a. R2 = {(1, 3), (2, 4), (3, 5)}. b. R3 = {(1, 4), (2, 5)}. c. R4 = {(1, 5)}. d. R5 = ∅.

 7. a. R ∪ {(1, 1), (2, 2), (3, 3), (4, 4)}. b. R ∪ {(2, 1), (1, 3), (2, 3), (4, 2)}.

 c. R ∪ {(1, 4), (3, 4)}.

 8. a. R ∪ {(1, 1), (2, 2), (3, 3), (4, 4)}. b. R ∪ {(2, 1), (3, 2), (4, 3), (2, 4)}.

 c. R ∪ {(1, 3), (1, 4), (2, 2), (2, 4), (3, 2), (3, 3), (4, 3), (4, 4)}.

4.2 Equivalence Relations
Learning Objectives
Be able to identify equivalence relations.

Be able to construct equivalence classes for equivalence relations.

Review Questions
 1. What are the defining characteristics of an equivalence relation?

 2. What is an equivalence class?

 3. What is a partition?

 4. What does [x] mean?

 5. What does tsr(R) mean?

 6. What is a kernel relation?

 7. What does it mean to say one partition is finer than another?

 8. Describe Kruskal’s algorithm.

34 Chapter 4

Solved Problems
 1. Find out whether each relation over ℕ is an equivalence relation.
 a. a R b iff (a – b) mod 4 = 0.
 b. a R b iff either a ≤ b or a > b.

 c. a R b iff |a – b| ≤ 2.
2.Write down the equivalence classes induced by the following equivalence relation

over the set ℕ of natural numbers.
a R b iff (a – b) mod 4 = 0.

3.Given the relation R on nonempty lists over ℕ defined by
x R y iff head(x) mod 3 = head(y) mod 3.

 a. Why is R is an equivalence relation?

 b. Describe the equivalence classes in partition of nonempty lists over ℕ induced
by R.

 4. Let ƒ : ℕ → ℕ be defined by ƒ(n) = floor(

!

n). Describe the equivalence classes in
the partition of ℕ induced by the kernel relation of ƒ.

 5. Find tsr(R), where R is the relation defined over ℤ by
R = {(a, b) | either a or b is an odd integer}.

 6. A graph with vertex set {a, b, c, d, e, f, g} has its edges sorted by weight as follows:

〈{f, g}, {a, d}, {c, e}, {b, f}, {d, c}, {c, g}, {e, f}, {a, b}, {d, e}〉.

 Use Kruskal’s algorithm to find a minimal spanning tree for the graph by showing
the value of the spanning tree T and the corresponding equivalence classes pro-
duced at each stage of the algorithm.

Solutions
 1. a. R is an equivalence relation. It is reflexive because (a – a) mod 4 = 0 for all a ∈

ℕ. It is symmetric because if (a – b) mod 4 = 0, then certainly (b – a) mod 4 =
0. To see that R is transitive, let (a – b) mod 4 = 0 and (b – c) mod 4 = 0. Then
there are integers m and n such that a – b = 4m and b – c = 4n. Add the two
equations to obtain a – c = 4(m + n). Therefore (a – c) mod 4 = 0.

 b. To see that R is an equivalence relation, notice that a R b means that either a ≤ b
or a > b. This can be written as either a = b or a < b or a > b. We know this
property is true for any pair of numbers. Therefore a R b for all a, b ∈ ℕ, so R is
the Cartesian product ℕ × ℕ.

 c. R is not an equivalence relation. It is reflexive and symmetric, but it is not tran-
sitive. For example, we have |1 – 3| ≤ 2 and |3 – 5| ≤ 2, but |1 – 5| > 2.

 Chapter 4 35

 2. [0] = {4n | n ∈ ℕ}

 [1] = {4n + 1 | n ∈ ℕ}

 [2] = {4n + 2 | n ∈ ℕ}

 [3] = {4n + 3 | n ∈ ℕ}.

 3. a. R is an equivalence relation because it is the kernel relation of the function ƒ :
lists(ℕ) – {〈 〉} → ℕ defined by ƒ(x :: t) = x mod 3.

 b. The three equivalence classes can be described as follows:
 [〈0〉] = {h :: t | h mod 3 = 0},

 [〈1〉] = {h :: t | h mod 3 = 1},

 [〈2〉] = {h :: t | h mod 3 = 2}.

 4. Let ~ be the kernel relation of ƒ. Then x ~ y iff ƒ(x) = ƒ(y) iff floor(

!

x) =
floor(

!

y). For example, 2 ~ 3 and 5 ~ 8. The equivalence classes can be written in
the following form for each natural number n:

[n2] = {x | n2 ≤ x < (n + 1)2}
 e.g., [0] = {0}, [1] = {1, 2, 3}, [4] = {4, 5, 6, 7, 8}, and [9] = {9, 10, ..., 15}.

 5. Let O be the set of odd integers. Then R = (ℤ × O) ∪ (O × ℤ). To construct r(R)
we must add the set {(2x, 2x) | x ∈ ℤ}. It follows that r(R) = R ∪ {(2x, 2x) | x ∈ ℤ}.
This relation is already symmetric, so we have sr(R) = r(R). This relation is not
transitive. For example, we have (2, 1) and (1, 4) ∈ sr(R), but (2, 4) ∉ sr(R). Notice
that for any x, y ∈ ℤ we have (x, 1), (1, y) ∈ sr(R). Thus (x, y) ∈ tsr(R). Therefore
tsr(R) = ℤ × ℤ.

 6.

Spanning Tree T Equivalence Classes

{ } {a}, {b}, {c}, {d}, {e}, {f}, {g}

{{f, g}} {a}, {b}, {c}, {d}, {e}, {f, g}

{{f, g}, {a, d}} {a, d}, {b}, {c}, {e}, {f, g}

{{f, g}, {a, d}, {c, e}} {a, d}, {b}, {c, e}, {f, g}

{{f, g}, {a, d}, {c, e}, {b, f}} {a, d}, {c, e}, {b, f, g}

{{f, g}, {a, d}, {c, e}, {b, f}, {d, c}} {a, c, d, e}, {b, f, g}

{{f, g}, {a, d}, {c, e}, {b, f}, {d, c}, {c, g}} {a, b, c, d, e, f, g}

36 Chapter 4

4.3 Order Relations
Learning Objectives
Be able to identify a partially ordered set.

Be able to construct a topological sort of a partially ordered set.

Be able to determine whether a partially ordered set is well-founded.

Review Questions
 1. What are the two characteristics of a partial order relation?

 2. Why do we use the word partial when referring to an order?

 3. What do successor and predecessor mean for a poset?

 4. What does it mean to sort a poset “topologically”?

 5. What is a lower bound of a subset of a poset? Upper bound?

 6. What is a minimal element of a subset of a poset? Maximal element?

 7. What is a greatest lower bound of a subset of a poset? Least upper bound?

 8. What are two equivalent ways to say a poset is well-founded?

 9. What is the meaning of each of the following symbols or expressions?

 a. 〈A,

!

p 〉.

 b. 〈A,

!

p 〉.

 c. x

!

p y.

 d. x

!

p y.

Solved Problems
 1. Let D = {1, 2, 4, 5, 10, 20, 25, 50, 100} and for any x, y ∈ D, let

x

!

p y mean that x|y (i.e., x divides y).

 Let S = {10, 20, 50}. Find each of the following elements or sets.

 Chapter 4 37

 a. The minimal elements of S.
 b. The maximal elements of S.

 c. The lower bounds of S.
 d. The upper bounds of S.

 e. The glb of S.
 f. The lub of S.

 2. Given the following set W of western states:
W = {Oregon, Idaho, Nevada, California, Washington, Utah, Arizona}.

 We can define a partial order

!

p on W by
x

!

p y iff length(x) < length(y).

 Let S = {Nevada, Oregon, Arizona}. Find each of the following elements or sets.
 a. The minimal elements of S.

 b. The maximal elements of S.
 c. The lower bounds of S.

 d. The upper bounds of S.
 e. The glb of S.

 f. The lub of S.
 3. Given the poset power({a, b, c}) with the subset relation, write down a topological

sort of the subsets.
 4. Describe a well-founded set that has two or more minimal elements.

 5. Given the relation

!

p defined on ℕ × ℕ by

(a, b)

!

p (c, d) iff a + b < c + d.

 Write down a descending chain of maximum length starting at (2, 5).

Solutions
 1. a. 10. b. 20 and 50. c. 1, 2, 5, and 10. d. 100. e. 10. f. 100.
 2. a. Nevada and Oregon. b. Arizona. c. Utah and Idaho.

 d. Arizona, California, and Washington. e. Idaho. f. Arizona.
 3. One such sort is ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}.

 4. For example, the collection of nonempty subsets of {a, b} with the subset relation is
a well-founded set with minimal elements {a} and {b}.

 5. (2, 5), (2, 4), (2, 3), (2, 2), (2, 1), (2, 0), (1, 0), (0, 0).

38 Chapter 4

4.4 Inductive Proof
Learning Objectives
Be able to use the technique of inductive proof to write short informal proofs about sim-
ple properties of numbers, sets, and ordered structures.

Review Questions
 1. What is proof by the principle of mathematical induction?

 2. What is proof by well-founded induction?

 3. What is proof by the second principle of mathematical induction?

Solved Problems
 1. Write an induction proof to show that the following equation holds for all n ∈ ℕ.

1 + 2 + 22 + ... + 2n = 2n+1 – 1.
 2. Write an inductive proof to show that the following statement is true for all natural

numbers n.
2 + 4 + ... + (2n) = n2 + n.

 3. Write an inductive proof to show that the following statement is true for all natural
numbers n ≥ 1.

!

2 + 2 " 3
2

+ 3 " 3
3

+ 4 " 3
4

+L+ n " 3
n

=
3
n+1
(2n #1) + 3

4
.

 4. Given the following program:
ƒ(n) = if n = 0 then 1 else (2n + 1) + ƒ(n – 1).

 Use inductive proof to show that ƒ(n) = (n + 1)2 for all n ∈ ℕ.

 5. Given the following recursive definition for the function ƒ:

ƒ(A, B) = if A = 〈 〉 then B else ƒ(tail(A), head(A) :: B).

 The fact that ƒ(A, 〈 〉) is the reverse of A follows from the more general statement
that “ƒ(A, B) = cat(reverse(A), B)”. Give an inductive proof to show that this state-
ment is true for all lists A and B.

 Chapter 4 39

Solutions
 1. If n = 0, the equation becomes 1 = 2 – 1, which is true. Assume that the equation is

true for n and prove that it is true for n + 1. Starting with the left side of the equa-
tion for n + 1, we have

!

1+ 2 +L+ 2n
+ 2n+1

= (1+ 2 +L+ 2n) + 2n+1

= 2n+1
"1+ 2n+1

= 2n+1+1
"1.

 The last term is the right side of the desired equation for n + 1. Therefore the origi-
nal equation is true for all n ∈ ℕ.

 2. If n = 0, the equation becomes 0 = 0 + 0, which is true. Assume that the equation is
true for n and prove that it is true for n + 1. Starting with the left side of the equa-
tion for n + 1, we have

!

2 + 4 +L+ 2n + 2(n +1) = (2 + 4 +L+ 2n) + 2(n +1)

= (n
2

+ n) + 2(n +1)

= n
2

+ 3n + 2

= (n
2

+ 2n +1) + (n +1)

= (n +1)2
+ (n +1).

 The last term is the right side of the desired equation for n + 1. Therefore the origi-
nal equation is true for all n ∈ ℕ.

 3. If n = 1, the equation becomes 3 = (32·1 + 3)/4, which is true. Assume that the equa-
tion is true for n and prove that it is true for n + 1. Starting with the left side of the
equation for n + 1, we have

!

(3+ 2 " 32
+ 3 " 33

+ 4 " 34
+L+ n3n) + (n +1)3n+1

=
3n+1(2n #1) + 3

4
+ (n +1)3n+1

=
3n+1(2n #1) + 3+ 4(n +1)3n+1

4

=
3n+1(6n + 3) + 3

4

=
3n+1+1(2n +1) + 3

4

=
3n+1+1(2(n +1) #1) + 3

4
.

 The last term is the right side of the desired equation for n + 1. Therefore the origi-
nal equation is true for all natural numbers n ≥ 1.

40 Chapter 4

 4. If n = 0, ƒ(0) = 1 = (0 + 1)2, which is true. Assume that ƒ(n) = (n + 1)2 and show
that ƒ(n + 1) = (n + 1 + 1)2. Starting with the definition of ƒ, we obtain

!

ƒ(n +1) = (2(n +1) +1) + ƒ((n +1) "1)

= 2n + 3+ ƒ(n)

= 2n + 3+ (n +1)2

= n
2 + 4n + 4

= (n + 2)2 = (n +1+1)2.

 Therefore, ƒ(n) = (n + 1)2 for all n ∈ ℕ.

 5. If we compare lists by their length, then they form a well-founded set with 〈 〉 as the
minimal element. Notice that the definition of ƒ uses its first argument as the active
member, so we’ll prove the statement by induction on the first argument of ƒ. If A =
〈 〉, then the definition of ƒ gives ƒ(〈 〉, B) = B for any list B. We know that reverse(〈
〉)= 〈 〉 and cat(〈 〉, B) = B, so we have ƒ(〈 〉, B) = cat(reverse(〈 〉), B). Now let A be a
nonempty list and assume that ƒ(X, B) = cat(reverse(X), B) for all lists X with fewer
elements than A and all lists B. Then the definition of ƒ gives ƒ(A, B) = ƒ(tail(A),
head(A) :: B). Since tail(A) has fewer elements than A, the induction assumption
implies that

ƒ(tail(A), head(A) :: B) = cat(reverse(tail(A)), head(A) :: B).

 From our knowledge of reverse and cat, it follows that a list can be reversed by re-
versing the tail and concatenating the result with the list consisting of the head. In
other words, we have

reverse(A) = cat(reverse(tail(A)), 〈head(A)〉).

 Therefore we have

 ƒ(tail(A), head(A) :: B) = cat(reverse(tail(A)), head(A) :: B)
 = cat(cat(reverse(tail(A)), 〈head(A)〉), B)

 = cat(reverse(A), B).
 Therefore ƒ(A, B) = cat(reverse(A), B) for all lists A and B.

41

Chapter 5
Analysis Techniques

5.1 Analyzing Algorithms
Learning Objectives
Be able to describe the meaning of worst case analysis of an algorithm.

Be able to find lower bounds on decision tree algorithms.

Review Questions
 1. How do you find the worst case running time for an algorithm?

 2. What does lower bound mean with respect to solving a problem?

 3. What does it mean to say an algorithm is optimal in the worst case?

 4. What is the meaning of the symbol WA?

 5. What is a decision tree for an algorithm?

Solved Problems
 1. A solution to a problem has x possible outcomes. An algorithm to solve the problem

has a binary decision tree of depth 6. What can the value of x be?
 2. A solution to a problem has 85 possible outcomes. An algorithm to solve the prob-

lem has an n-way decision tree of depth 4. What is the smallest value that n could
be?

 3. A solution to a problem has 87 possible outcomes. An algorithm A to solve the
problem has a ternary decision tree of depth d. What is the smallest value that d
could be?

 4. Find a good lower bound for the maximum number of weighings that are required
by any ternary pan balance algorithm to discover the bad coin among 15 coins,
where the one bad coin is either heavier or lighter than the other coins and where
the algorithm must state whether the coin is heavy or light.

42 Chapter 5

 5. Suppose that for a problem P we have discovered a worst-case lower bound of

!

n /3" #, which counts the number of times a procedure S is executed with respect to
an input n ∈ ℕ. Show that the following algorithm to solve P is optimal.

 i := 0;
 while i < n do
 S;
 i := i + 3
 od
 6. Suppose that for a problem P we have discovered a worst-case lower bound of

!

log2 n" #, which counts the number of times a procedure S is executed with respect
to an input n ∈ ℕ. Show that the following algorithm to solve P is optimal.

 i := 1;
 while i < n do
 S;
 i := 2i
 od
 7. Find an optimal pan balance algorithm to find a bad coin, if it exists, among six

coins, where at most one coin is bad, which means it is heavier or lighter than the
others.

Solutions
 1. Since there are x possible outcomes, there must be at least x leaves on the binary

decision tree of depth 6. Such a binary tree has at most 26 leaves, so we have x ≤ 26

 2. Since there are 85 possible outcomes, there must be at least 85 leaves in the n-way
decision tree of depth 4. Such a tree has at most n4 leaves. Therefore, we have 85 ≤
n4. Solving for n, we have ceiling(

!

85
4) ≤ n, which gives n ≥ 4.

 3. Since there are 87 possible outcomes, there must be at least 87 leaves in the ternary
decision tree of depth d. Such a tree has at most 3d leaves, so we have 87 ≤ 3d. Solv-
ing for d, we have ceiling(

!

log3 87) ≤ d, which gives d ≥ 5.

 4. Since there is one bad coin that could be either heavy or light, there are 30 possible
outcomes (each of 15 coins could be heavy or light). It follows that there must be at
least 30 leaves in the ternary decision tree that represents the pan balance algorithm.
Let d be the depth of the decision tree. Then the tree has at most 3d leaves, so we
have 30 ≤ 3d. Solving for d, we have ceiling(

!

log3 30) ≤ d, which gives d ≥ 4. There-
fore, four is a good lower bound for the maximum number of weighings required by
the algorithm.

 5. Notice that the body of the while loop is entered k + 1 times as i takes on the values
0, 3, 6, ..., 3k, where 3k < n ≤ 3(k + 1). Dividing by 3 we obtain k < n/3 ≤ k + 1. In
other words, we have k + 1 =

!

n / 3" #.

 Chapter 5 43

 6. Notice that the body of the while loop is entered k + 1 times as i takes on the values
1, 2, 4, ..., 2k, where 2k < n ≤ 2k+1. Taking

!

log2 we obtain k <

!

log2 n ≤ k + 1. There-
fore, k + 1 =

!

log2 n" #.

 7. First we’ll find a lower bound for the maximum number of weighings by a pan bal-
ance algorithm that is represented by a ternary decision tree. This can be found by
noticing that there are 13 possible outcomes (each of 6 coins heavy or light, and all
good coins). It follows that there must be at least 13 leaves in a ternary decision tree
of depth d that has a maximum of 3d leaves. In other words, we have 13 ≤ 3d, which
implies that d ≥ 3. So 3 is a lower bound for the depth of ternary decision trees to
solve the problem. An example optimal algorithm can be represented as follows,
where the coins are numbered 1, 2, 3, 4, 5, 6, and the possible outcomes are labeled
1H, 1L, ..., 6H, 6L, and OK (for no bad coins).

1, 2 3, 4

1, 2 5, 6 5 6 1, 2 5, 6

1 3 1 3 1 5 1 5 1 3 1 3

OK

1H 2H 3L 4L 6L 5H 5L 6H 4H 3H 2L 1L

5.2 Summations and Closed Forms
Learning Objectives
Be able to find closed forms for simple summations.

Be able to find approximate values for simple summations.

Review Questions
What does it mean to say an expression is in closed form?

What is a collapsing sum?

What is a simple way to find upper and lower bounds for a finite sum?

What is a harmonic number?

44 Chapter 5

Solved Problems
 1. Expand each expression into a sum of terms. Don’t evaluate.

 a.

!

(3k + 5)
k=0

3

" . b.

!

k2
k

k=2

4

" . c.

!

(4 " 3k)5k

k=1

3

.

 2. For each of the following summations find an equivalent summation expression that
starts with the lower limit of k = –1.

 a.

!

(3k + 5)
k=0

3

" . b.

!

k2
k

k=2

4

" . c.

!

(4 " 3k)5k

k=1

3

.

 3. For each of the following summations find an equivalent summation expression that
starts with that lower limit of k = 3.

 a.

!

(3k + 5)
k=0

3

" . b.

!

k2
k

k=2

4

" . c.

!

(4 " 3k)5k

k=1

3

.

 4. Find a closed form for each of the following sums.

 a.

!

5+10 +15+L+ 5n.
 b.

!

1+ 6 +11+L+ (5n +1).

 c.

!

5+10 + 20 +L+ 5 " 2
n
.

 5. Find a closed form for the following expression:

!

[3
k

+ (n " i)2k]
k=0

n

.

 6. Find a closed form, in terms of n, for the number of times S is executed in the fol-
lowing algorithm:

 for i := 1 to n do
 for j := i to n do
 S
 od
 od
 7. Given the following algorithm.
 i := 0;
 while i ≤ n do
 j := i;
 while j ≤ n do S; j := j + 1 od;
 i := i + 1
 od
 a. Find a closed form expression for the number of times, in terms of the natural

number n, that S is executed.
 b. Find a closed form expression for the number of times, in terms of the natural

number n, that the operation + is executed.

 Chapter 5 45

 c. Find a closed form expression for the number of times, in terms of the natural
number n, that := is executed.

 8. Given the following algorithm.
 i := 0;
 while i < n do
 j := i + 2;
 while j < n do S; j := j + 1 od;
 i := i + 1
 od

 a. Find a closed form expression for the number of times, in terms of the natural
number n, that S is executed.

 b. Find a closed form expression for the number of times, in terms of the natural
number n, that the operation + is executed.

 c. Find a closed form expression for the number of times, in terms of the natural
number n, that := is executed.

 9. Find bounds on the value of

!

k

k=1

n

" as indicated.

 a. Use the least value and the greatest value to obtain lower and upper bounds.
 b. Split the sum into two sums: a sum as k goes from 1 to

!

n /2" # and a sum as k
goes from

!

n /2" # + 1 to n. Then apply Part (a) to each sum.

 10. Find bounds on the value of

!

log2k
k=1

n

" as indicated in Parts (a) and (b) of Exercise 9.

 11. Find a closed form for

!

k /(k + 2)
k=1

n

" in terms of harmonic numbers.

Solutions
 1. a. (3·0 + 5) + (3·1 + 5) + (3·2 + 5) + (3·3 + 5).

 b. 2·22 + 3·23 +4·24.
 c. (4 – 3·1)51 + (4 – 3·2)52 + (4 – 3·3)53.

 2. a.

!

[3(k +1) + 5]
k="1

2

. b.

!

(k + 3)2
k+3

k="1

1

. c.

!

(4 " 3(k + 2))5
k+2

k="1

1

.

 3. a.

!

[3(k " 3) + 5]
k=3

6

. b.

!

(k "1)2k"1

k=3

5

. c.

!

(4 " 3(k " 2))5k"2

k=3

5

.

 4. a.

!

5k
k=1

n

" = 5 k

k=1

n

" =
5n(n +1)

2
.

 b.

!

(5k +1)
k=0

n

" = 5 k

k=0

n

" + 1
k=0

n

" =
5n(n +1)

2
+ (n +1) =

(n +1)(5n + 2)

2
.

46 Chapter 5

 c.

!

5 " 2k

k=0

n

= 5 2
k

k=0

n

= 5(2
n+1 $1).

 5.

!

[3
k

+ (n " k)2k]
k=0

n

= 3
k

k=0

n

+ n 2
k

k=0

n

" k2
k

k=0

n

#

=
3
n+1 "1

2
+ n(2

n+1 "1) " [2 " (n +1)2
n+1

+ n2
n+2
]

=
3
n+1 "1

2
+ n2

n+1 " n " 2 + n2
n+1

+ 2
n+1 " n2n+2

=
3
n+1 "1

2
" n " 2 + 2

n+1

=
3
n+1 " 2n+2 " 2n " 5

2
.

 6. The body of the outer loop is executed n times as i goes through the values 1, 2, ...,
n. For each of these values of i, the body of the inner loop, which contains S, is exe-
cuted n – i + 1 times, as j goes through the values i, i + 1, ..., n. Therefore the num-
ber of times S is executed is given by the following summation and closed form.

!

(n " i +1)
i=1

n

= (n +1)
n=1

n

" i

i=1

n

#

= n(n +1) "
n(n +1)

2

=
n(n +1)

2
.

 7. a. The body of the outer loop is executed n + 1 times as i goes through the values
0, 1, ..., n. For each of these values of i, the body of the inner loop, which con-
tains S, is executed n – i + 1 times, as j goes through the values i, i + 1, ..., n.
Therefore the number of times S is executed is given by the following summa-
tion and closed form.

!

(n " i +1)
i=0

n

= (n +1)
n=0

n

" i

i=0

n

#

= (n +1)2 "
n(n +1)

2

=
(n +1)(n + 2)

2
.

 b. Add n + 1 to the result of Part (a).
 c. Add 1 + 2(n + 1) to the result of Part (a).

 Chapter 5 47

 8. a. The body of the outer loop is executed n times as i goes through the values 0, 1,
..., n – 1. For each of these values of i, the body of the inner loop, which con-
tains S, is executed n – i – 2 times, as j goes through the values i + 2, i + 3, ..., n
– 1. Therefore the number of times S is executed is given by the following
summation and closed form:

!

(n " i " 2)
i=0

n"1

= (n " 2)
n=0

n"1

" i

i=0

n"1

#

= n(n " 2) "
n(n "1)

2

=
n(n " 3)

2
.

 b. Add 2n to the result of Part (a).

 c. Add 1 + 2n to the result of Part (a).

 9. a. The lower bound is n and the upper bound is n3/2.

 b. Since n =

!

n /2" #+ n /2$ %, there are

!

n /2" # terms in the second sum. So the lower
and upper bounds are

!

n /2" #+ n /2$ % n /2" #+1 and

!

n /2" # n /2" # + n /2$ % n .

 10. a. The lower bound is

!

n log2 and the upper bound is

!

n log2n .

 b. Since n =

!

n /2" #+ n /2$ %, there are

!

n /2" # terms in the second sum. So the lower
and upper bounds are

!

n /2" #log2 + n /2$ %log 2 n /2" #+1() and

!

n /2" #log 2 n /2" #() + n /2$ %log2n .

 11.

!

k

k + 2k=1

n

" = 1#
2

k + 2

$

%
&

'

(
)

k=1

n

" = n # 2
1

k + 2k=1

n

" = n # 2
1

kk=3

n+2

" = n # 2 H
n+2 #H2().

5.3 Permutations and Combinations
Learning Objectives
Be able to use elementary counting techniques to count simple finite structures that are
either ordered or unordered.

Review Questions
 1. What is a permutation?

 2. What is a permutation of a bag?

 3. What is a combination?

 4. What is a bag combination?

48 Chapter 5

 5. What is the meaning of each of the following symbols or expressions?

 a. P(n, r).

 b. C(n, r).

 c.

!

n

r

"

$
%

&
' .

 6. What is Pascal’s triangle?

Solved Problems
 1. For each of the following expressions, calculate the value expression and then write

down a typical problem whose answer is given by the expression.
 a. 7!. b. 23!/18!. c. C(4 + 6 – 1, 6). d. 10!/(2!3!4!).

 2. How many sets of 3 courses can be chosen from a set of 10 courses?
 3. Given a movie theater that shows 7 different movies each day, how many ways can

3 different movies be seen, one on each of three successive days?
 4. How many committees consisting of 4 people can be chosen from 15 people?

 5. How many different strings can be made by rearranging the letters of the word
“LETTERS”?

 6. How many different lists of length 8 can be made from the eight numbers in the set
{1, 2, 3, 4, 5, 6, 7, 8}, where each list contains all eight numbers?

 7. How many bags of 7 pieces of fruit can be chosen from a collection of bananas, ap-
ples, oranges, dates, and pears?

 8. Find the number of permutations of the letters in the word “radon” (i.e., in the set
{r, a, d, o, n}).

 9. Find the number of sets of five cans of soda that can be chosen from a machine that
dispenses four different kinds of soda.

 10. For each of the following restrictions, find the smallest size n for strings over {a, b,
c} that can be used as codes for 27 people.

 a. There are k a’s, l b’s, and m c’s and k + l + m = n.
 b. Same as Part (a) with the additional restriction that k = l = m.

 Chapter 5 49

Solutions
 1. a. 7! = 5,040. How many ways can seven people be arranged in a row?
 b. 23!/18! = 4,037,880. How many different arrangements of 5 people can be made

from a set of 23 people?
 c. C(4 + 6 – 1, 6) = 84. How many ways can six coins be selected from a collec-

tion of pennies, nickels, dimes, and quarters?
 d. 10!/(2!3!4!) = 12,600. How many ways can the letters in the string aabbbccccd

be arranged?
 2. C(10, 3) = 120.
 3. P(7, 3) = 210.

 4. C(15, 4).
 5. 7!/(2!2!).

 6. 8!.
 7. C(5 + 7 – 1, 7).

 8. 5!
 9. C(4 + 5 – 1, 5)

 10. a. The number of strings of length n over {a, b, c} that contain k a’s, l b’s, and m
c’s is given by n!/(k!l!m!). Solve the inequality n!/(k!l!m!) ≥ 27 for the smallest
n such that k + l + m = n. By trial and error, we obtain n = 5, where two of the
three numbers k, l, and m are 2 and the other one is 1.

 b. The number of strings of length n over {a, b, c} that contain k a’s, k b’s, and k
c’s is given by n!/3(k!). Solve the inequality n!/3(k!) ≥ 27 for the smallest n such
that 3k = n. Trial and error gives n = 6 and k = 2.

5.4 Discrete Probability
Learning Objectives
Be able to use discrete probability to solve simple problems.

Be able to describe the average-case analysis of an algorithm.

Review Questions
 1. What is a sample space?

 2. What is a probability distribution?

 3. What is an event?

50 Chapter 5

 4. What is the conditional probability of A given B?

 5. What are independent events?

 6. What is expectation?

 7. How do you find the average case running time for an algorithm?

 8. What is a Markov chain?

 9. What is the Monte Carlo method?

Solved Problems
 1. Write down a probability distribution for tossing an unfair die, where it lands with

the number 6 on top 25% of the time, and the other numbers are equally likely to be
on top.

 2. Suppose four fair coins are flipped. Find the probability of each event.
 a. Exactly three coins are heads.

 b. At most one coin is a head.
 c. At most three coins are heads.

 3. Suppose a pair of fair dice are tossed. Find the probability of each event.
 a. The sum of the dots is 9.

 b. The sum of dots is at most 4.
 c. The sum of dots is at least 5.

 4. When three fair dice are tossed, what is the probability that the sum of the dots is
10?

 5. Suppose that an unfair die is tossed. Let P(n) denote the probability that the number
of dots on top is n. Assume that P(2) = P(4) = P(6) = 1/4 and P(1) = P(3) = P(5) =
1/12. What is the expected number of dots on the top of the die?

 6. Let the set S = {I1, I2, ..., I8} represent 8 types of input to an algorithm. Suppose that
the inputs occur with the following probabilities:

P(I1) = P(I2) = P(I3) = P(I4) = 1/16, P(I5) = P(I6) = 1/8, P(I7) = P(I8) = 1/4.

 Suppose further that each input In causes the algorithm to execute 2n instructions.
What is the expected number of instructions executed by the algorithm?

 7. A faculty senate consists of 30 members of whom 20 are tenured. Of the 20 who are
tenured, 12 are women and 8 are men; of the 10 who are not tenured, 4 are women
and 6 are men. A senator is randomly chosen.

 a. What is the probability that the senator is a woman.

 Chapter 5 51

 b. Given the senator is tenured, what is the probability that the senator is a
woman?

 8. A new website with two pages, A and B, has been tested with volunteers. The re-
sults of the test show that when a person is on page A, the probability of clicking on
a link to stay on page A is 0.8 and the probability of clicking on a link to go to page
B is 0.2. When on page B, the probabilities of going to page A and page B are 0.6
and 0.4, respectively.

 a. Find the transition matrix P for this Markov chain.

 b. Find the unique fixed probability vector X for P.
 c. Assuming that a person is equally likely to start on page A or page B, what is the

probability that the first click on a link will put the person on page A? What is
the probability that after the second click on a link the person will be on page A?
What about after the third click on a link? After a large number of clicks, what
is the probability that the person will be on page A?

Solutions
 1. P(6) = 1/4 and P(1) = P(2) = P(3) = P(4) = P(5) = 3/20.

 2. Let H and T denote head and tail. Then we can denote the result of flipping the four
coins as a string of length 4 over the alphabet {H, T}. So there are 16 possible out-
comes, each with a probability of 1/16.

 a. There are 4 outcomes that contain exactly three heads, namely THHH, HTHH,
HHTH, and HHHT. So the probability of this event is 4(1/16) = 1/4.

 b. The event that at most one coin is a head has 5 outcomes, TTTT, HTTT, THTT,
TTHT, TTTH. So the probability of this event is 5(1/16) = 5/16.

 c. The event that at most three coins are heads is the complement of the event
{HHHH}, which has probability 1/16. So the event has probability 1 –
P(HHHH) = 1 – 1/16 = 15/16.

 3. The sample space has 36 possible outcomes where each outcome can be represented
by (i, j), where i and j are the number of dots on the top of the two dice. Since the
dice are fair, we have P(i, j) = 1/36.

 a. The event that the sum of the dots is 9 is the set {(3, 6), (4, 5), (5, 4), (6, 3)}. So
the probability of the event is 4(1/36) = 1/9.

 b. The event that the sum of the dots is at most 4 is the set

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.
 So the probability of the event is 6(1/36) = 1/6.

c. The event that the sum of the dots is at least 5 is the complement of the event
that the sum is at most 4, which is the set

{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.
 So the probability that the sum is at least 5 is 1 –1/6 = 5/6.

52 Chapter 5

 4. A sample space for the experiment contains all 3-tuples (i, j, k) where i, j, and k rep-
resent the number of dots on each die. So there are 63 = 216 points in the sample
space. Since the dice are fair, the probability of any 3-tuple is 1/216. Next we need
to find the number of points (i, j, k) such that i + j + k = 10. If we listed them all,
then we would be listing all permutations of each 3-tuple. For example, since 2 + 2
+ 6 = 10, we need to list the three permutations of the bag [2, 2, 6]. Instead, we’ll
list the distinct bags of three numbers that add up to 10, and then count of the num-
ber of permutations for each bag. Here are the bags, some of which are sets, fol-
lowed by the number of permutations.

 Bag Permutations
 [1, 3, 6] 3! = 6
 [1, 4, 5] 3! = 6
 [2, 2, 6] 3!/2! = 3
 [2, 3, 5] 3! = 6
 [2, 4, 4] 3!/2! = 3
 [3, 3, 4] 3!/2! = 3

 So the total number of 3-tuples is 27. Therefore the desired probability is 27/216 =
1/8.

 5. The expectation is the following sum of the products.

!

iP(i)
i=1

6

" = (2 + 4 + 6) 1
4() + (1+ 3+ 5) 1

12() = 3.75.

 6. The expectation is the following sum of the products.

!

2iP(I
i
)

i=1

8

" = 2 iP(I
i
)

i=1

8

"

= 2[(1+ 2 + 3+ 4) 1
16() + (5+ 6) 1

8() + (7 + 8) 1
4()]

=11.5.

 7. Let A be the event “is a woman” and let B be the event “is tenured”. Then the as-
sumptions give us the following cardinalities: |A| = 16, |B| = 20, and |A ∩ B| = 12.
Then we have the following solutions.

 a. P(A) = |A|/30 = 16/30 = 8/15.

 b. P(A|B) = P(A ∩ B)/P(B) = (12/30)/(20/30) = 3/5.

 8. a.

!

P =
0.8 0.2

0.6 0.4

"

$

%

&
' .

 b. Solve the equation XP = X for probability vector X to obtain X = (0.75, 0.25).

 c. The initial probability vector is X0 = (0.5, 0.5). So the first three answers are the
first components of the vectors X0P, X0P

2, and X0P
3. The last answer is the first

component of X. So we have the answers 0.7, 0.74, 0.748, 0.75.

 Chapter 5 53

5.5 Solving Recurrences
Learning Objectives
Be able to find closed form solutions for simple recurrences using the techniques of sub-
stitution, cancellation, and generating functions.

Review Questions
 1. What is a recurrence?

 2. What does it mean to solve a recurrence?

 3. What form of recurrence can be solved by substitution or cancellation?

 4. What is a divide-and-conquer recurrence?

 5. What is a generating function?

 6. How does one solve a recurrence with generating functions?

Solved Problems
 1. Solve the following recurrence for an by cancellation or substitution and write the

answer in closed form.

a1 = 1
an = 2an–1 + 9 (n ≥ 2).

 2. Solve the following recurrence for an by cancellation or substitution and write the
answer in closed form.

a0 = 1
an = 3an – 1 + 5 (n ≥ 1)

 3. Solve the following recurrence for an by cancellation or substitution and write the
answer in closed form.

a0 = 1
an = 3an – 1 + 7n (n ≥ 1)

 4. Given the following procedure P defined for all natural numbers n.
P(n): if n = 0 then
 C(0)
 else
 P(n – 1);
 C(n);
 P(n – 1)
 fi

54 Chapter 5

 Let an denote the number of times that a certain operation is executed during the
execution of P(n). Suppose that C(n) executes the operation 3n times. Write down a
recurrence to describe an. Then solve it.

 5. Suppose we have a recurrence whose nth term is an. Let

A(x) =

!

a
n
x

n

n=0

"

.

 For each of the following closed forms for A(x), find the corresponding closed form
for an.

 a.

!

1

1" dx
. b.

!

1

c " dx
. c.

!

b

c " dx
.

 6. Suppose we have a recurrence whose nth term is an. Let

A(x) =

!

a
n
x

n

n=0

"

.

 For each of the following closed forms for A(x), find the corresponding closed form
for an.

 a.

!

1

1+ x
. b.

!

1

1+ dx
. c.

!

1

c + dx
. d.

!

b

c + dx
.

 7. Suppose we have a recurrence whose nth term is an. Let

A(x) =

!

a
n
x

n

n=0

"

.

 For each of the following closed forms for A(x), find the corresponding closed form
for an.

 a.

!

1

(1+ x)2
. b.

!

b

(c + dx)2
. c.

!

b

c " dx

$
%

&

'
(

3

.

 8. Suppose we have a recurrence whose nth term is an. Let

A(x) =

!

a
n
x

n

n=0

"

.

 Suppose we have the following closed form for A(x).

A(x) =

!

2

3+ 4x
"

5

(6 " 7x)2
.

 Find the closed form for an.

 9. Given the following algorithm:
ƒ(n) = if n = 0 then 1
 else if n = 1 then 2
 else ƒ(n – 1) + ƒ(n – 2).

 Chapter 5 55

 Find a recurrence formula for each of the following conditions.
 a. The number of times that ƒ is called.

 b. The number of times that + is executed.
 10. Given the following recurrence:

a0 = 1
a1 = 2
an = 5an – 1 – 4an – 2 (n ≥ 2)

 Use the generating function technique to find a closed form for an.

 11. Find a closed form for the following divide-and-conquer recurrence, where n = 2k:

T(1) = 1
T(n) = 2T(n/2) + log2 n

Solutions
 1. 5·2n – 9.

 2. (7·3n – 5)/2.
 3. By using either cancellation or substitution we obtain the following expression for

an.

!

a
n

= 3n + 7 n + 3(n "1) + 32(n " 2) +L+ 3n"1()

= 3n + 7 3i(n " i)
i=0

n"1

#

= 3n + 7n 3i

i=0

n"1

" 7 i3i

i=0

n"1

#

= 3n + 7n
3n "1

2

$

%
&

'

(
) " 7

3" n3n + (n "1)3n+1

4

$

%
&

'

(
)

=
25 * 3n "14n " 21

4
.

 4. Since P(0) = C(0), we have a0 = 0. When n ≥ 0 the definition tells us that P(n) calls
P(n – 1) twice and C(n) once. Therefore an = 2an–1 + 3n. So the definition of an is
given by the recurrence

a0 = 0
an = 2an–1 + 3n for n ≥ 1.

 Using cancellation or substitution and summation formulas we obtain the following
closed form solution.

56 Chapter 5

!

a
n

= 3 n + 2(n "1) + 22(n " 2) +L+ 2n"1()

= 3 2i(n " i)
i=0

n"1

#

= 3n 2i

i=0

n"1

" 3 i2i

i=0

n"1

#

= 3n 2n "1() " 3 2 " n2n + (n "1)2n+1()
= 6 $ 2n " 3n " 6.

 5. a. an = dn. b.

!

a
n

=
1

c

"

$
%

&
'

d

c

"

$

%

&
'

n

. c.

!

a
n

=
b

c

"

$
%

&
'

d

c

"

$

%

&
'

n

.

 6. a. an = (–1)n. b. an = (–d)n. c.

!

a
n

=
1

c

"

$
%

&
' (

d

c

"

$

%

&
'

n

. d.

!

a
n

=
b

c

"

$
%

&
' (

d

c

"

$

%

&
'

n

.

 7. a. an = (n + 1)(–1)n. b.

!

a
n

=
b

c
2

"

$

%

&
' n +1()

(d

c

"

$

%

&
'

n

.

 c.

!

a
n

=
b

c

"

$
%

&
'

3

(n +1)(n + 2)

2

"

$

%

&
'

d

c

"

$

%

&
'

n

.

 8.

!

a
n

=
2

3

"

$
%

&
' (

4

3

"

$

%

&
'

n

(
5

36

"

$

%

&
' n +1()

7

6

"

$
%

&
'

n

.

 9. a. a0 = 1
a1 = 1
an = an–1 + an–2.

 b. a0 = 0
a1 = 0
an = 1 + an–1 + an–2

 10. Let A(x) =

!

a
n
x

n

n=0

"

. Then the general recurrence for an gives the following equation:

!

A(x) " 2x "1= 5x(A(x) "1) " 4x
2
A(x).

 Solving the equation for A(x) gives the following sequence of equations:

 Chapter 5 57

!

A(x) =
1" 3x

1" 5x + 4x
2

=
1" 3x

(1" x)(1" 4x)

=
2

3

1" x
+

1
3

1" 4x

= 2
3() x

n

n=0

#

$ + 1
3() (4x)n

n=0

#

$

= 2
3 + 1

3()4n()x
n.

n=0

#

$

 Therefore,

!

a
n

= 2

3
+ 1

3()4n =
2 + 4

n

3
.

 11. The recurrence fits the form given in (5.34), where a = b = 2 and ƒ(n) = log2 n.
Since n = 2k, we can use (5.35) to write T(n) as follows:

!

T(n) = 2kT(1) + 2i log2(n /2
i)

i=0

k"1

.

 We can find a closed form for T(n) by using properties of sums and logs together
with the given information that n = 2k and thus also k = log2 n.

!

T(n) = 2kT(1) + 2i log2(n /2
i)

i=0

k"1

#

= 2k + 2i(log2 n " log2 2
i)

i=0

k"1

#

= 2k + 2i(log2 n " i log2 2)
i=0

k"1

#

= 2k + 2i(k " i)
i=0

k"1

#

= 2k + k 2i (k " i)
i=0

k"1

#

= 2k + k 2i

i=0

k"1

" i2i

i=0

k"1

#

= 2k + k 2k "1() " 2 " k2k + (k "1)2k+1()
= 3 $ 2k " k " 2

= 3n " log2 n " 2.

58 Chapter 5

5.6 Comparing Rates of Growth
Learning Objectives
Be able to compare simple functions by rate of growth.

Review Questions
 1. What does it mean to say that the growth rate of ƒ is bounded above by the growth

rate of of g?

 2. What does it mean to say two functions have the same order?

 3. What does it mean to say ƒ has lower order than g?

 4. What is the meaning of each of the following expressions?

 a. O(ƒ).

 b. Ω(ƒ).

 c. Θ(ƒ).

 d. o(ƒ).

 5. What problems have solutions that can be approximated by the Akra-Bazzi method?

Solved Problems
 1. Prove that n2 = Θ(500n2).

 2. Prove that log(log n) = o((log n)2).
 3. Indicate the “order of growth” relationships between the following expressions by

listing them from lowest order to highest order. Also be sure to indicate expressions
having the same order by placing them in a set.

n2, n log(n2), 2(log n)2, log n, log(log n).
 4. Indicate the “order of growth” relationships between the following expressions by

listing them from lowest order to highest order. Also be sure to indicate expressions
having the same order by placing them in a set.

n2, n log n, 2n, log(n2), floor(n/2), (log n)2, 2n, log(log n).
 5. Prove each of the following statements.

 a. If 0 < k ≤ 1, then log(1 + k + k2 + … + kn) = O(log n).

 b. If k > 1, then log(1 + k + k2 + … + kn) = Θ(n).

 Chapter 5 59

 6. Find an approximation for each of the following divide and conquer recurrences,
where n is a power of 2 and T(1) = 1.

 a. T(n) = 2T(n/2) + 1.
 b. T(n) = 2T(n/2) + 3n.

 c. T(n) = 2T(n/2) + 5log n.

Solutions
 1. We can use the definition of big theta by observing, for example, the inequalities

(1/500)·500n2 ≤ n2 ≤ (1)·500n2 for all n ≥ 0. We could also look at the limit of the
quotient 500n2/n2 = 500, which is not 0 and not infinity. So (5.30) gives the result.

 2. For convenience, we can assume that base e is used for the logs. Then we can take
the limit of the quotients as follows:

!

lim
n"#

log(logn)

(logn)2
= lim

n"#

1 log n() 1 n()
2 log n n()

= lim
n"#

1

2(log n)2
= 0.

 Since the limit is zero, we obtain log(log n) = o((log n)2).

 3. log(log n), log n, 2(log n)2, n log(n2), n2.
 4. log(log n), log(n2), (log n)2, {2n, floor(n/2)}, n log n, n2, 2n.

 5. a. If 0 < k ≤ 1, then ki ≤ 1 for 0 ≤ i ≤ n. So we can write the following inequality:

!

log(1+ k + k
2

+L+ k
n) " log(1+1+1+L+1)

= log(n +1)

=O(logn).

 b. If k > 1, then log(k) > 0 and we have the following inequality.

!

n log(k) = log(k
n) " log(1+ k + k

2
+L+ k

n).

 For the other inequality, recall from the binomial theorem that

!

(1+ k)n
=1+ C(n,1)k + C(n,2)k 2

+L+ k
n.

 Since each C(n, i) ≥ 1, we have the inequality

!

(1+ k)n
"1+ k + k

2
+L+ k

n.

 Now apply the log to this inequality to obtain

!

log(1+ k + k
2

+L+ k
n) " log((1+ k)n) = n log(1+ k).

 So there are positive constants c = log k and d = log(1 + k) such that

!

cn " log(1+ k + k
2

+L+ k
n) " dn.

 Therefore,

!

log(1+ k + k
2

+L+ k
n) ="(n).

60 Chapter 5

 An alternative way to proceed is to use the formula for a geometric progression
to obtain

!

1+ k + k
2

+L+ k
n

=
k

n+1
"1

k "1
.

 Then show that the following limit is nonzero.

!

lim
n"#

log (k
n+1
$1) (k $1)()
n

.

 6. a. We can use the divide-and-conquer test (5.66). In this case, we have a = b = 2

and α = β = 0. So we have α < logb a. Therefore, T(n) = Θ(n).

 b. Again, we can use the test (5.66). In this case, we have a = b = 2, α = 1, and β =
0. So we have α = logb a. Since β > –1, it follows that T(n) = Θ(n log n).

 c. Again, we can use the test (5.66). In this case, we have a = b = 2, α = 0, and β =
1. So we have α < logb a. Therefore, T(n) = Θ(n).

61

Chapter 6
Elementary Logic

6.1 How Do We Reason?
Learning Objectives
Be able to describe the modus ponens rule, a non sequitur, and a calculus.

Review Questions
 1. What is the modus ponens rule?

 2. What is a non sequitur?

 3. What is a calculus?

Solved Problems
 1. How did you learn the modus ponens rule?
 2. How would you teach a dog the modus ponens rule?

6.2 Propositional Calculus
Learning Objectives
Be able to determine whether a wff is a tautology, a contradiction, or a contingency by
truth tables and by Quine’s method.

Be able to construct equivalence proofs.

Be able to transform truth functions and wffs into conjunctive or disjunctive normal form.

Review Questions
 1. What is the meaning of each of the following symbols or expressions?

 a. ¬ P.

 b. P

!

" Q.

62 Chapter 6

 c. P

!

" Q.

 d. P → Q.

 e. P ≡ Q.

 2. What is a wff in propositional calculus?

 3. What is the meaning of a wff?

 4. What is a tautology?

 5. What is a contradiction?

 6. What is a contingency?

 7. When are two wffs equivalent?

 8. What is Quine’s method?

 9. What is a truth function?

 10. What does DNF mean?

 11. What does CNF mean?

 12. What is full DNF?

 13. What is full CNF?

 14. What is a literal?

Solved Problems
 1. Find truth values for A, B, and C such that the wff (A → B) → C is not equivalent to

A → (B → C).

 2. Use Quine’s method to analyze the truth value of the following wff.
(A ∧ B → C) ∧ (A → B) → (A → C).

 3. Use Quine’s method to analyze the truth value of the following wff.

(A ∨ B) ∧ (A → C) ∧ (C → D) → (C ∨ D).

 Chapter 6 63

 4. Use equivalences to prove that the following wff is equivalent to True.
(A → B) → (¬ B → ¬ A).

 5. Find a propositional wff to represent the truth function ƒ defined by ƒ(A, B, C) is
true iff exactly two of A, B, and C have the same truth value.

 6. Find a conjunctive normal form (CNF) for the wff

(A ∧ B) ∨ (C ∧ D ∧ E).

 7. Find a disjunctive normal form (DNF) for the wff

(A → B) ∧ (C ∨ D).

 8. Construct a full DNF for P ∨ Q using equivalences.

 9. Construct a full CNF for the wff P ∧ Q using equivalences.

 10. Prove each of the following equivalences with equivalences.
 a. (A → B) ≡ ¬ (A ∧ ¬ B).

 b. (A → B) → (A → ¬ (B ∨ A)) ≡ A → ¬ B.

 c. (A → B) → (¬ (B ∧ C) → ¬ A) ≡ ¬ A ∨ ¬ B ∨ C.

 d. (A ∧ B → C) → (A ∧ C → B) ≡ A ∧ C → B.

Solutions
 1. One answer is A = False, C = False and B is either True or False.

 2. If W is the wff, then calculate W(C/True) and W(C/False) as follows:
 W(C/True) = (A ∧ B → True) ∧ (A → B) → (A → True)
 ≡ True ∧ (A → B) → True ≡ True.

 W(C/False) = (A ∧ B → False) ∧ (A → B) → (A → False)
 ≡ ¬ (A ∧ B) ∧ (A → B) → ¬ A.

 If U = W(C/False), then calculate U(A/True) and U(A/False) as follows:
 U(A/True) ≡ ¬ (True ∧ B) ∧ (True → B) → ¬ True
 ≡ ¬ B ∧ B → False ≡ False → False ≡ True.

 U(A/False) ≡ ¬ (False ∧ B) ∧ (False → B) → ¬ False
 ≡ ¬ False ∧ True → True ≡ True.

 Since all expressions evaluate to True, it follows that W is a tautology.

64 Chapter 6

 3. If W is the wff, then calculate W(C/True) and W(C/False) as follows:
 W(C/True) = (A ∨ B) ∧ (A → True) ∧ (True → D) → (True ∨ D) ≡ True.

 W(C/False) = (A ∨ B) ∧ (A → False) ∧ (False → D) → (False ∨ D)
 ≡ (A ∨ B) ∧ ¬ A ∧ True → D
 ≡ (A ∨ B) ∧ ¬ A → D.

 If U = W(C/False), then calculate U(D/True) and U(D/False) as follows:
 U(D/True) ≡ (A ∨ B) ∧ ¬ A → True ≡ True.

 U(D/False) ≡ (A ∨ B) ∧ ¬ A → False
 ≡ ¬ ((A ∨ B) ∧ ¬ A).

 If V = U(D/False), then calculate V(A/True) and V(A/False) as follows:

 V(A/True) ≡ ¬ ((True ∨ B) ∧ ¬ True)
 ≡ ¬ (True ∧ False) ≡ ¬ False ≡ True.

 V(A/False) ≡ ¬ ((False ∨ B) ∧ ¬ False)
 ≡ ¬ (B ∧ True) ≡ ¬ B.

 Since ¬ B can be true or false, it follows that W is a contingency.

 4. (A → B) → (¬ B → ¬ A) ≡ ¬ (A → B) ∨ (¬ B → ¬ A)
 ≡ ¬ (¬ A ∨ B) ∨ (¬ ¬ B ∨ ¬ A)
 ≡ (¬ ¬ A ∧ ¬ B) ∨ (B ∨ ¬ A)
 ≡ (A ∧ ¬ B) ∨ B ∨ ¬ A
 ≡ ((A ∨ B) ∧ (¬ B ∨ B)) ∨ ¬ A
 ≡ ((A ∨ B) ∧ True) ∨ ¬ A
 ≡ (A ∨ B) ∨ ¬ A
 ≡ (A ∨ ¬ A) ∨ B ≡ True ∨ B ≡ True.

 5. Notice that ƒ(A, B, C) is false iff A = B = C = True or A = B = C = False. So we can
construct a CNF of the following form:

ƒ(A, B, C) = (¬ A ∨ ¬ B ∨ ¬ C) ∧ (A ∨ B ∨ C) .

 6. (A ∧ B) ∨ (C ∧ D ∧ E)
 ≡ [(A ∧ B) ∨ C] ∧ [(A ∧ B) ∨ D] ∧ [(A ∧ B) ∨ E]
 ≡ (A ∨ C) ∧ (B ∨ C) ∧ (A ∨ D) ∧ (B ∨ D) ∧ (A ∨ E) ∧ (B ∨ E).

 7. (A → B) ∧ (C ∨ D) ≡ (¬ A ∨ B) ∧ (C ∨ D)
 ≡ [(¬ A ∨ B) ∧ C] ∨ [(¬ A ∨ B) ∧ D]
 ≡ (¬ A ∧ C) ∨ (B ∧ C) ∨ (¬ A ∧ D) ∨ (B ∧ D).

 8. P ∨ Q ≡ (P ∧ True) ∨ (Q ∧ True)
 ≡ (P ∧ (Q ∨ ¬ Q)) ∨ (Q ∧ (P ∨ ¬ P))
 ≡ (P ∧ Q) ∨ (P ∧ ¬ Q) ∨ (Q ∧ P) ∨ (Q ∧ ¬ P).

 Chapter 6 65

 9. P ∧ Q ≡ (P ∨ False) ∧ (Q ∨ False)
 ≡ (P ∨ (Q ∧ ¬ Q)) ∨ (Q ∨ (P ∧ ¬ P))
 ≡ (P ∨ Q) ∧ (P ∨ ¬ Q) ∧ (Q ∨ P) ∧ (Q ∨ ¬ P).

 10. a. ¬ (A ∧ ¬ B) ≡ ¬ A ∨ ¬ ¬ B ≡ ¬ A ∨ B ≡ A → B.

 b. (A → B) → (A → ¬ (B ∨ A))
 ≡ ¬ (A → B) ∨ (A → ¬ (B ∨ A))
 ≡ (A ∧ ¬ B) ∨ (¬ A ∨ ¬ (B ∨ A))
 ≡ (A ∧ ¬ B) ∨ (¬ A ∨ (¬ B ∧ ¬ A))
 ≡ (A ∧ ¬ B) ∨ ¬ A (absorption)
 ≡ ¬ B ∨ ¬ A (absorption)
 ≡ A → ¬ B.

 c. (A → B) → (¬ (B ∧ C) → ¬ A)
 ≡ ¬ (A → B) ∨ (¬ (B ∧ C) → ¬ A)
 ≡ (A ∧ ¬ B) ∨ (¬ (B ∧ C) → ¬ A)
 ≡ (A ∧ ¬ B) ∨ (¬ ¬ (B ∧ C) ∨ ¬ A)
 ≡ (A ∧ ¬ B) ∨ (B ∧ C) ∨ ¬ A
 ≡ ((A ∧ ¬ B) ∨ ¬ A) ∨ (B ∧ C)
 ≡ ((A ∨ ¬ A) ∧ (¬ B ∨ ¬ A)) ∨ (B ∧ C)
 ≡ (True ∧ (¬ B ∨ ¬ A)) ∨ (B ∧ C)
 ≡ ¬ B ∨ ¬ A ∨ (B ∧ C)
 ≡ ¬ A ∨ (¬ B ∨ (B ∧ C))
 ≡ ¬ A ∨ ((¬ B ∨ B) ∧ (¬ B ∨ C))
 ≡ ¬ A ∨ (True ∧ (¬ B ∨ C))
 ≡ ¬ A ∨ ¬ B ∨ C.

 d. (A ∧ B → C) → (A ∧ C → B)
 ≡ ¬ (A ∧ B → C) ∨ (A ∧ C → B)
 ≡ (A ∧ B ∧ ¬ C) ∨ (A ∧ C → B)
 ≡ (A ∧ B ∧ ¬ C) ∨ ¬ (A ∧ C) ∨ B
 ≡ (A ∧ B ∧ ¬ C) ∨ ¬ A ∨ ¬ C ∨ B
 ≡ (A ∨ ¬ A ∨ ¬ C ∨ B) ∧ (B ∨ ¬ A ∨ ¬ C ∨ B) ∧ (¬ C ∨ ¬ A ∨ ¬ C ∨ B)
 ≡ True ∧ (B ∨ ¬ A ∨ ¬ C) ∧ (¬ C ∨ ¬ A ∨ B)
 ≡ B ∨ ¬ A ∨ ¬ C
 ≡ B ∨ ¬ (A ∧ C)
 ≡ A ∧ C → B.

66 Chapter 6

6.3 Formal Reasoning
Learning Objectives
Be able to describe the proof rules used in propositional calculus.

Be able to use the proof rules to write formal proofs.

Review Questions
 1. What is a proof (or derivation)?

 2. What is the conjunction rule?

 3. What is the simplification rule?

 4. What is the addition rule?

 5. What is the disjunctive syllogism rule?

 6. What is the modus ponens rule?

 7. What is the conditional proof rule?

 8. What is the double negation rule?

 9. What is the contradiction rule?

 10. What is the indirect proof rule?

 11. What is the modus tollens rule?

 12. What is the cases rule?

 13. What is the hypothetical syllogism rule?

 14. What is the constructive dilemma rule?

 15. What is the destructive dilemma rule?

 Chapter 6 67

Solved Problems
 1. Give a formal proof for each of the following tautologies by using CP. Do not use

IP and do not use T.

 a. (A ∨ B) → (¬ B → A).

 b. A ∧ (B → ¬ A) ∧ (¬ B → C) → C.

 c. (¬ A ∨ ¬ B) ∧ (B ∨ C) ∧ (¬ C ∨ D) → (A → D).

 2. Give a formal proof for each of the following tautologies by using CP and by using
IP at least once in each proof. Do not use T.

 a. (A → B ∧ C) ∧ ¬ B → ¬ A.

 b. (B → A) → (A ∨ B → A).

 c. (A → B) → (¬ (B ∧ C) → ¬ (C ∧ A)).

 d. (¬ A ∨ ¬ B) ∧ (B ∨ C) ∧ (¬ C ∨ D) → (A → D).

Solutions
 1. a. 1. A ∨ B P
 2. ¬ B P [for ¬ B → A]
 3. A 1, 2, DS
 4. ¬ B → A 2, 3, CP
 QED 1– 4, CP.

 b. 1. A P
 2. B → ¬ A P
 3. ¬ B → C P
 4. ¬ ¬ A 1, DN
 5. ¬ B 2, 4, MT
 6. C 3, 5, MP
 QED 1–6, CP

 c. 1. ¬ A ∨ ¬ B P
 2. B ∨ C P
 3. ¬ C ∨ D P
 4. A P [for A → D]
 5. ¬ B 1, 4, DS
 6. C 2, 5, DS
 7. D 3, 6, DS
 8. A → D 4–7, CP
 QED 1–3, 8, CP.

68 Chapter 6

 2. a. 1. A → B ∧ C P
 2. ¬ B P
 3. ¬ ¬ A P [for ¬ A]
 4. A 3, DN
 5. B ∧ C 1, 4, MP
 6. B 5, Simp
 7. False 2, 6, Contr
 8. ¬ A 3–7, IP
 QED 1, 2, 8, CP.

 b. 1. B → A P
 2. A ∨ B P [for A ∨ B → A]
 3. ¬ A P [for A]
 4. B 2, 3, DS
 5. A 1, 4, MP
 6. False 3, 6, Contr
 7. A 3–6, IP
 8. A ∨ B → A 2, 7, CP
 QED 1, 8, CP.

 c. 1. A → B P
 2. ¬ (B ∧ C) P [for ¬ (B ∧ C) → ¬ (C ∧ A)]
 3. ¬ ¬ (C ∧ A) P [for ¬ (C ∧ A)]
 4. C ∧ A 3, DN
 5. A 4, Simp
 6. B 1, 5, MP
 7. C 4, Simp
 8. B ∧ C 6, 7, Conj
 9. False 9, Contr
 10. ¬ (C ∧ A) 3–10, IP
 11. ¬ (B ∧ C) → ¬ (C ∧ A) 2, 10, CP
 QED 1, 11, CP.
 d. 1. ¬ A ∨ ¬ B P
 2. B ∨ C P
 3. ¬ C ∨ D P
 4. A P [for A → D]
 5. ¬ D P [for D]
 6. ¬ C 3, 5, DS
 7. B 2, 6, DS
 8. ¬ ¬ B 7, DN
 9. ¬ A 1, 8, DS
 10. False 4, 9, Contr
 11. D 5–10, IP
 12. A → D 4, 11, CP
 QED 1–3, 12, CP.

 Chapter 6 69

6.4 Formal Axiom Systems
Learning Objectives
Be able to describe the Frege-Lukasiewicz axiom system.

Review Questions
 1. What does it mean to say a formal reasoning system is sound?

 2. What does it mean to say a formal reasoning system is complete?

 3. How can you be sure that a system is sound?

 4. What is an example of a small axiomatic system for the propositional calculus that
is sound and complete?

Solved Problems
 1. Suppose we are given the following three axioms, where A → B is an abbreviation

for ¬ (A ∧ ¬ B).

 Axiom 1: A → (A ∧ A).

 Axiom 2: (A ∧ A) → A.

 Axiom 3: (A → B) → (¬ (B ∧ C) → ¬ (C ∧ A)).

 Use this axiom system (due to Rosser) to prove each of the following statements
without using CP. You may use MP and any statements in the list to prove subse-
quent statements.

 a. If A → B and B → C are theorems, then ¬ (¬ C ∧ A) is a theorem.

 b. ¬ (¬ A ∧ A).

 c. ¬ ¬ A → A.

 d. ¬ (A ∧ B) → (B → ¬ A).

 e. A → ¬ ¬ A.

 f. (A → B) → (¬ B → ¬ A).

70 Chapter 6

Solutions
 1. a. 1. A → B P
 2. B → C P
 3. (A → B) → (¬ (B ∧ ¬ C) → ¬ (¬ C ∧ A)) Axiom 3
 4. ¬ (B ∧ ¬ C) → ¬ (¬ C ∧ A) 1, 3, MP
 5. ¬ (B ∧ ¬ C) 2, Abbreviation
 6. ¬ (¬ C ∧ A) 4, 5, MP
 QED.

 b. 1. A → (A ∧ A) Axiom 1
 2. (A ∧ A) → A Axiom 2
 3. ¬ (¬ A ∧ A) 1, 2, Part (a)
 QED.
 c. 1. ¬ (¬ ¬ A ∧ ¬ A) Part (b)
 2. ¬ ¬ A → A 1, Abbreviation
 QED.

 d. 1. ¬ ¬ A → A Part (c)
 2. (¬ ¬ A → A) → (¬ (A ∧ B) → ¬ (B ∧ ¬ ¬ A)) Axiom 3
 3. ¬ (A ∧ B) → ¬ (B ∧ ¬ ¬ A) 1, 2, MP
 4. ¬ (A ∧ B) → (B → ¬ A) 3, Abbreviation
 QED.

 e. 1. ¬ (¬ A ∧ A) Part (b)
 2. ¬ (¬ A ∧ A) → (A → ¬ ¬ A) Part (d)
 3. A → ¬ ¬ A 1, 2, MP
 QED.
 f. 1. ¬ (A ∧ ¬ B) → (¬ B → ¬ A) Part (d)
 2. (A → B) → (¬ B → ¬ A) 1, Abbreviation
 QED.

71

Chapter 7
Predicate Logic

7.1 First-Order Predicate Calculus
Learning Objectives
Be able to determine whether a wff is valid, invalid, satisfiable, or unsatisfiable.

Review Questions
 1. What is a predicate?

 2. What is an atom?

 3. What is the meaning of each of the following symbols or expressions?

 a.

!

"x.

 b.

!

"x.

 c. W(x/t).

 d. x/t .

 e. W(x).

 4. What is a wff?

 5. What is the scope of a quantifier?

 6. What is a bound variable?

 7. What is a free variable?

 8. What is an interpretation?

 9. What is a model?

72 Chapter 7

 10. What is a countermodel?

 11. What does valid mean?

 12. What does invalid mean?

 13. What does satisfiable mean?

 14. What does unsatisfiable mean?

Solved Problems
 1. Write down the propositional wff obtained by interpreting the following wff over

the domain {a, b}.
∃x ∀y (p(x) → q(y)).

 2. Each of the following expressions represents an interpretation of a wff over the do-
main ℕ. In each case, write down the original wff.

 a. p(0, 0) ∧ p(1, 0) ∧ p(2, 0) ∧

 b. p(0, 0) ∨ p(0, 1) ∨ p(0, 2) ∨

 3. Find examples of wffs with the given properties.

 a. The variable x has three bound occurrences and one free occurrence.
 b. The variable x has four bound occurrences and the variable y has two bound oc-

currences and one free occurrence.
 4. Find a countermodel for the following wff.

[∀x ∀y A(x, y) → ∀x ∀y B(x, y)] → ∀x ∀y (A(x, y) → B(x, y)).

 5. Give an informal argument to show that the following wff is unsatisfiable.

∃x ∀y (¬ p(x, x) ∧ p(x, y)).

 6. Given the wff
∀x ∃y (p(ƒ(x, y), y) ∧ ¬ p(y, x)).

 a. Find a model for the wff.
 b. Find a countermodel for the wff.

 7. Let W denote the following wff.
∀x (p(x, x) → ∃y p(x, y)).

 a. Give a direct proof that W is valid.
 b. Give an indirect proof that W is valid.

 Chapter 7 73

Solutions
 1. [(p(a) → q(a)) ∧ (p(a) → q(b)] ∨ [(p(b) → q(a) ∧ (p(b) → q(b))].

 2. a. ∀x p(x, a). b. ∃x p(a, x).

 3. a. For example, ∃x p(x, x) → q(x).

 b. For example, ∃x ∀y (p(x, x) → q(x, y)) ∧ r(y).

 4. Let the domain be D = {a, b}. Let A(a, a) = True and A(a, b) = A(b, a) = A(b, b) =
False. Let B(x, y) = False for all x, y ∈ D. Then ∀x ∀y A(x, y) is false, ∀x ∀y B(x, y)
is false, and since A(a, a) → B(a, a) is false, it follows that ∀x ∀y (A(x, y) → B(x,
y)) is false. So the interpreted wff becomes

(False → False) → False ≡ True → False ≡ False.

 5. Assume, by way of contradiction, that the wff is satisfiable. Then there is some
model for the wff, say with domain D. This implies that there is an element d ∈ D
such that ∀y (¬ p(d, d) ∧ p(d, y)) is true. But we know that ¬ p(d, d) ∧ p(d, d) is
false. So ∀y (¬ p(d, d) ∧ p(d, y)) must be false. This contradiction tells us that the
original wff is unsatisfiable.

 6. a. For example, let D = {a, b, c}, let ƒ(x, y) = x for all x, y ∈ D, let p(a, b) = p(b, c)
= p(c, a) = True, let p(b, a) = p(c, b) = p(a, c) = False, and let p(a, a), p(b, b),
and p(c, c) have arbitrary truth values.

 b. For example, over any domain D, and any definition of ƒ, let p(x, y) = True for
all x, y ∈ D.

 7. a. Let I be an interpretation with domain D for W. Let x ∈ D and consider the wff
p(x, x) → ∃y p(x, y). If p(x, x) is false, then this wff is vacuously true. If p(x, x)
is true, then ∃y p(x, y) is also true because we can pick y = x. So the wff p(x, x)
→ ∃y p(x, y) is true. Since x was an arbitrary element of D, it follows p(x, x) →
∃y p(x, y) for all x ∈ D. Therefore W is true for I. Thus I is a model for W. Since
I was arbitrary, it follows that every interpretation of W is a model. So W is
valid.

 b. Assume, by way of contradiction, that W is invalid. Then there is an interpreta-
tion I with domain D such that I is a countermodel for W. So there is some d ∈
D such that p(d, d) → ∃y p(d, y) is false. This means that p(d, d) is true and ∃y
p(d, y) is false. But the fact that p(d, d) is true implies that ∃y p(d, y) is true by
letting y = d. So we have a contradiction, namely that ∃y p(d, y) is true and false.
Therefore W is valid.

74 Chapter 7

7.2 Equivalent Formulas
Learning Objectives
Be able to construct equivalence proofs and transform first-order wffs into prenex con-
junctive or disjunctive normal form.

Be able to transform simple English sentences into formal logic.

Review Questions
 1. What does it mean to say two wffs are equivalent?

 2. What is the universal closure of a wff?

 3. What is the existential closure of a wff?

 4. What is a literal?

 5. What is renaming?

 6. What is a prefix normal form?

Solved Problems
 1. Find a prenex conjunctive normal form for the following wff.

∀x ∃y (p(x, y) ∨ q(x, y)) → ∃y ∀x (p(x, y) → q(x, y)).

 2. Find a prenex disjunctive normal form for the following wff.

∀y [∃x (p(x, y) → ∃x q(x)) → ∃x (p(x, y) ∧ q(x))].

 3. Let s(x) mean x is a senator, let p(x) mean x is a politician, and let e(x) mean x is
ethical. Find a wff to describe each sentence over the domain of people.

 a. Some senators are ethical.

 b. Not all senators are ethical.
 c. All senators are politicians.

 d. No politician is a senator.

 Chapter 7 75

 4. Let c(x) mean x is a criminal, let r(x) mean x is rich, and let s(x) mean x is sane.
Find a wff to describe each sentence over the domain of people.

 a. Every criminal is rich.
 b. Some criminals are sane.

 c. Some criminals are neither rich nor sane.
 d. Not all criminals are sane.

 5. Let g(x, y, z) mean that z is the greatest common divisor of x and y, and let l(x, y, z)
mean that z is the least common multiple of x and y. Let p(x) mean x is positive.
Formalize the following statement.

 Any pair of positive natural numbers has a greatest common divisor and a least
common multiple.

Solutions
 1. First, rename quantifier variables to have distinct names:

∀x ∃y (p(x, y) ∨ q(x, y)) → ∃u ∀v (p(v, u) → q(v, u)).

 Next, remove implications:

¬ ∀x ∃y (p(x, y) ∨ q(x, y)) ∨ ∃u ∀v (¬ p(v, u) ∨ q(v, u)).

 Next, move negations to the right;

∃x ∀y (¬ p(x, y) ∧ ¬ q(x, y)) ∨ ∃u ∀v (¬ p(v, u) ∨ q(v, u)).

 Next, move quantifiers to the left:

∃x ∀y ∃u ∀v [(¬ p(x, y) ∧ ¬ q(x, y)) ∨ (¬ p(v, u) ∨ q(v, u))].

 Next, distribute ∨ over ∧ to obtain a prenex conjunctive normal form:

∃x ∀y ∃u ∀v [(¬ p(x, y) ∨ ¬ p(v, u) ∨ q(v, u))

∧ (¬ q(x, y) ∨ ¬ p(v, u) ∨ q(v, u))].

 2. First, rename quantifier variables to have distinct names:

∀y [∃x (p(x, y) → ∃u q(u)) → ∃v (p(v, y) ∧ q(v))].

 Next, remove implications:

∀y [¬ ∃x (¬ p(x, y) ∨ ∃u q(u)) ∨ ∃v (p(v, y) ∧ q(v))].

 Next, move negations to the right:
∀y [∀x (p(x, y) ∧ ∀u ¬ q(u)) ∨ ∃v (p(v, y) ∧ q(v))].

 Next, move quantifiers to the left:
∀y ∀x ∀u ∃v [(p(x, y) ∧ ¬ q(u)) ∨ (p(v, y) ∧ q(v))].

 The wff is in the desired prenex disjunctive normal form:

76 Chapter 7

 3. a. ∃x (s(x) ∧ e(x)).

 b. ¬ ∀x (s(x) → e(x)) ≡ ∃x (s(x) ∧ ¬ e(x)).

 c. ∀x (s(x) → p(x)).

 d. ∀x (p(x) → ¬ s(x)) ≡ ¬ ∃x (p(x) ∧ s(x)).

 4. a. ∀x (c(x) → r(x)).

 b. ∃x (c(x) ∧ s(x)).

 c. ∃x (c(x) ∧ ¬ r(x) ∧ ¬ s(x)).

 d. ¬ ∀x (c(x) → s(x)) ≡ ∃x (c(x) ∧ ¬ s(x)).

 5. ∀x ∀y (p(x) ∧ p(y) → ∃u ∃v (g(x, y, u) ∧ l(x, y, v))).

7.3 Formal Proofs in Predicate Calculus
Learning Objectives
Be able to describe the proof rules for quantifiers.

Be able to use the quantifier rules along with the basic proof rules to write formal proofs
in first-order predicate calculus.

Review Questions
 1. What is the universal instantiation rule?

 2. What is the existential generalization rule?

 3. What is the existential instantiation rule?

 4. What is the universal generalization rule?

Solved Problems
 1. Quantifiers cannot be removed and replaced all the time without restrictions. Dem-

onstrate this by constructing an incorrect proof for each of the following statements
by applying a quantifier proof rule without regard to the restrictions on its use.

 a. p(x) → ∀x p(x).

 b. ∀x ∃y p(x, y) → ∃y ∀x p(x, y).

 c. ∃x p(x) → ∀x p(x).

 d. ∃x ∃y p(x, y) → ∃x p(x, x).

 e. ∀x ∃y p(x, y) → ∃y p(y, y).

 Chapter 7 77

 2. Give a formal proof that the following wff is valid.
∀x ∀y (A(x, y) → B(x, y)) → [∀x ∀y A(x, y) → ∀x ∀y B(x, y)].

 3. Give a formal proof that the following wff is valid.

[∀x (A(x) ∧ B(x) → C(x))] → [∀x A(x) ∧ ∀x B(x) → ∀x C(x)].

 4. Give a formal direct proof that the following wff is valid.

∃x (p(x) ∨ q(x)) → ∃x p(x) ∨ ∃x q(x).

 Hint: The constructive dilemma proof rule (CD) may come in handy.

 5. Give a formal direct proof that the following wff is valid.
∃x p(x) ∨ ∃x q(x) → ∃x (p(x) ∨ q(x)).

 Hint: The constructive dilemma proof rule (CD) may come in handy.

Solutions
 1. a. 1. p(x) P
 2. ∀x p(x) 1, UG

 This proof is incorrect because x is free in the premise on line 1. Therefore line
2 cannot be inferred from line 1 by UG.

 b. 1. ∀x ∃y p(x, y) P
 2. ∃y p(x, y) 1, UI
 3. p(x, c) 2, EI
 4. ∀x p(x, c) 3, UG
 5. ∃y ∀x p(x, y) 4, EG

 This proof is incorrect because x is free in p(x, c) on line 3, which is inferred by
EI. Therefore line 4 cannot be inferred from line 3 by UG.

 c. 1. ∃x p(x) P
 2. p(x) 1, EI
 3. ∀x p(x) 2, UG

 This proof is incorrect because p(x) on line 2 is inferred from ∃x p(x) by EI,
which can only create constants.

 d. 1. ∃x ∃y p(x, y) P
 2. ∃y p(c, y) 1, EI
 3. p(c, c) 2, EI
 4. ∃x p(x, x) 3, EG

 This proof is incorrect because p(c, c) on line 3 is inferred from the wff ∃y p(c,
y) by EI, which must create a new constant other than c.

78 Chapter 7

 e. 1. ∀x ∃y p(x, y) P
 2. ∃y p(y, y) 1, UI

 This proof is incorrect because y is not free to replace x on line 1. Therefore UI
cannot be used to replace x by y on line 2.

 2. 1. ∀x ∀y (A(x, y) → B(x, y)) P
 2. A(x, y) → B(x, y) 1, UI, UI
 3. ∀x ∀y A(x, y) P [for ∀x ∀y A(x, y) → ∀x ∀y B(x, y)]
 4. A(x, y) 3, UI, UI
 5. B(x, y) 2, 4, MP
 6. ∀x ∀y B(x, y) 5, UG, UG
 7. ∀x ∀y A(x, y) → ∀x ∀y B(x, y) 3–6, CP
 QED 1, 2, 7, CP.

 3. 1. ∀x (A(x) ∧ B(x) → C(x)) P
 2. A(x) ∧ B(x) → C(x) 1, UI
 3. ∀x A(x) ∧ ∀x B(x) P [for ∀x A(x) ∧ ∀x B(x) → ∀x C(x)]
 4. ∀x A(x) 2, Simp
 5. A(x) 4, UI
 6. ∀x B(x) 2, Simp
 7. B(x) 6, UI
 8. A(x) ∧ B(x) 5, 7, Conj
 9. C(x) 2, 8, MP
 10. ∀x C(x) 9, UG
 11. ∀x A(x) ∧ ∀x B(x) → ∀x C(x) 3–10, CP
 QED 1, 2, 11, CP.

 4. 1. ∃x (p(x) ∨ q(x)) P
 2. p(c) ∨ q(c) 1, EI
 3. p(c) P[for p(c) → ∃x p(x)]
 4. ∃x p(x) 3, EG
 5. p(c) → ∃x p(x) 3, 4, CP
 6. q(c) P [for q(c) → ∃x q(x)]
 7. ∃x q(x) 6, EG
 8. q(c) → ∃x q(x) 6, 7, CP
 9. ∃x p(x) ∨ ∃x q(x) 2, 5, 8, CD
 QED 1, 2, 5, 8, 9, CP.

 Chapter 7 79

 5. 1. ∃x p(x) ∨ ∃x q(x) P
 2. ∃x p(x) P [for ∃x p(x) → ∃x (p(x) ∨ q(x))]
 3. p(c) 2, EI
 4. p(c) ∨ q(c) 3, Add
 5. ∃x (p(x) ∨ q(x)) 4, EG
 6. ∃x p(x) → ∃x (p(x) ∨ q(x)) 2–5, CP
 7. ∃x q(x) P [for ∃x q(x) → ∃x (p(x) ∨ q(x))]
 8. q(c) 7, EI
 9. p(c) ∨ q(c) 8, Add
 10. ∃x (p(x) ∨ q(x)) 9, EG
 11. ∃x q(x) → ∃x (p(x) ∨ q(x)) 7–10, CP
 12. ∃x (p(x) ∨ q(x)) 1, 6, 11, Cases
 QED 1, 6, 11, 12, CP.

80

Chapter 8
Applied Logic

8.1 Equality
Learning Objectives
Be able to write formal proofs in first-order predicate calculus with equality.

Review Questions
 1. What is a first-order theory with equality?

 2. What is the equality axiom?

 3. What is EE rule for predicates?

 4. What is EE rule for functions?

 5. What is the general EE rule?

Solved Problems
 1. Give a formal proof that the following wff is valid in a first-order theory with equal-

ity.

∃x ((x = a[k]) ∧ (a[x] = t)) → (a[a[k]] = t).

 2. Give a formal proof that the following wff is valid in a first-order theory with equal-
ity.

(a[a[k]] = a[b[j]]) → ∃x ∃y ((x = a[k]) ∧ (y = b[j]) ∧ (a[x] = a[y])).

 3. Prove that p(x, y) ≡ ∀u ∀v ((x = u) ∧ (y = v) → p(u, v)) by giving formal proofs that
the following two wffs are valid in a first-order theory with equality.

 a. p(x, y) → ∀u ∀v ((x = u) ∧ (y = v) → p(u, v))

 b. ∀u ∀v ((x = u) ∧ (y = v) → p(u, v)) → p(x, y).

 Chapter 8 81

 4. Formalize the definition of each of the following predicates in terms of properties of
integers.

 a. lcm(x, y, m) means m is the least common multiple of x and y.
 b. prime(x) means x is a prime number.

Solutions
 1. 1. ∃x ((x = a[k]) ∧ (a[x] = t)) P
 2. (c = a[k]) ∧ (a[c] = t) 1, EI
 3. a[a[k]] = t 2, EE
 QED 1–3, CP.

 2. 1. a[a[k]] = a[b[j]] P
 2. ∀x ∀y((x ≠ a[k]) ∨ (y ≠ b[j]) ∨ (a[x] ≠ a[y])) P [for IP]
 3. (a[k] ≠ a[k]) ∨ (b[j] ≠ b[j]) ∨ (a[a[k]] ≠ a[b[j]]) 2, UI, UI
 4. a[k] = a[k] EA
 5. b[j] = b[j] EA
 6. a[a[k]] ≠ a[b[j]] 3, 4, 5, DS, DS
 7. False 1, 6, Contr
 8. ∃x ∃y ((x = a[k]) ∧ (y = b[j]) ∧ (a[x] = a[y])) 2–7, IP
 QED 1, 8, CP.

 3. a. 1. p(x, y) P
 2. (x = u) ∧ (y = v) P [for (x = u) ∧ (y = v) → p(u, v)]
 3. p(u, v) 1, 2, EE
 4. (x = u) ∧ (y = v) → p(u, v) 2, 3, CP
 5. ∀u ∀v ((x = u) ∧ (y = v) → p(u, v)) 4, UG, UG
 QED 1, 4, 5, CP.

 b. 1. ∀u ∀v ((x = u) ∧ (y = v) → p(u, v)) P
 2. (x = x) ∧ (y = y) → p(x, y) 1, UI, UI
 3. (x = x) ∧ (y = y) EA, EA, Conj
 4. p(x, y) 2, 3, MP
 QED 1–4, CP.

 4. a. lcm(x, y, m) = div(x, m) ∧ div(y, m) ∧ ∀u (div(x, u) ∧ div(y, u) → div(m, u)),

 where div(u, v) = (u ≠ 0) ∧ ∃w (v = uw).

 b. prime(x) = (x > 1) ∧ ∀u (div(u, x) → (u = 1) ∨ (u = x)),

 where div(u, v) = (u ≠ 0) ∧ ∃w (v = uw).

82 Chapter 8

8.2 Program Correctness
Learning Objectives
Be able to construct partial correctness proofs for elementary imperative programs.

Be able to construct termination proofs for simple loops.

Review Questions
 1. What is the meaning of the expression {P} S {Q}?

 2. What is a Hoare triple?

 3. What does it mean to say that {P} S {Q} is correct?

 4. What is the AA axiom?

 5. What is the composition rule?

 6. What is the consequence rule?

 7. What is the if-then rule?

 8. What is the if-then-else rule?

 9. What is the while rule?

 10. What is a loop invariant?

 11. What is a precondition?

 12. What is a postcondition?

 13. What is the AAA axiom?

 14. What are the steps to show that a while-loop terminates?

Solved Problems
 1. Prove the correctness of the following wff.

{(a > 0) ∧ (b > 0)} x := a – 2; y := b – 2 {(x – y) = (a – b)}.

 Chapter 8 83

 2. Prove the correctness of the following wff.
{∃x (y = 2x + 1)} y := y + 1 {∃x (y = 2x)}.

 3. Prove the correctness of the following wff, where q(x) means x is an integer and
odd and even are tests for the oddness and eveness of an integer.

{q(x) ∧ q(y)}
if even(x – y) then x := x + 1 else y := y – 2 fi
{odd(x – y)}.

 4. Given the following wff, where p(x) means that x is a positive integer:
{p(x) ∧ p(y)}
while x > y do x := x – y od
{p(x) ∧ p(y) ∧ (x ≤ y)}

 Prove that the program is correct for the loop invariant p(x) ∧ p(y).

 5. Prove the correctness of the following program with respect to the loop invariant
P = (m = 2n) ∧ (n ≤ k),

 where we assume that all variables take integer values.
while n < k do m := 2 ∗ m; n := n + 1 od

 6. Complete the following partial wff by applying the array assignment axiom to find
the precondition.

{ } a[i] := 39 {a[j] = 39}.
 7. Prove the correctness of the following wff.

{(i = j) ∧ (a[i] = 2)} a[j] := 5 {a[i] = 5}.

 8. Prove the correctness of the following wff.

{a[i] < a[j]} x := a[i]; a[i] := a[j]; a[j] := x {a[j] < a[i]}.
 9. Given the following wff, where q(x) means that x is a rational number:

{q(x) ∧ q(y)}
while x + y > 0 do x := x + 1; y := y – 2 od
{q(x) ∧ q(y) ∧ (x + y ≤ 0)}

 Prove that the loop terminates with respect to q(x) ∧ q(y).

84 Chapter 8

 10. Given the following wff, where p(x) means that x is a positive integer:
{p(x) ∧ p(y)}
while x > y do x := x – y od
{p(x) ∧ p(y) ∧ (x ≤ y)}

 For each of the following cases, decide whether a termination proof exists for the
program that uses ƒ(x, y) and the well-founded set ℕ.

 a. ƒ(x, y) = x + y. Yes No
 b. ƒ(x, y) = x – y. Yes No

 c. ƒ(x, y) = x. Yes No
 d. ƒ(x, y) = y. Yes No

 e. ƒ(x, y) = min(x, y). Yes No
 f. ƒ(x, y) = max(x, y). Yes No

Solutions
 1. 1. {(x – b + 2) = (a – b)} y := b – 2 {(x – y) = (a – b)} AA
 2. {(a – 2 – b + 2) = (a – b)} x := a – 2 {(x – b + 2) = (a – b)} AA
 3. {(a – 2 – b + 2) = (a – b)}
 x := a – 2; y := b – 2
 {(x – y) = (a – b)} 1, 2, Comp
 4. (a > 0) ∧ (b > 0) → (a – 2 – b + 2) = (a – b) T (trivially)
 QED 3, 4, Consequence.

 2. 1. {∃x (y + 1 = 2x)} y := y + 1 {∃x (y = 2x)} AA
 2. ∃x (y = 2x + 1) P [for CP]
 3. y = 2c + 1 2, EI
 4. y + 1 = 2c + 1 + 1 3, EE
 5. y + 1 = 2(c + 1) 4, T
 6. ∃x (y + 1 = 2x) 3, EG
 7. ∃x (y = 2x + 1) → ∃x (y + 1 = 2x) 2–6, CP
 8. {∃x (y = 2x + 1)} y := y + 1 {∃x (y = 2x)} 1, 7, Consequence
 QED.

 3. The if-then-else rule requires two proofs.
 (First proof)

 1. {odd(x + 1 – y)} x := x + 1 {odd(x – y)} AA
 2. q(x) ∧ q(y) ∧ even(x – y) P [for CP]
 3. even(x – y) 2, Simp
 4. odd(x – y + 1) 3, T
 5. q(x) ∧ q(y) ∧ even(x – y) → odd(x + 1 – y) 2–4, CP
 6. {q(x) ∧ q(y) ∧ even(x – y)} x := x + 1 {odd(x – y)} 1, 5, Consequence

 Chapter 8 85

 (Second proof)
 7. {odd(x – y + 2)} y := y – 2 {odd(x – y)} AA
 8. q(x) ∧ q(y) ∧ ¬ even(x – y) P [for CP]
 9. ¬ even(x – y) 8, Simp
 10. odd(x – y) 9, T
 11. odd(x – y + 2) 10, T
 12. q(x) ∧ q(y) ∧ ¬ even(x – y) → odd(x – y + 2) 8–11, CP
 13. {q(x) ∧ q(y) ∧ even(x – y)} y := y – 2 {odd(x – y)} 7, 5, Consequence
 QED 1, 13, If-then-else.

 4. According to the while-rule, we need to prove the following statement:
{p(x) ∧ p(y) ∧ (x > y)} x := x – y {p(x) ∧ p(y)}.

 1. {p(x – y) ∧ p(y)} x := x – y {p(x) ∧ p(y)} AA
 2. p(x) ∧ p(y) ∧ (x > y) P [for CP]
 3. x > y 2, Simp
 4. x – y > 0 3, T
 5. p(x) 2, Simp
 6. p(y) 2, Simp
 7. p(x – y) 4, 5, 6, T
 8. p(x – y) ∧ p(y) 6, 7, Conj
 9. p(x) ∧ p(y) ∧ (x > y) → p(x – y) ∧ p(y) 2–8, CP
 10. {p(x) ∧ p(y) ∧ (x > y)} x := x – y {p(x) ∧ p(y)} 1, 9, Consequence
 QED 10, While-rule.
 5. By the while-rule, it suffices to prove the following statement:

{P ∧ (n < k)} m := 2 ∗ m; n := n + 1 {P}.

 1. {(m = 2n+1) ∧ (n + 1 ≤ k)} n := n + 1 {(m = 2n) ∧ (n ≤ k)} AA
 2. {(2m = 2n+1) ∧ (n + 1 ≤ k)} m := 2 ∗ m {(m = 2n+1) ∧ (n + 1 ≤ k)} AA
 3. (m = 2n) ∧ (n ≤ k) ∧ (n < k) P [for CP]
 4. m = 2n 3, Simp
 5. 2m = 2n+1 4, EE
 6. n < k 3, Simp
 7. n + 1 ≤ k 6, T
 8. (2m = 2n+1) ∧ (n + 1 ≤ k) 5, 7, Conj
 9. (m = 2n) ∧ (n ≤ k) ∧ (n < k) → (2m = 2n+1) ∧ (n + 1 ≤ k) 3–8, CP
 10. {P ∧ (n < k)} m := 2 ∗ m; n := n + 1 {P} 1, 2, Comp, 9, Consequence
 QED 10, While-rule.
 6. {(if j = i then 39 else a[j]) = 39} a[i] := 39 {a[j] = 39}.

86 Chapter 8

 7. 1. {(if i = j then 5 else a[i])= 5} a[j] := 5 {a[i] = 5} AAA
 2. (i = j) ∧ (a[i] = 2) P [for CP]
 3. i = j 2, Simp
 4. (i ≠ j) → (a[i] = 5) 3, T (vacuously)
 5. (i = j) → (5 = 5) T (trivially)
 6. (if i = j then 5 else a[i])= 5 4, 5, Conj, T
 7. (i = j) ∧ (a[i] = 2) → (if i = j then 5 else a[i])= 5 2–6, CP
 QED 1, 7, Consequence.
 8. 1. {x < (if i = j then x else a[i])} a[j] := x {a[j] < a[i]} AAA
 2. {x < (if i = j then x else a[j])}
 a[i] := a[j]
 {x < (if i = j then x else a[i])} AAA
 3. {a[i] < (if i = j then a[i] else a[j])}
 x := a[i]
 {x < (if i = j then x else a[j])} AAA
 4. a[i] < a[j] P [for CP]
 5. (i ≠ j) → a[i] < a[j] 4, T (trivially)
 6. (i = j) → a[i] < a[i] 4, EE
 7. a[i] < (if i = j then a[i] else a[j]) 5, 6, Conj, T
 8. (a[i] < a[j]) → (a[i] < (if i = j then a[i] else a[j])) 4–7, CP
 QED 1, 2, Comp, 3, Comp, 8, Consequence.

 9. For a well-founded set we can choose ℕ with the usual ordering. For the program
state (x, y) let ƒ(x, y) = ceiling(x + y). If s = (x, y) is the state before the execution of
the loop’s body and t is the state after the execution of the loop’s body, then t = (x +
1, y – 2). Therefore we have:

 ƒ(s) = ƒ(x, y) = ceiling(x + y) and ƒ(t) = ƒ(x + 1, y – 2) = ceiling(x + y – 1).
 To prove termination, we must show that if q(x) ∧ q(y) is true (i.e., x and y are ra-

tional) and x + y > 0, then

 ƒ(s), ƒ(t) ∈ ℕ and ƒ(s) > ƒ(t).

 Since x + y > 0, it follows that ceiling(x + y) ≥ 0. So ƒ(s) ∈ ℕ. Since x + y > 0, it fol-
lows that x + y – 1 > – 1. So ceiling(x + y – 1) ≥ 0. So ƒ(t) ∈ ℕ. Since x + y and x +
y – 1 differ by 1, it follows that ceiling(x + y) > ceiling(x + y – 1). In other words,
we have ƒ(s) > ƒ(t). Therefore the program terminates with respect to q(x) ∧ q(y).

 10. a. Yes.
 b. No, because ƒ(t) = x – 2y, which may be negative.

 c. Yes.
 d. No, because ƒ(s) = ƒ(t).
 e. No, because it might be the case that ƒ(s) = ƒ(t). For example, if s = (5, 1), then t

= (4, 1) so that ƒ(s) = ƒ(t) = 1.

 f. Yes.

 Chapter 8 87

8.3 Higher-Order Logics
Learning Objectives
Be able to describe higher order logics.

Be able to transform simple English sentences into higher-order logic.

Review Questions
 1. In what way is a predicate a set?

 2. What is the order of a predicate?

 3. What is the order of a quantifier?

 4. What is the order of a wff?

 5. How is a higher-order wff given a meaning?

 6. What is second-order logic?

Solved Problems
 1. Write down the minimal order of logic to which each of the following wffs belong.
 a. ∀y (p(x, y) → ∃L (L(x) ∧ q(y, L))).

 b. ∀x ∃L ∀M (L(x) → M(L)).

 c. ∀A ∃L ∃M (L(A) ∧ ∀x ∃B (M(B, x) → B(L))).

 2. Write a wff in higher-order logic to formalize each of the following equality ideas.
 a. There are two sets A and B that are not equal.

 b. There are two elements x and y are not equal.
 3. Write down a wff in higher-order logic without using equality that formalizes the

following statement about lines of latitude on a globe: “All distinct lines are paral-
lel.”

 4. Write down a wff in higher-order logic that formalizes the following statement
about great circles on a globe: “All distinct circles meet in exactly two points.”

 5. Write down a wff in higher-order logic that formalizes the following statement from
geometry.

 “For every line L and every point x not on L there is a circle C that passes through x
and C touches L in exactly one point y.”

88 Chapter 8

 6. Do a truth analysis for the following wff. In other words, find out which of the
properties {valid, invalid, satisfiable, unsatisfiable} the wff satisfies.

∀p ∃x p(x).

 7. Do a truth analysis for the following wff. In other words, find out which of the
properties {valid, invalid, satisfiable, unsatisfiable} the wff satisfies.

∃p ∀q ∀x (p(x) → q(x)).

 8. Give a formal prove that the following wff is valid.

∃x ∃y ∀P P(x, y) → ∀P ∃x ∃y P(x, y).

 9. Here’s an example of higher order reasoning based on Euclidean geometry. Con-
sider the following claim:

If there is a point on a line, then there is another point on the line.

 It’s clear that the claim follows directly from Axiom 3—Every line has at least two
distinct points. But suppose we formalize each statement and then try to prove that
Axiom 3 implies the claim. Here are two formalizations:

 Axiom 3: ∀L ∃x ∃y ((x ≠ y) ∧ L(x) ∧ L(y)).

 Claim: ∀x ∀L (L(x) → ∃y ((x ≠ y) ∧ L(y))).

 a. Prove that Axiom 3 implies the claim.
 b. Prove that Axiom 3 does not follow from the claim. Hint: find an interpretation

that is a model for Axioms 1, 2, 4, and the claim, but not for Axiom 3.

Solutions
 1. a. Two. Since L is a predicate of order one, it follows that q and ∃L both have or-

der two.

 b. Three. Since L is a predicate of order one, it follows that M and ∃L both have or-
der two. Thus ∀M has order three.

 c. Four. Since L is a predicate of order one, it follows that B and ∃L both have or-
der two. So M and ∃B both have order three. Therefore ∃M has order four.

 2. a. ∃A ∃B ∃x ((A(x) ∧ ¬ B(x)) ∨ (¬ A(x) ∧ B(x))).

 b. ∃x ∃y ∃S (S(x) ∧ ¬ S(y)).

 3. If we agree to use equality symbols, then we have the following second order wff:

∀L ∀M ((L ≠ M) → ∀x (L(x) → ¬ M(x))).

 4. If we agree to use equality symbols, then we have the following second order wff:
 ∀C ∀D ((C ≠ D) → ∃x ∃y ((x ≠ y) ∧ C(x) ∧ C(y) ∧ D(x) ∧ D(y)

 ∧ ∀z (C(z) ∧ D(z) → (z = x) ∨ (z = y)))).

 Chapter 8 89

 5. If we agree to use equality symbols, then we have the following second order wff:
∀L ∀x (¬ L(x) → ∃C (C(x) ∧ ∃y (C(y) ∧ L(y) ∧ ∀z (C(z) ∧ L(z) → (z = y))))).

 6. Think of the predicate p as a set and p(x) as the statement x ∈ p. Then for any inter-
pretation with domain D, the wff can be restated as follows: For every subset p of D
there is an element x ∈ p. But if we choose p = ∅, then there is no element in p. So
any interpretation makes the wff false. Therefore the wff is unsatisfiable and inva-
lid.

 7. Think of the predicates p and q as sets and p(x) and q(x) as the statements x ∈ p and
x ∈ q, respectively. Then for any interpretation with domain D, the wff can be re-
stated as follows: There is a subset p of D such that p is a subset of every subset q
of D. If we choose p = ∅, then p is a subset of every subset of D. So any interpreta-
tion makes the wff true. Therefore the wff is valid and satisfiable.

 8. 1. ∃x ∃y ∀P P(x, y) P
 2. ∀P P(a, b) 1, EI, EI
 3. ∃P ∀x ∀y ¬ P(x, y) P [for ∀P ∃x ∃y P(x, y)]
 4. ¬ p(a, b) 3, EI, UI, UI
 5. p(a, b) 2, UI
 6. False 4, 5, Contr
 7. ∀P ∃x ∃y P(x, y) 3–6, IP
 QED 1, 2, 7, CP.
 9. a. 1. ∃x ∃L (L(x) ∧ ∀y ((x = y) ∨ ¬ L(y))) P [for IP]
 2. l(a) ∧ ∀y ((a = y) ∨ ¬ l(y)) 1, EI, EI
 3. ∀y ((a = y) ∨ ¬ l(y)) 2, Simp
 4. ∀L ∃x ∃y ((x ≠ y) ∧ L(x) ∧ L(y)) Axiom 3
 5. (b ≠ c) ∧ l(b) ∧ l(c) 4, UI, EI, EI
 6. b ≠ c 5, Simp
 7. (a = b) ∨ ¬ l(b) 3, UI
 8. l(b) 5, Simp
 9. a = b 7, 8, DS
 10. (a = c) ∨ ¬ l(c) 3, UI
 11. l(c) 5, Simp
 12. a = c 10, 11, DS
 13. b = c 9, 12, Symmetry, Transitive
 14. False 6, 13, Contr
 QED 1–15, IP.
 b. We can define a little geometry with three “points” x, y, and z, and four “lines”

l1 = ∅, l2 = {x, y}, l3 = {x, z}, and l4 = {y, z}. It is clear that this little geometry
satisfies Axioms 1, 2, 4, and the claim. But Axiom 3 is not satisfied. Thus
Axiom 3 can’t follow from the claim.

90

Chapter 9
Computational Logic

9.1 Automatic Reasoning
Learning Objectives
Be able to transform first-order wffs into clausal form.

Be able to unify atoms from a set of clauses.

Be able to describe the resolution proof rule.

Be able to use resolution to write formal proofs in first-order logic.

Review Questions
 1. What is a clause?

 2. What is a clausal form?

 3. What is Skolem’s rule?

 4. What is Skolem’s algorithm?

 5. What is a substitution?

 6. What is the composition of two substitutions?

 7. What is a unifier?

 8. What is a most general unifier?

 9. What is a unification algorithm?

 10. What is the resolution rule for propositions?

 11. What is the resolution rule for first-order wffs?

 Chapter 9 91

 12. What are the steps to prove a wff is valid if resolution must be used?

 13. What is the meaning of each of the following symbols or expressions?

 a. � .

 b. {x/t, y/s}.

 c. ε.

 d. Eθ.

 e. θσ.

 f. Cθ – N.

 g. R(S).

 14. How do resolution proofs work?

Solved Problems
 1. Use Skolem’s rule to remove the existential quantifiers from the following wff.

∃x ∀y ∃z ∀w A(x, y, z, w).

 2. Transform the following wff into clausal form.

∃x ∀y q(x, y) → ∀z ∃x p(x, z).

 3. Find a clausal form and corresponding set of clauses for each of the following
propositions.

 a. ¬ [(p → q) ∧ (q → r) → (p → r)].

 b. ¬ ((p ∨ q → r) ∧ p → r).

 4. Given the following propositional wff.
(p → q) ∧ (q → r) → (p → r).

 Prove that the wff is valid by using resolution to show the unsatisfiability of the set
of clauses in the clausal form of the negation of the wff. Find two different resolu-
tion proofs.

 5. Let θ = {x/ƒ(y), z/w} and σ = {y/a, w/ƒ(b), x/a}.

 a. Find the composition θσ.

 b. Find the composition σθ.

92 Chapter 9

 6. Given the following two wffs:
p(x, g(y), ƒ(x)) and p(a, w, ƒ(y)).

 a. Use Robinson’s algorithm to find a most general unifier.
 b. Use the Martelli-Montanari algorithm to find a most general unifier.

 c. Is there a unifier that is not most general?
 7. Given the following two wffs:

p(x, h(x, g(z)), y) and p(x, h(a, w), g(x)).
 a. Use Robinson’s algorithm to find a most general unifier.

 b. Use the Martelli-Montanari algorithm to find a most general unifier.
 c. Is there a unifier that is not most general?

 8. Given the following two clauses to resolve:
p(x) ∨ p(a) ∨ q(x, z) and ¬ p(y) ∨ ¬ p(g(x)) ∨ r(y) ∨ q(b, z).

 a. Resolve the clauses by choosing two atoms from the first clause and one literal
from the second clause.

 b. Resolve the clauses by choosing one atom from the first clause and two literals
from the second clause.

 9. For each of the following wffs, prove that the wff is valid by using resolution to
show that set of clauses in the clausal form of the negation the wff is unsatisfiable.

 a. ∃x p(x) ∨ ∃x q(x) → ∃x (p(x) ∨ q(x)).

 b. ∀x ∀y (A(x, y) → B(x, y)) → [∀x ∀y A(x, y) → ∀x ∀y B(x, y)].

 c. [∀x (A(x) ∧ B(x) → C(x))] → [∀x A(x) ∧ ∀x B(x) → ∀x C(x)].

Solutions
 1. ∀y ∀w A(c, y, ƒ(y), w).

 2. First we’ll construct the prenex conjunctive normal form. After renaming variables
we obtain the following wff.

∃x ∀y q(x, y) → ∀z ∃w p(w, z).

 Now remove the conditional and move negations to the right to obtain the following
wff.

∀x ∃y ¬ q(x, y) ∨ ∀z ∃w p(w, z).

 Next, apply Skolem’s rule and move remaining universal quantifiers left to obtain
the following wff in clausal form.

∀x ∀z (¬ q(x, ƒ(x)) ∨ p(g(z), z)).

 Chapter 9 93

 Note: We could have moved all quantifiers left and then applied Skolem’s rule to
obtain the following wff in clausal form.

∀x ∀z (¬ q(x, ƒ(x)) ∨ p(g(x, z), z)).

 3. a. We can use equivalences to obtain the clausal form, which for propositional
wffs is just the conjunctive normal form obtained as follows:

 ¬ [(p → q) ∧ (q → r) → (p → r)] ≡ (p → q) ∧ (q → r) ∧ ¬ (p → r)
 ≡ (¬ p ∨ q) ∧ (¬ q ∨ r) ∧ p ∧ ¬ r.

 The corresponding set of four clauses is {¬ p ∨ q, ¬ q ∨ r, p, ¬ r}.

 b. We can use equivalences to obtain the clausal form, which for propositional
wffs is just the conjunctive normal form obtained as follows:

 ¬ ((p ∨ q → r) ∧ p → r) ≡ (p ∨ q → r) ∧ p) ∧ ¬ r
 ≡ (¬ (p ∨ q) ∨ r) ∧ p) ∧ ¬ r
 ≡ ((¬ p ∧ ¬ q) ∨ r) ∧ p) ∧ ¬ r
 ≡ (¬ p ∨ r) ∧ (¬ q ∨ r) ∧ p ∧ ¬ r.

 The corresponding set of four clauses is {¬ p ∨ r, ¬ q ∨ r, p, ¬ r}.

 4. In Problem (3a) we found the set of clauses in the clausal form of the negation of
this wff to be {¬ p ∨ q, ¬ q ∨ r, p, ¬ r}. One of several resolution proofs proceeds as
follows:

 1. ¬ p ∨ q P
 2. ¬ q ∨ r P
 3. p P
 4. ¬ r P
 5. q 1, 3, R
 6. ¬ q 2, 4, R
 7. � 5, 6, R
 QED.

 A second resolution proof proceeds as follows:
 1. ¬ p ∨ q P
 2. ¬ q ∨ r P
 3. p P
 4. ¬ r P
 5. ¬ p ∨ r 1, 2, R
 6. r 3, 5, R
 7. � 4, 6, R
 QED.
 5. a. θσ = {x/ƒ(a), z/ƒ(b), y/a, w/ƒ(b)}.

 b. σθ = {y/a, w/ƒ(b), x/a} = θ.

 6. a and b. {x/a, w/g(a), y/a}. c. No, because there are no variables in the denomina-
tors of a most general unifier.

94 Chapter 9

 7. a and b. {x/a, y/g(a), w/g(z)}. c. Yes, because z can be chosen to be any term.
 8. First, rename variables so that the clauses have distinct variable names. For exam-

ple, in the second clause we’ll replace x by u and z by v to obtain the following two
clauses.

p(x) ∨ p(a) ∨ q(x, z) and ¬ p(y) ∨ ¬ p(g(u)) ∨ r(y) ∨ q(b, v).

 a. Choose p(x) and p(a) from the first clause and ¬ p(y) from the second clause.
An mgu for the set {p(x), p(a), p(y)} is θ ={x/a, y/a}. Now apply θ to both
clauses and then use the resolution rule to obtain the following resolvant:

q(a, z) ∨ ¬ p(g(u)) ∨ r(a) ∨ q(b, v).

 b. Choose p(x) from the first clause and ¬ p(y) and ¬ p(g(u)) from the second
clause. An mgu for the set {p(x), p(y), p(g(u))} is θ ={x/g(u), y/g(u)}. Now ap-
ply θ to both clauses and then use the resolution rule to obtain the following re-
solvant:

p(a) ∨ q(g(u), z) ∨ r(g(u)) ∨ q(b, v).

 9. In each case, take the negation of the wff, find the clausal form, and use the clauses
as premises in a resolution proof.

 a. 1. p(a) ∨ q(b) P
 2. ¬ p(z) P
 3. ¬ q(z) P
 4. q(b) 1, 2, R, {z/a}
 5. � 3, 4, R, {z/b}
 QED.

 b. 1. ¬ A(x, y) ∨ B(x, y) P
 2. A(u, v) P
 3. ¬ B(a, b) P
 4. B(x, y) 1, 2, R, {u/x, v/y}
 5. � 3, 4, R, {x/a, y/b}
 QED.
 c. 1. ¬ A(x) ∨ ¬ B(x) ∨ C(x) P
 2. A(y) P
 3. B(z) P
 4. ¬ C(a) P
 5. ¬ B(x) ∨ C(x) 1, 2, R, {y/x}
 6. C(x) 3, 5, R, {z/x}
 7. � 4, 6, R, {x/a}
 QED.

 Chapter 9 95

9.2 Logic Programming
Learning Objectives
Be able to describe a logic program.

Be able to describe how resolution is used to execute a logic program.

Review Questions
 1. What is a logic program clause?

 2. What is a logic program goal or query?

 3. What is a logic program?

 4. What is the SLD-resolution rule?

 5. What is a computation tree for a goal?

 6. What is the meaning of each of the following symbols or expressions?

 a. ← A.

 b. C ← A, B.

Solved Problems
 1. Given the predicates isMale, isFemale, isMotherOf, isFatherOf, and isSiblingOf,

define each of the following logic program predicates. If you need other predicates,
be sure to define them too.

 a. isParentOf. b. isGrandFatherOf.

 c. isAuntOf. d. isNephewOf.
 2. Given the isParentOf predicate, define the logic program predicate isCousinOf

predicate, where isCousinOf(n, a, b) means that a and b are nth cousins and isCous-
inOf(0, a, b) = isSiblingOf(a, b).

 3. In Prolog, a disjunction of two atoms is represented by placing a semicolon between
them. Explain, from a logical point of view, why the Prolog clause

 p :- q; r.
 is equivalent to the two Prolog clauses

 p :- q.
 p :- r.

96 Chapter 9

 4. Given the following logic program:
 p(〈 〉, w).
 p(x :: y, x :: z) ← p(y, z).

 Construct an SLD-resolution proof for the goal
 ← p(〈a, b〉, 〈a, b, c〉).

 5. Given the following logic program:
 p(x, 〈x〉).
 p(x, x :: y) ← p(x, y).

 Describe the values of z that are generated by backtracking with the depth-first
search strategy for the goal ← p(b, z).

 6. Given the following logic program:
 p(a).
 p(x) ← r(x), s(x).
 r(b).
 r(x) ← s(ƒ(x)), t(x).
 s(b).
 s(c).
 s(ƒ(c)).
 t(c).
 Draw the SLD-tree (i.e., the computation tree) for the goal

 ← p(y).

 7. Given the following logic program and goal:
 p(a).
 q(a).
 r(x) ← p(x), q(x).
 ← r(y).

 a. Write an SLD-resolution proof of the given program and its goal.

 b. Write the corresponding resolution proof for the clauses represented as first-
order wffs.

 8. Translate the following functional definition into a logic program.
ƒ(n) = if n = 0 then 0 else n + ƒ(n – 1).

 9. Translate the following functional definition into a logic program.
g(x) = if x = 〈 〉 then 0 else 1 + g(tail(x)).

 Chapter 9 97

 10. Write a logic program for the predicate “sumProd” that computes the sum and
product of the numbers in a list. For example, the goal

← sumProd(〈3, 2, 5〉, S, P).

 returns S = 10 and P = 30.
 11. In the blocks world suppose that we are given the predicates “on” and “on_top”,

where on(a, b) means that a is on top of b and on_top(a) means that nothing is on
top of a. Use these predicates to write a logic program to find the depth of a block,
where depth(A, N) means that there are N blocks on top of A.

 12. Write a logic program for the predicate “squares” that computes the list of squares
of a list of numbers. For example, the goal

← squares(〈4, 3, 7〉, A).

 will return the answer A = 〈16, 9, 49〉.

 13. Find a logic program to distribute an element over a list by pairing it with each ele-
ment in the list. For example, the goal

← dist(a, 〈b, c, d〉, x)

 should return x = 〈(a, b), (a, c), (a, d)〉.

 14. Find a logic program to take an element and a list and return the list of all pairs that
contain the given element in one position and an element of the list in the other po-
sition. For example, the goal

← makePairs(a, 〈b, c, d〉, x)

 should return x = 〈(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)〉.

 15. Find a logic program that takes a list and returns all possible pairs of elements in the
list. For example, the goal

← p(〈a, b, c〉, x)

 should return
x = 〈(a, a), (a, b), (b, a), (a, c), (c, a), (b, b), (b, c), (c, b), (c, c)〉.

Solutions
 1. a. isParentOf(x, y) ← isMotherOf(x, y).
 isParentOf(x, y) ← isFatherOf(x, y).

 b. isGrandFatherOf(x, y) ← isMale(x),
 isParentOf(x, z),
 isParentOf(z, y).
 c. isAuntOf(x, y) ← isFemale(x), isSiblingOf(x, z), isParentOf(z, y).

 d. isNephewOf(x, y) ← isMale(x), isParentOf(z, x), isSiblingOf(z, y).

98 Chapter 9

 2. isCousinOf(0, x, y) ← isSiblingOf(x, y).

 isCousinOf(n, x, y) ← isParentOf(u, x),
 isParentOf(v, y),
 isCousinOf(n – 1, u, v).
 3. The Prolog clause

 p :- q; r.
 represents the wff

 q ∨ r → p.

 Using equivalences, we can transform this wff as follows:

 q ∨ r → p ≡ ¬ (q ∨ r) ∨ p
 ≡ (¬ q ∧ ¬ r) ∨ p
 ≡ (¬ q ∨ p) ∧ (¬ r ∨ p)
 ≡ (q → p) ∧ (r → p).

 The last wff can be represented by the two Prolog clauses

 p :- q.
 p :- r.
 4. 1. p(〈 〉, w) P
 2. p(x :: y, x :: z) ← p(y, z) P
 3. ← p(〈a, b〉, 〈a, b, c〉) P
 4. ← p(〈b〉, 〈b, c〉) 2, 3, R, θ1 = {x/a, y/〈b〉, z/〈b, c〉}
 5. ← p(〈 〉, 〈c〉) 2, 4, R, θ2 = {x/b, y/〈 〉}
 6. � 1, 5, R, θ3 = {w/〈c〉}
 QED.
 5. The possible values of z are 〈b〉, 〈b, b〉, 〈b, b, b〉, To see this, we’ll give three

SLD-refutations and calculate three values of z. The shortest refutation can be de-
scribed as follows:

 1. p(x, 〈x〉) P
 2. p(x, x :: y) ← p(x, y) P
 3. ← p(b, z) P
 4. � 1, 3, R, θ = {x/b, z/〈b〉}
 QED.

 The value of z is calculated by zθ = 〈b〉.

 Chapter 9 99

 The next shortest refutation can be described as follows:
 1. p(x, 〈x〉) P
 2. p(x, x :: y) ← p(x, y) P
 3. ← p(b, z) P
 4. ← p(b, y1) 2, 3, R, θ1 = {x1/b, z/b :: y1}
 5. � 1, 4, R, θ2 = {x2/b, y1/〈b〉}
 QED.
 The value of z is calculated by zθ1θ2 = (b :: y1)θ2 = b :: 〈b〉 = 〈b , b〉.

 The next shortest proof follows:
 1. p(x, 〈x〉) P
 2. p(x, x :: y) ← p(x, y) P
 3. ← p(b, z) P
 4. ← p(b, y1) 2, 3, R, θ1 = {x1/b, z/b :: y1}
 5. ← p(b, y2) 2, 4, R, θ2 = {x2/b, y1/b :: y2}
 6. � 1, 5, R, θ3 = {x3/b, y2/〈b〉}
 QED.
 The value of z is calculated by

 zθ1θ2θ3 = (b :: y1)θ2θ3 = (b :: b :: y2)θ3 = b :: b :: 〈b〉 = 〈b, b , b〉.

 The following infinite SLD-tree reflects these three proofs.
! p(b, z)

{z/"b#} {z/b::y1}

� ! p(b, y1)

yes

z = b {y1/"b#} {y1/b::y2}

� ! p(b, y2)

yes

z = "b, b# {y2/"b#} {y2/b::y3}

� ! p(b, y3)

yes

z = "b, b, b#

100 Chapter 9

 6. There are three different refutations, which are shown on the following SLD-tree.

! p(y)

{y/a} {y/x }

� ! r(x), s(x)

yes

y = a {x/b} {x/x1}

! s(b) ! s(ƒ(x1), t(x1), s(x1)

{ } {x1/c}

� ! t(c), s(c)

yes

y = b { }

! s(c)

{ }

�

yes

y = c

 7. a. 1. p(a) P
 2. q(a) P
 3. r(x) ← p(x), q(x) P
 4. ← r(y) P
 5. ← p(x), q(x) 3, 4, R, θ1 = {y/x}
 6. ← q(a) 1, 5, R, θ2 = {x/a}
 7. � 2, 6, R, θ3 = { }
 QED.

 b. 1. p(a) P
 2. q(a) P
 3. r(x) ∨ ¬ p(x) ∨ ¬ q(x) P
 4. ¬ r(y) P
 5. ¬ p(x) ∨ ¬ q(x) 3, 4, R, θ1 = {y/x}
 6. ¬ q(a) 1, 5, R, θ2 = {x/a}
 7. � 2, 6, R, θ3 = { }
 QED.
 8. Letting pf be the predicate to implement ƒ, we have the following definition for pf:

 pf(0, 0).
 pf(n, n + x) ← pf(n – 1, x).

 Chapter 9 101

 9. Letting pg be the predicate to implement g, we have the following definition for pg:
 pg(〈 〉, 0).
 pg(h :: t, 1 + x) ← pg(t, x).

 10. Assuming that an empty sum is 0 and an empty product is 1, we have the following
definition for sumProd:

 sumProd(〈 〉, 0, 1).
 sumProd(h :: t, h + x, h ∗ y) ← sumProd(t, x, y).

 11. Assuming that the depth of a block that is on top is zero, we have the following
definition for depth:

 depth(x, 0) ← on_top(x).
 depth(x, n + 1) ← on(y, x), depth(y, n).

 12. squares(〈 〉, 〈 〉).
 squares(h :: t, (h ∗ h) :: x) ← squares(t, x).

 13. dist(x, 〈 〉, 〈 〉).
 dist(x, h :: t, (x, h) :: y) ← dist(x, t, y).

 14. makePairs(x, 〈 〉, 〈 〉).
 makePairs(x, h :: t, (x, h) :: (h, x) :: y) ← makePairs(x, t, y).

 15. Let cat(x, y, z) mean that z is the concatenation of the lists x and y. (Note that Excer-
cise (7b) in the book implements a logic program to concatenate lists.) Now we can
write a definition for p in terms of cat and the makePairs predicate from Problem
14.

 p(〈 〉, 〈 〉).
 p(h :: t, (h, h) :: z) ← makePairs(h, t, x), p(t, y), cat(x, y, z).

102

Chapter 10
Algebraic Structures and Techniques

10.1 What Is an Algebra?
Learning Objectives
Be able to answer the question “What is an algebra?”

Be able to recognize simple properties of binary operations.

Review Questions
 1. What is an algebra?

 2. What does the expression 〈A; s, a〉 mean?

 3. What is an algebraic expression?

 4. What is high school algebra?

 5. What is a concrete algebra?

 6. What is an abstract algebra?

Solved Problems
 1. Let ° be defined over the set {0, 1, 2, 3} by x ° y = (x + y) mod 4. Answer each of

the following questions.

 a. Does ° have a zero?

 b. Does ° have an identity?

 c. What elements, if any, have inverses?

 d. Is ° commutative?

 e. Is ° associative?

 Chapter 10 103

 2. Let S = {a, b, c} and let ° be a binary operation on S that is not associative. Suppose
this can be demonstrated by the following two equations.

 a ° (b ° c) = a ° b = c

 (a ° b) ° c = c ° c = a

 a. Can ° have a zero?

 b. Can ° have an identity?

 c. Can ° be commutative?

 3. Let m and n be two integers with m < n. Let B = {m, m + 1, ..., n}. Let “max” be the
function that returns the larger of its two arguments.

 a. Does max have a zero? If so, what is it?

 b. Does max have an identity? If so, what is it?

 4. Given the algebra 〈ℤ; +, 0〉. Use equational reasoning to prove the following state-
ment for all integers a.

If a + a = a, then a = 0.

 5. Given an algebra 〈A; °, e〉, where ° is a binary operation and e ∈ A. Find some prop-
erties that the algebra must have so that we can prove the following statement for
all elements a ∈ A.

If a ° a = a, then a = e.

 6. Given an algebra 〈A; ƒ, a〉, where ƒ is unary and a is a constant in A and the axiom
ƒ(ƒ(ƒ(x))) = x holds for all x ∈ A.

 a. Write down a finite set of algebraic expressions to represent the distinct ele-
ments of A.

 b. Write a recursive definition for the function “simp” that simplifies an arbitrary
expression of the form ƒ(ƒ(...ƒ(a)...)). For example,

simp(ƒ(ƒ(ƒ(ƒ(a)))) = ƒ(a).

 7. Given the algebra 〈S; g, a, b, c〉 where g is a unary operation on S and a, b, and c are
constants in S. Write a recursive definition for the function “expr” that tests for ex-
pressions over S. For example, expr(g(g(b))) = True and expr(g(d)) = expr(ƒ(a)) =
False.

Solutions
 1. a. No.

 b. Yes, it is 0.
 c. 1 and 3 are inverses of each other and 2 is its own inverse.

 d. Yes, because + is commutative.
 e. Yes, because + is associative.

104 Chapter 10

 2. a. No. b. No. c. Yes.
 3. a. Yes. The zero is n because max(n, x) = max(x, n) = n for all x ∈ B.

 b. Yes. The identity is m because max(m, x) = max(x, m) = x for every x ∈ B.

 4. Here is an equational proof that includes the reason for each step.
 a = a + 0 (0 is an identity for +)
 = a + (a + – a) (inverses exist)
 = (a + a) + – a (+ is associative)
 = a + – a (hypothesis)
 = 0 (inverses exist).
 5. This is similar to Problem 4. The properties that are sufficient to prove the state-

ment are that e is an identity for °, every element of A has an inverse, and ° is asso-
ciative. Then we can prove the statement as follows:

 a = a ° e (e is an identity for °)
 = a ° (a ° a–1) (inverses exist)
 = (a ° a) ° a–1 (° is associative)
 = a ° a–1 (hypothesis)
 = e (inverses exist).
 6. a. {a, ƒ(a), ƒ(ƒ(a))}.
 b. Using equations we can define simp as follows:

 simp(a) = a
 simp(ƒ(a)) = ƒ(a)
 simp(ƒ(ƒ(a))) = ƒ(ƒ(a))
 simp(ƒ(x)) = simp(x).

 7. We’ll write an if-then-else definition.
 expr(E) = if (E = a) or (E = b) or (E = c) then True
 else if E = g(x) then expr(x)
 else False.

10.2 Boolean Algebra
Learning Objectives
Be able to describe the properties of a Boolean algebra.

Be able to apply the properties to simplify Boolean expressions.

Review Questions
 1. What does the symbol

!

x mean?

 2. What is a Boolean algebra?

 Chapter 10 105

 3. How are the algebra of sets and the algebra of propositions related?

 4. What is the idempotent property?

 5. What are the absorption laws?

 6. What is the involution law?

 7. What are De Morgan’s laws?

 8. How are digital circuits related to Boolean algebra?

 9. What does it mean to simplify a Boolean expression?

Solved Problems
 1. Simplify each of the following Boolean expressions.
 a. ac + bc + abc + bbc.

 b. ab + bc + abc.
 c. (a + b)(a + b + c + d).

 d.

!

a + b a.

 e.

!

ac + ab c + b.

 f.

!

a + b() b + a() + a.

 2. Let B = {0, 1, a, b} be the carrier of a 4-element Boolean algebra. Prove that

!

a = b.

Solutions
 1. a. ac + bc + abc + bbc = [(ac) + (ac)b)] + [(bc) + (bc)b] = ac + bc = (a + b)c.
 b. ab + bc + abc = [(ab) + (ab)c] + bc = ab + bc = (a + c)b.

 c. (a + b)(a + b + c + d) = (a + b)[(a + b) + (c + d)] = a + b.

 d.

!

a + b a = a + b () a + a() = a + b () = ab.

 e.

!

ac + ab c + b = a + ab ()c + b = ac + b.

106 Chapter 10

f.

!

a + b() b + a() + a = a + b() + b + a() + a

= ab + ba + a

= ab + a() + ba

= a + ba

= a + b.

 2. Suppose, by way of contradiction, that

!

a " b. Then there are three possibilities for

!

a . We’ll find a contradiction in each case. If

!

a = 0 , then

!

a + a = a + 0 = a.
 But we also have

!

a + a =1. So we must conclude that a = 1, which contradicts the
fact that 1 and a are distinct elements of B. If

!

a =1, then

!

aa = a1 = a.
 But we also have

!

aa = 0. So we must conclude that a = 0, which contradicts the
fact that 0 and a are distinct elements of B. If

!

a = a , then

!

aa = aa = a.
 But we also have

!

aa = 0. So again we must conclude that a = 0, which contradicts
the fact that 0 and a are distinct elements of B. Since we’ve reached contradictions
in all cases, it follows that

!

a = b.

.

10.3 Abstract Data Types as Algebras
Learning Objectives
Be able to describe an abstract data type.

Be able to apply appropriate algebraic properties to write recursive definitions for simple
functions in terms of operations for abstract data types.

Review Questions
What is an abstract data type?

Solved Problems
 1. Given the algebra 〈ℕ, Boolean; 0, isZero, succ, pred〉. Write a recursive definition

for the function gt : ℕ × ℕ → Boolean, where gt(x, y) means that x > y.

 2. Given the algebra 〈ℕ, Boolean; 0, isZero, succ, pred〉. Write a recursive definition
for the function le : ℕ × ℕ → Boolean, where le(x, y) means that x ≤ y.

 Chapter 10 107

 3. Use only the primitive operations in the algebra of lists to give a recursive defini-
tion for the function removeAll : A × lists(A) → lists(A) that removes all occur-
rences of an element from a list. For example,

removeAll(a, 〈b, a, c, a〉) = 〈b, c〉.

 4. Use the primitive operations in the algebras of queues and lists to give a recursive
definition for the function ƒ : lists(A) → Q[A] that places the elements of a list into
a queue, where the head of the list becomes the front of the queue.

 5. Use the primitive operations in the algebra of stacks to give a recursive definition
for a function to combine two stacks into a single stack by stacking one stack on the
other. For example, if A and B are stacks, then combine(A, B) is the stack with top
the top of A and with bottom the bottom of B.

 6. Use the primitive operations in the algebras of queues and stacks to give a recursive
definition for the function ƒ : Q[A] → Stks[A] that places the elements of a queue
into a stack, where the front of the queue becomes the bottom element of the stack.

 7. Use the primitive operations in the algebras of priority queues and stacks to give a
recursive definition for the function ƒ : P[A] → Stks[A] that places the elements of a
priority queue into a stack, where the best element of the priority queue becomes
the top element of the stack.

 8. Use the primitive operations in the algebras of priority queues and stacks to give a
recursive definition for the function ƒ : P[A] → Stks[A] that places the elements of a
priority queue into a stack, where the best element of the priority queue becomes
the bottom element of the stack.

Solutions
 1. A definition with equations can be written as follows:

gt(0, y) = False
gt(succ(x), 0) = True
gt(succ(x), succ(y)) = gt(x, y).

 An if-then-else definition can be written as follows:

gt(x, y) = if isZero(x) then False
 else if isZero(y) then True
 else gt(pred(x), pred(y)).

 2. A definition with equations can be written as follows:

le(0, y) = True
le(succ(x), 0) = False
le(succ(x), succ(y)) = le(x, y).

 An if-then-else definition can be written as follows:

le(x, y) = if isZero(x) then True
 else if isZero(y) then False
 else le(pred(x), pred(y)).

108 Chapter 10

 3. A definition with equations can be written as follows:
removeAll(x, 〈 〉) = 〈 〉
removeAll(x, x :: t) = removeAll(x, t)
removeAll(x, h :: t) = h :: removeAll(x, t).

 An if-then-else definition can be written as follows:

removeAll(x, L) = if isEmpty(L) then 〈 〉
 else if x = head(L) then removeAll(x, tail(L))
 else head(L) :: removeAll(x, tail(L)).

 4. An if-then-else definition can be written as follows, where we use the append func-
tion from Example 10.19 of the book:

ƒ(L) = if isEmpty(L) then emptyQ
 else if isEmpty(tail(L)) then addQ(head(L), emptyQ))
 else apQ(addQ(head(L), emptyQ)), ƒ(tail(L))).

 5. An if-then-else definition can be written as follows:
combine(A, B) = if isEmptyStk(A) then B
 else push(top(A), combine(pop(A), B)).

 6. An if-then-else definition can be written as follows, where we use the combine
function from Problem 5:

ƒ(q) = if isEmptyQ(q) then emptyStk
 else if isEmptyQ(delQ(q)) then push(frontQ(q), emptyStk)
 else combine(ƒ(delQ(q)), push(frontQ(q), emptyStk)).

 7. An if-then-else definition can be written as follows:
ƒ(p) = if isEmptyP(p) then emptyStk
 else push(best(p), ƒ(delBest(p))).

 8. An if-then-else definition can be written as follows, where we use the combine
function from Problem 5:

ƒ(p) = if isEmptyP(p) then emptyStk
 else if isEmptyP(delBest(p)) then push(best(p), emptyStk)
 else combine(ƒ(delBest(p)), push(best(p), emptyStk)).

10.4 Computational Algebras
Learning Objectives
Be able to apply appropriate algebraic properties to write expressions to represent rela-
tions constructed in terms of operations for relational databases.

Be able to describe a functional algebra.

 Chapter 10 109

Review Questions
 1. What is the select operation?

 2. What is the projection operation?

 3. What is the join operation?

 4. What is the meaning of each of the following symbols or expressions?

 a. R

!

>< S.

 b. select(R, A, B).

 c. project(R, {A, B}).

 d. join(R, S).

 5. What is a functional algebra?

 6. Why is FP an important algebra?

Solved Problems
 1. Let R be the family relation with attributes Person, Mother, and Father. For exam-

ple, if R contains the 3-tuple
(John, Margaret, George),

 then the person John has mother Margaret and father George. Now we can use R to
answer questions about families. To shorten the notation we’ll let P, M, and F stand
for Person, Mother, and Father, respectively. For example, to find the children of
John, we can construct the relation

project(select(R, F, John), {P}).

 Construct relations to find the following sets of family members.
 a. The parents of John, which should return {(Margaret, George)}.

 b. The children of Margaret and George, which should have the form
{(John), (a), (b), ...}.

110 Chapter 10

 2. The following two tables represent two relational databases for Farms and Harvests.

Farms
Name Crop Acres County
Jones corn 1500 Washington
Jones barley 2500 Washington
Smith wheat 600 Lincoln
Appleby soybeans 2000 Washington
Nelson corn 500 Jefferson
Nelson soybeans 3500 Jefferson
Hein hops 2000 Adams
Hein grapes 200 Adams
Truman corn 2500 Madison
Hill wheat 3000 Lincoln

Harvests
Crop Month
corn July
barley June
wheat May
soybeans June
grapes September
hops August

 Construct an expression to find each of the following sets.
 a. The crops that are harvested in June. In other words, the set {(barley), (soy-

beans)}.
 b. The months that wheat is harvested. In other words, the set {(May)}.

 c. The list of acreages planted in corn. In other words, the set {(1500), (500),
(2500)}.

 d. The months the Nelson farm harvests crops. In other words, the set {(June),
(July)}.

 e. The crops planted in Washington county. In other words, the set {(corn), (bar-
ley), (soybeans)}.

 f. The counties that plant corn. In other words, the set {(Washington), (Jefferson),
(Madison)}.

 g. The harvest months in Adams and Lincoln counties. In other words, the set
{(May), (August), (September)}.

 Chapter 10 111

 3. Write an FP definition for the function seq, where seq(n) = 〈0, 1, ..., n〉.

 4. Use FP algebra to prove the following statement.
[ƒ, g, h] @ (a → b; c) = (a → [ƒ @ b, g @ b, h @ b]; [ƒ @ c, g @ c, h @ c]).

Solutions
 1. a. project(select(R, P, John), {M, F}).

 b. project(select(select(R, F, George), M, Margaret) {P}).
 2. a. project(select(Harvests, Month, June), {Crop}).

 b. project(select(Harvests, Crop, Wheat), {Month}).
 c. project(select(Farms, Crop, Corn), {Acres}).

 d. project(select(join(Farms, Harvests), Name, Nelson), {Month}).
 e. project(select(Farms, County, Washington), {Crop}).

 f. project(select(Farms, Crop, Corn), {County}).
 g. Let J = join(Farms, Harvests). Then the harvest months in Adams and Lincoln

counties is obtained by the union of the following two relations:
 project(select(J, County, Adams), {Month})

 project(select(J, County, Lincoln), {Month}).
 3. We’ll use eq0 and sub1 from Examples 10.27 and 10.28 to write the following FP

definition for seq:
seq = eq0 → ~ 〈0〉; apndr @ [seq @ sub1, id].

 4. The statement follows directly from the axioms for the FP algebra.
[ƒ, g, h] @ (a → b; c)
 = [ƒ @ (a → b; c), g @ (a → b; c), h @ (a → b; c)]
 = [(a → ƒ @ b; ƒ @ c), (a → g @ b; g @ c), (a → h @ b; h @ c)]
 = id @ [(a → ƒ @ b; ƒ @ c), (a → g @ b; g @ c), (a → h @ b; h @ c)]
 = a → id @ [ƒ @ b, g @ b, h @ b]; id @ [ƒ @ c, g @ c, h @ c]
 = a → [ƒ @ b, g @ b, h @ b]; [ƒ @ c, g @ c, h @ c].

10.5 Other Algebraic Ideas
Learning Objectives
Be able to describe congruences.

Be able to describe and use the RSA algorithm.

Be able to describe subalgebras and morphisms of algebras.

112 Chapter 10

Review Questions
 1. What does the expression x ≡ y (mod n) mean?

 2. What is a congruence?

 3. How is the RSA algorithm used?

 4. What is a subalgebra?

 5. What is a morphism?

Solved Problems
 1. Use the Chinese remainder theorem to solve each of the following sets of congru-

ences for a unique smallest natural number x.

 a. x ≡ 2 (mod 5) b. x ≡ 3 (mod 7)
 x ≡ 3 (mod 6). x ≡ 4 (mod 11).

 c. x ≡ 1 (mod 3) d. x ≡ 6 (mod 5)
 x ≡ 2 (mod 5) x ≡ 4 (mod 7)
 x ≡ 3 (mod 7). x ≡ 2 (mod 11).

 2. To construct some keys for using the RSA algorithm, let p = 7 and q = 13 so that n
= pq = 91. Let the decryption key be d = 25. Find an encryption key e for the given
choices of p, q, and d.

 3. Given the algebra 〈ℕ15; +15, 0〉, find the carriers of the subalgebras generated by
each of the following sets.

 a. {5}. b. {3}. c. {4}.

 4. Find the three morphisms that exist from the algebra 〈ℕ3; +3, 0〉 to the algebra
 〈ℕ6; +6, 0〉.

 5. Given the language morphism ƒ : {a, b}* → {a, b}* defined by ƒ(a) = ba and ƒ(b)
= ab, compute the value of each of the following expressions.

 a. ƒ({bna | n ∈ ℕ}).

 b. ƒ–1({bna | n ∈ ℕ}).

 c. ƒ–1(L), where L is the language of the following grammar:
S → baSba | abSab | Λ.

 d. ƒ(L), where L is the language of the following grammar:
S → aSb | bSa | Λ.

 Chapter 10 113

Solutions
 1. a. First, we must find solutions b1 and b2 to the two congruences
 6b1 ≡ 1 (mod 5)
 5b2 ≡ 1 (mod 6)

 Two solutions are b1 = 1 and b2 = 5. Next, we calculate

x = 6·b1·2 + 5·b2·3 = 6·1·2 + 5·5·3 = 12 + 75 = 87
 Since 87 ≥ 30 = 5·6, we’ll let x = 87 – 2·30 = 87 – 60 = 27. So x = 27 is the

smallest natural number that satisfies the two congruences.
 b. First, we must find solutions b1 and b2 to the two congruences

 11b1 ≡ 1 (mod 7)
 7b2 ≡ 1 (mod 11)

 Two solutions are b1 = 2 and b2 = 8. Next, we calculate
x = 11·b1·3 + 7·b2·4 = 11·2·3 + 7·8·4 = 66 + 224 = 290

 Since 290 ≥ 77 = 7·11, we’ll let x = 290 – 3·77 = 290 – 231 = 59. So x = 59 is
the smallest natural number that satisfies the two congruences.

 c. First, we must find solutions b1, b2, and b3 to the three congruences
 35b1 ≡ 1 (mod 3)
 21b2 ≡ 1 (mod 5)
 15b3 ≡ 1 (mod 7)

 Three solutions are b1 = 2, b2 = 1, and b3 = 1. Next, we calculate

x = 35·b1·1 + 21·b2·2 + 15·b3·3 = 35·2·1 + 21·1·2 + 15·1·3 = 157.
 Since 157 ≥ 105 = 3·5·7, we’ll let x = 157 – 1·105 = 52. So x = 52 is the smallest

natural number that satisfies the three congruences.
 d. First, we must find solutions b1, b2, and b3 to the three congruences

 77b1 ≡ 1 (mod 5)
 55b2 ≡ 1 (mod 7)
 35b3 ≡ 1 (mod 11)

 Three solutions are b1 = 3, b2 = 6, and b3 = 6. Next, we calculate
x = 77·b1·6 + 55·b2·4 + 35·b3·2 = 77·3·6 + 55·6·4 + 35·6·2 = 3126.

 Since 3126 ≥ 385 = 5·7·11, we’ll let x = 3126 – 8·385 = 46. So x = 46 is the
smallest natural number that satisfies the three congruences.

 2. Notice that (p – 1)(q – 1) = 6·12 = 72 and d = 25. Since gcd(25, 72) = 1, it follows
that d is a proper decryption key. To find an encryption key e, we need to solve the
equation 25e mod 72 = 1. By reversing Euclid’s algorithm, or by wits, we find that
1 = 25(–23) + 72·8. So e = –23 solves the equation. But we need e to be positive.
Since we can add any multiple of 72, we’ll choose e = –23 + 72 = 49.

114 Chapter 10

 3. a. {0, 5, 10}. b. {0, 3, 6, 9, 12}. c. ℕ15.
 4. The three morphisms are defined as follows: the zero function; the function ƒ de-

fined by ƒ(0) = 0, ƒ(1) = 2, ƒ(2) = 4; the function g defined by g(0) = 0, g(1) = 4,
g(2) = 2.

 5. a. {(ab)nba | n ∈ ℕ}.

 b. {a}.
 c. The set of even palindromes over {a, b}.

 d. The set of even palindromes over {a, b} that are derived from the grammar
S → baSab | abSba | Λ.

115

Chapter 11
Regular Languages and Finite Automata

11.1 Regular Languages
Learning Objectives
Be able to describe regular languages and regular expressions.

Be able to use algebraic properties of regular expressions to simplify regular expressions.

Review Questions
 1. What is a regular language?

 2. What is a regular expression?

 3. What is the meaning of a regular expression?

 4. What operations are used in the algebra of regular expressions?

Solved Problems
 1. Write down a regular expression for each of the following regular languages.
 a. {Λ, aa, aaaa, ..., a2n, ...}.

 b. {ab, abb, ..., abn, ...}.
 c. {Λ, b, bc, bcc, ..., bcn...}.

 d. {Λ, a, aa, ..., an, ...} ∪ {aba, abba, ..., abna, ...}.

 e. {abn | n ∈ ℕ} ∪ {ban | n ∈ ℕ}.

 2. Describe, in words, the language of the following regular expression:

(b + ab)*(Λ + a).

 3. Find a regular expression for the language of all strings over {a, b, c} that contain
exactly two c’s.

116 Chapter 11

 4. Simplify each of the following regular expressions.
 a. aba* + abaa*.

 b. (ba*)* + aa*(ba*)*.
 c. a*(ba* + ca*)*.

Solutions
 1. a. (aa)*.
 b. abb*.

 c. Λ + bc*.

 d. a* + abb*a.

 e. ab* + ba*.
 2. All strings over {a, b}, where no a is next to another a. In other words, there are no

substrings of two or more consecutive a’s.
 3. (a + b)*c(a + b)*c (a + b)* .

 4. a. aba* + abaa* = ab(a* + aa*) = ab(Λ + a)a* = aba*.

 b. (ba*)* + aa*(ba*)* = (Λ + aa*)(ba*)* = a*(ba*)* = (a + b)*.

 c. a*(ba* + ca*)* = a*((b + c)a*)* = (a + (b + c))* = (a + b + c)*.

11.2 Finite Automata
Learning Objectives
Be able to describe DFAs and NFAs.

Be able to apply algorithms to transform between regular expressions and finite auto-
mata.

Be able to describe finite automata with output.

Review Questions
 1. What is a finite automaton?

 2. What does DFA mean?

 3. What does NFA mean?

 4. What is a Mealy machine?

 5. What is a Moore machine?

 Chapter 11 117

 6. What is the meaning of each of the following symbols or expressions?

 a. T(i, a) = j.

 b. T(i, a) = {j, k}.

 c. a/x.

 d. i/x.

 7. What does it mean to say that DFAs are equivalent to NFAs?

 8. How do you transform a regular expression into a finite automaton?

 9. How do you transform a finite automaton into a regular expression?

Solved Problems
 1. Find a DFA to recognize each of the following regular languages.

 a. {ab, aa}.

 b. {a2n+1 | n ∈ ℕ}.

 c. {abna | n ∈ ℕ}.

 2. Find an NFA to recognize each regular expression.

 a. a*b + a.
 b. a*b + b*a.

 3. Find a DFA to recognize each regular expression. In each case, try to find the DFA
by your wits. Then transform the corresponding NFA solutions to Problem 2 into
DFAs. Compare your results.

 a. a*b + a.

 b. a*b + b*a.
 4. Find an NFA to recognize the language of each of the following regular expres-

sions.
 a. a(ab + a)*b.

 b. ab*a + a(ab + a*)b.

118 Chapter 11

 5. The following diagram represents part of an automaton.

 Assume that you are in the process of obtaining a regular expression for the lan-

guage of the given automaton and the current task is to remove state i. Write down
each new edge needed to remove state i in the form new(_, _) = R, where R is the
regular expression associated with the new edge.

 6. Apply the method of removing states to the following NFA to find its regular ex-
pression. Remove the states in the order 0, 1, 2, and 3.

 7. Apply the method of removing states to the following NFA to find its regular ex-

pression.

 a. Remove state 0 first.
 b. Remove state 1 first.

 c. Prove that the regular expressions from (a) and (b) are equal.

 Chapter 11 119

 8. Suppose we want to take a nonempty string over the alphabet {a, b} and collapse
all substrings of b’s to a single b. For example, if the input string is abbaaabbbab,
then the output string is abaaabab.

 a. Construct a Mealy machine to solve the problem.

 b. Construct a Moore machine to solve the problem.

Solutions
 1. a. There are four states, 0 (start), 1, 2 (final), and 3. The transitions are: T(0, a) =

1, T(0, b) = 3, T(1, a) = T(1, b) = 2, and T(2, a) = T(2, b) = T(3, a) = T(3, b) = 3.
 b. There are three states, 0 (start), 1 (final) and 2. The transitions are: T(0, a) = 1,

T(1, a) = 2, and T(2, a) = 1.

 c. There are four states, 0 (start), 1, 2 (final), and 3. The transitions are: T(0, a) =
1, T(0, b) = 3, T(1, a) = 2, T(1, b) = 1, and T(2, a) = T(2, b) = T(3, a) = T(3, b) =
3.

 2. a. There are three states, 0 (start), 1, and 2 (final). The transitions are: T(0, a) =
{2}, T(0, Λ) = {1}, T(1, a) = {1}, and T(1, b) = {2}.

 b. There are four states, 0 (start), 1, 2, and 3 (final). The transitions are: T(0, Λ) =
{1, 2}, T(1, a) = {1}, T(1, b) = {3}, T(2, a) = {3}, and T(2, b) = {2}.

 3. a. There are five states, 0 (start), 1 (final), 2, 3 (final), and 4. The transitions are:
T(0, a) = 1, T(0, b) = 3, T(1, a) = 2, T(1, b) = 3, and T(2, a) = 2, T(2, b) = 3, and
T(3, a) = T(3, b) = T(4, a) = T(4, b) = 4.

 b. There are seven states, 0 (start), 1 (final), 2 (final), 3, 4, 5 (final), and 6. The
transitions are: T(0, a) = 1, T(0, b) = 2, T(1, a) = 3, T(1, b) = 5, and T(2, a) = 5,
T(2, b) = 4, T(3, a) = 3, T(3, b) = 5, T(4, a) = 5, T(4, b) = 4, T(5, a) = T(5, b) =
T(6, a) = T(6, b) = 6.

 4. a. One solution has four states, 0 (start), 1, 2, and 3 (final). The transitions are:
T(0, a) = {1}, T(1, a) = {1, 2}, T(1, b) = {3}, and T(2, b) = {1}.

 b. One solution has six states, 0 (start), 1, 2, 3, 4, and 5 (final). The transitions are:
T(0, a) = {1}, T(1, a) = {2, 5}, T(1, b) = {1}, T(1, Λ) = {4}, T(2, b) = {3}, T(3,
b) = {5}, T(4, a) = {4}, and T(4, b) = {5}.

 5. There are four new edges labeled with the following regular expressions:
 new(0, 1) = a + ba*a.
 new(0, 2) = ∅ + ba*b = ba*b.
 new(2, 1) = Λ + aa*a.
 new(2, 2) = ∅ + aa*b = aa*b.

 6. If the states are removed in the order 0, 1, 2, 3, then the following regular expres-
sion is obtained.

b*ab(ab)* + b*aab*(Λ + a(ab)*).

120 Chapter 11

 7. a. a*a(a + ba*a)*.
 b. (a + aa*b)*aa*.

 c. We’ll start with the answer to (a) and proceed to the answer for (b), with refer-
ences to the properties listed in (11.1).

 a*a(a + ba*a)* = a*a[a*(ba*aa*)*] (by 11.1(7) with R = a, S = ba*a)
 = (a*aa*)[b(a*aa*)]* (by 11.1(2), associative property)
 = (a*aa*b)*a*aa* (by 11.1 (8) with R = a*aa*, S = b)
 = [(a*aa*b)*a*]aa* (by 11.1(2), associative property)
 = (a + aa*b)*aa* (by 11.1(7) with R = a, S = aa*b).
 8. a. One solution has two states, 0 (start) and 1. We’ll write the transitions in the fol-

lowing form:
T(state, input/output) = next state

 With this notation, the transitions are T(0, a/a) = 0, T(0, b/b) = 1, T(1, b/Λ) = 1,
and T(1, a/a) = 0.

 b. One solution has four states, 0 (start), 1, 2, and 3. We’ll write the transitions in
the following form:

 T(state/output, input) = next state

 With this notation, the transitions are T(0/Λ, a) = 1, T(0/Λ, b) = 2, T(1/a, a) = 1,
T(1/a, b) = 2, T(2/b, a) = 1, T(2/b, b) = 3, T(3/Λ, a) = 1, and T(3/Λ, b) = 3.

11.3 Constructing Efficient Finite Automata
Learning Objectives
Be able to apply algorithms to transform NFAs to DFAs and DFAs to minimum-state
DFAs.

Review Questions
 1. What is the meaning of the expression λ(s)?

 2. What is the meaning of the equation Tmin([s], a) = [T(s, a)]?

 3. How do you transform an NFA to a DFA?

 4. How do you transform a DFA into a minimum-state DFA?

 5. What is the lambda closure of a set of states?

 Chapter 11 121

Solved Problems
 1. Find a DFA that is equivalent to the following NFA.

!

a b "

start 0 # # {1}

1 {2,3} # #

2 # {3} {1}

3 {4} # {2,4}

final 4 # # #

 2. Find a DFA that is equivalent to the following NFA.

!

a b "

start 0 {1,2} # {7}

1 {3} # #

2 # {4} #

3 # {5} #

4 {6} # #

5 # # {1,7}

6 # # {2,7}

final 7 # # #

 3. Find a DFA that is equivalent to the following NFA.

!

a b "

start 0 {1,2} # {2}

1 # {0} #

final 2 {1} {1} {1}

 4. Find a DFA that is equivalent to the following NFA.

!

a b "

start 0 {1} {2} {2}

1 # {2} #

final 2 {2} # #

 5. Transform the following NFA into a DFA, where 0 is the start state and 2 is the fi-
nal state.

T(0, a) = {1, 2}, T(0, Λ) = T(2, Λ) = {1}, T(1, b) = T(2, a) = {2}.

 6. Transform the following NFA into a DFA: The states of the NFA are 0 (start), 1, 2
(final), and 3. The state transitions are T(0, a) = {1}, T(0, Λ) = {3}, T(1, b) = {2},
and T(3, a) = {2, 3}.

122 Chapter 11

 7. Suppose that the set of states for a DFA is S = {0, 1, 2, 3, 4, 5, 6, 7, 8}, where 0 is
the start state and the final states are 5, 7, and 8.

 a. Write down the set E0 to start the process of finding equivalent states.
 b. Suppose that for some k we calculate the following equality:

Ek = Ek+1 = {{0, 1}, {0, 3}, {0, 4}, {1, 3}, {1, 4}, {3, 4}, {2, 6}, {5, 7}}.
 Write down the states (i.e., the equivalence classes that partition S) in a mini-

mum-state DFA and note the start state and final states.
 8. Find a minimum-state DFA for the following DFA: The states are 0 (start), 1 (fi-

nal), 2 final), 3 (final), and 4, where the state transitions are defined by T(0, a) = 3,
T(0, b) = 1, T(1, a) = T(2, a) = 2, T(1, b) = T(2, b) = T(3, b) = 4, and T(3, a) = T(4,
a) = T(4, b) = 4.

 9. Find a minimum-state DFA for the following DFA.

!

a b

start 0 1 2

1 4 3

2 3 4

final 3 3 3

final 4 4 4

Solutions
 1. We can construct the DFA table by (11.8). Here is the DFA table to gether with a

simplification obtained by renaming states.

!

a b

start {0,1} {1,2,3,4} "

final {1,2,3,4} {1,2,3,4} {1,2,3,4}

" " "

 or

!

a b

start 0 1 2

final 1 1 1

2 2 2

 2. We can construct the DFA table by (11.8). Here is the DFA table to gether with a
simplification obtained by renaming states.

!

a b

start, final {0,7} {1,2} "

{1,2} {3} {4}

{3} " {1,5,7}

{4} {2,6,7} "

final {1,5,7} {3} "

final {2,6,7} " {4}

" " "

 or

!

a b

start, final 0 1 6

1 2 3

2 6 4

3 5 6

final 4 2 6

final 5 6 3

6 6 6

 Chapter 11 123

 3. We can construct the DFA table by (11.8). Here is the DFA table to gether with a
simplification obtained by renaming states.

!

a b

start, final {0,1,2} {1,2} {0,1,2}

final {1,2} {1} {0,1,2}

{1} " {0,1,2}

" " "

 or

!

a b

start, final 0 1 0

final 1 2 0

2 3 0

3 3 3

 4. We can construct the DFA table by (11.8). Here is the DFA table to gether with a
simplification obtained by renaming states.

!

a b

start, final {0,2} {1,2} {2}

final {1,2} {2} {2}

final {2} {2} "

" " "

 or

!

a b

start, final 0 1 2

final 1 2 2

final 2 2 3

3 3 3

 5. We can construct the DFA table by (11.8). Here is the DFA table to gether with a
simplification obtained by renaming states.

!

a b

start {0,1} {1,2} {1,2}

final {1,2} {1,2} {1,2}

 or

!

a b

start 0 1 1

final 1 1 1

 6. We can construct the DFA table by (11.8). Here is the DFA table to gether with a
simplification obtained by renaming states.

!

a b

start {0,3} {1,2,3} "

final {1,2,3} {2,3} {2}

final {2,3} {2,3} "

final {2} " "

" " "

 or

!

a b

start 0 1 4

final 1 2 3

final 2 2 4

final 3 4 4

4 4 4

 7. a. E0 = {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 6}, {1, 2}, {1, 3}, {1, 4}, {1, 6},
 {2, 3}, {2, 4}, {2, 6}, {3, 4}, {3, 6}, {4, 6}, {5, 7}, {5, 8}, {7, 8}}.

 b. [0] = {0, 1, 3, 4}
 [2] = {2, 6}
 [5] = {5, 7}
 [8] = {8}.

 The start state is [0] and the final states are [5] and [8].

124 Chapter 11

 8. To find the equivalence classes, we start with E0:
 E0 = {{0, 4}, {1, 2}, {1, 3}, {2, 3}}
 E1 = {{1, 2}}
 E2 = {{1, 2}}.

 Therefore the states 1 and 2 are equivalent. It follows that the set of states {0, 1, 2,
3, 4} is partitioned into the four classes

 [0] = {0}
 [1] = {1, 2}
 [3] = {3}
 [4] = {4}

 The resulting minimum-state DFA table and its simplification after renaming states
are

!

a b

start [0] [3] [1]

final [1] [1] [4]

final [3] [4] [4]

[4] [4] [4]

 or

!

a b

start 0 2 1

final 1 1 3

final 2 3 3

3 3 3

 9. To find the equivalence classes, we start with E0:
 E0 = {{0, 1}, {0, 2}, {1, 2}, {3, 4}}
 E1 = {{1, 2}, {3, 4}}
 E2 = {{1, 2}, {3, 4}}.

 Therefore the set of states {0, 1, 2, 3, 4} is partitioned into the three classes
 [0] = {0}
 [1] = {1, 2}
 [3] = {3, 4}

 The resulting minimum-state DFA table and its simplification after renaming states
are

!

a b

start [0] [1] [1]

[1] [3] [3]

final [3] [3] [3]

 or

!

a b

start 0 1 1

1 2 2

final 2 2 2

 Chapter 11 125

11.4 Regular Language Topics
Learning Objectives
Be able to construct regular grammars for simple languages.

Be able to transform between regular grammars and NFAs.

Be able to describe and apply the pumping lemma for regular languages.

Review Questions
 1. What is a regular grammar?

 2. How do you transform a regular grammar into a finite automaton?

 3. How do you transform a finite automaton into a regular grammar?

 4. What is the pumping lemma?

 5. How is the pumping lemma used?

Solved Problems
 1. Find a regular grammar for the language of each of the following regular expres-

sions.

 a. a*bc + b*.
 b. a*b*c.

 c. aa*cbb*d.
 d. a*b(ab)* + aa*b.

 2. Find a regular grammar for each of the following languages.

 a. {bamcn | m, n ∈ ℕ}.

 b. {akbcmden | k, m, n ∈ ℕ}.

 3. Use (11.11) to transform the following NFA into a regular grammar: The states are
0 (start), 1, and 2 (final). The state transitions are given by T(0, a) = {0, 1}, T(0, b)
= {2}, T(0, Λ) = {2}, T(1, b) = {1, 2}.

 4. Use (11.12) to transform each of the following regular grammars into an NFA.
 a. S → abS | aS | ba

 b. S → Λ | c | aS | abS.

126 Chapter 11

 5. Show that the language {abncd3n | n ∈ ℕ} is not regular by using a pumping lemma
argument.

 6. Show that the language {anb2n | n ∈ ℕ} is not regular by using the following two
facts: {anbn | n ∈ ℕ} is not regular and there is a morphism ƒ : {a, b}* → {a, b}*
defined by ƒ(a) = a and ƒ(b) = bb.

Solutions
 1. a. S → A | B
 A → aA | bc
 B → bB | Λ.

 b. S → aS | B
 B → bB | c.

 c. S → aS | acB
 B → bB | bd.

 d. S → T | R
 S → aS | bT
 T → abT | Λ
 R → aR | ab.

 2. a. S → bT
 T → aT | U
 U → cU | Λ.

 b. S → aS | bC
 C → cC | dE
 E → eE | Λ.

 3. First, rename the states to capital letters with S, I, and F representing 0, 1, and 2,
respectively. With these states as nonterminals, the grammar can be written as fol-
lows:

 S → aS | aI | bF | F
 I → bI | b

 4. a. First transform the grammar to the following grammar, where the right side of
each production has at most one terminal followed by a nonterminal.

 S → aB | aS | bA
 B → bS
 A → a.

 Now the states of the NFA are S (start), A, B, and F (final) and the transitions
are

T(S, a) = {B, S}, T(S, b) = {A}, T(B, b) = {S}, and T(A, a) = {F}.

 Chapter 11 127

 b. First transform the grammar to the following grammar, where the right side of
each production has at most one terminal followed by a nonterminal.

 S → aS | aB | c | Λ
 B → bS.

 Now the states of the NFA are S (start and final), B, and F (final) and the transi-
tions are: T(S, a) = {S, B}, T(S, c) = {F}, and T(B, b) = {S}.

 5. Let L be the language and assume, by way of contradiction, that L is regular. Then
let s = abmcd3m, where m > 0 is the integer from the pumping lemma (11.13). It then
follows from (11.13) that s = abmcd3m = xyz, where y ≠ Λ, |xy| ≤ m, and xykz ∈ L for
all k ≥ 0. Since |xy| ≤ m, it follows that either y = abi (in which case x = Λ) with 0 ≤ i
< m or y = bj with 1 ≤ j < m.

 Now we can obtain a contradiction is several ways. For example, if we let k = 0,
then (11.13) tells us that xz ∈ L. Since either y = abi or y = bj, it follows that either
xz = bm–icd3m or xz = abm–jcd3m with j ≥ 1. But neither of these representations of xz
fits the form of strings in L, which contradicts the pumping lemma’s assertion that
xz ∈ L. So L is not regular.

 An alternative contradiction can be obtained by letting k = 2 and considering the
string xy2z ∈ L. Since either y = abi or y = bj, it follows that either xy2z = abiabibm–

icd3m or xy2z = abm+jcd3m with j ≥ 1. But neither of these representations of xy2z fits
the form of strings in L, which contradicts the pumping lemma’s assertion that xy2z
∈ L. So L is not regular.

 6. Let L = {anb2n | n ∈ ℕ} and assume, by way of contradiction, that L is regular. By
the definition of ƒ, it follows that ƒ(anbn) = anb2n for all n ∈ ℕ. So if we let M =
{anbn | n ∈ ℕ}, then ƒ–1(L) = M. Since we are assuming that L is regular, we can use
(11.15b) to conclude that ƒ–1(L) must also be regular. But ƒ–1(L) = M and we al-
ready know by Example 11.25 that M is not regular. This contradiction implies that
L is not regular.

128

Chapter 12
Context-Free Languages and Pushdown Auto-
mata

12.1 Context-Free Languages
Learning Objectives
Be able to construct context-free grammars for simple languages.

Review Questions
 1. What is a context-free grammar?

 2. What is a context-free language?

Solved Problems
 1. Find a context-free grammar for each of the following languages.

 a. {an+2bcn | n ∈ ℕ}.

 b. {anb | n ∈ ℕ}*.

 c. ({an(bc)n | n ≥ 0} ∪ {cn | n ≥ 1}){anbn+1 | n ≥ 0}*.

Solutions
 1. a. Notice that an arbitrary string of the language can be put in the following form:
 an+2bcn = aa(anbcn).

 This makes it easier to discover the following grammar.
 S → aaT
 T → aTc | b.

 b. The language has the form L* where L = {anb | n ∈ ℕ}*. If we let T be the start
symbol for a grammar for L, then by (12.3) a grammar for L* takes the form

 S → TS | Λ.

 A grammar for L has the form T → aT | b. So a grammar for L* is

 S → TS | Λ.
 T → aT | b.

 Chapter 12 129

 c. The language has the form (L ∪ M)(N*) where

 L = {an(bc)n | n ≥ 0}
 M = {cn | n ≥ 1}
 N = {anbn+1 | n ≥ 0}*.
 If T, U, and V are the start symbols for grammars for L, M, and N, respectively,

then by (12.3) a grammar for (L ∪ M)(N*) takes the form

 S → TV | UV
 T → aTbc | Λ
 U → cU | c
 V → RV | Λ.
 R → aRb | b.

12.2 Pushdown Automata
Learning Objectives
Be able to describe a PDA.

Be able to apply algorithms to transform between PDAs that accept by final state and
those that accept by empty stack.

Be able to apply algorithms to transform between context-free grammars and PDAs that
accept by empty stack.

Review Questions
 1. What does the expression (i, b, C, pop, j) mean?

 2. What is a pushdown automaton (PDA)?

 3. What is acceptance by final state?

 4. What is acceptance by empty stack?

 5. How do you transform a final state PDA into an empty stack PDA?

 6. How do you transform an empty stack PDA into a final state PDA?

 7. How do you transform a context-free grammar into a PDA?

 8. How do you transform a PDA into a context-free grammar?

 9. What is a deterministic PDA?

130 Chapter 12

 10. What is a nondeterministic PDA?

 11. Do deterministic and nondeterministic PDAs have the same power?

Solved Problems
 1. Find a pushdown automaton for the language of all palindromes over the alphabet

{a, b}.

 2. Use (12.7) to transform each of the following context-free grammars into a single-
state PDA that accepts by empty stack, where the PDA instructions may contain
multiple stack operations.

 a. S → Λ | c | aSb.

 b. S → bBS | aB
 B → bbB | Λ.

 c. S → aSb | BC
 B → b | bB
 C → Λ | cC.

 3. Assume that the following instruction is part of the instruction set for a single-state
PDA that accepts by empty stack and uses multiple stack operations in some in-
structions.

(0, Λ, S, 〈pop, push(b), push(S), push(a)〉, 0).

 Transform the instruction into a set of PDA instructions that accomplish the same
purpose, where each instruction has one stack operation but may use states other
than 0. Assume that the PDA uses stack symbols a, b, A, B, S, and X and that it
starts with all six symbols on the stack with X on top.

 4. Given the following empty-stack PDA with start state 0 and starting stack symbol
X.

 (0, a, X, push(A), 0)
 (0, a, A, nop, 1)
 (1, a, A, push(A), 1)
 (1, b, A, pop, 1)
 (1, b, X, pop, 1).
 a. Use (12.8) to transform the PDA to a context-free grammar. DO NOT simplify

the resulting grammar. In other words, list all the productions generated by the
algorithm.

 b. Simplify the result of Part (a).
 c. Try to describe the language of the PDA and corresponding grammar.

 Chapter 12 131

Solutions
 1. Let ? stand for any stack symbol. Then an empty-stack PDA to accept all palin-

dromes over {a, b} can be written as follows:

 (0, a, X, pop, 0) (accept a)
 (0, b, X, pop, 0) (accept b)
 (0, Λ, X, pop, 0) (accept Λ)
 (0, a, ?, push(a), 0)
 (0, b, ?, push(b), 0)
 (0, Λ, ?, nop, 1) (transition for even palindrome)
 (0, a, ?, nop, 1) (transition for odd palindrome)
 (0, b, ?, nop, 1) (transition for odd palindrome)
 (1, Λ, X, pop, 1)
 (1, a, a, pop, 1)
 (1, b, b, pop, 1).
 2. a. The terminals a, b, and c give us the following three PDA instructions:

 (0, a, a, pop, 0)
 (0, b, b, pop, 0).
 (0, c, c, pop, 0).
 The three productions give us the following three instructions:

 Production Corresponding PDA instruction
 S → aSb (0, Λ, S, 〈pop, push(b), push(S), push(a)〉, 0).
 S → c (0, Λ, S, 〈pop, push(c)〉, 0).
 S → Λ (0, Λ, S, pop, 0).

 b. From the terminals a and b we construct the following two PDA instructions:

 (0, a, a, pop, 0)
 (0, b, b, pop, 0).

 From each production we construct a corresponding PDA instruction as shown
in the following table:

 Production Corresponding PDA instruction
 S → bBS (0, Λ, S, 〈pop, push(S), push(B), push(b)〉, 0).
 S → aB (0, Λ, S, 〈pop, push(B), push(a)〉, 0).
 B → bbB (0, Λ, B, 〈pop, push(B), push(b), push(b)〉, 0).
 B → Λ (0, Λ, B, pop, 0).

132 Chapter 12

 c. The terminals a, b, and c give us the following three PDA instructions:
 (0, a, a, pop, 0)
 (0, b, b, pop, 0).
 (0, c, c, pop, 0).

 From each production we construct a corresponding PDA instruction as shown
in the following table:

 Production Corresponding PDA instruction
 S → aSb (0, Λ, S, 〈pop, push(b), push(S), push(a)〉, 0).
 S → BC (0, Λ, S, 〈pop, push(C), push(B)〉, 0).
 B → bB (0, Λ, B, 〈pop, push(B), push(b)〉, 0).
 B → b (0, Λ, B, 〈pop, push(b)〉, 0).
 C → cC (0, Λ, C, 〈pop, push(C), push(c)〉, 0).
 C → Λ (0, Λ, C, pop, 0).

 3. The following instructions will do the job:

 (0, Λ, S, pop, 1)
 (1, Λ, a, push(b), 2)
 (1, Λ, b, push(b), 2)
 (1, Λ, A, push(b), 2)
 (1, Λ, B, push(b), 2)
 (1, Λ, S, push(b), 2)
 (1, Λ, X, push(b), 2)
 (2, Λ, b, push(S), 3)
 (3, Λ, S, push(a), 0).

 4. a. Since the starting stack symbol is X and the start state is 0, the first productions
are

 S → X00 | X01

 Next, we’ll list the productions that are constructed from each of the PDA in-
structions.

 PDA Instruction Corresponding Grammar Productions
 (1, b, X, pop, 1) X11 → b
 (1, b, A, pop, 1) A11 → b
 (0, a, A, nop, 1) Productions A0i → aA1i for each state i:
 A00 → aA10
 A01 → aA11

 (0, a, X, push(A), 0) Productions X0j → aA0iXij for all states i and j:
 X00 → aA00X00 | aA01X10
 X01 → aA00X01 | aA01X11

 (1, a, A, push(A), 1) Productions A1j → aA1iAij for all states i and j:
 A10 → aA10A00 | aA11A10
 A11 → aA10A01 | aA11A11

 Chapter 12 133

 b. Notice that X10 does not occur on the left side of any production. So we can omit
the production X00 → aA01X10. Notice that each of the following productions is
recursive but does not have a basis case:

 X00 → aA00X00
 X01 → aA00X01
 A10 → aA10A00
 A10 → aA11A10

 Therefore these four productions can be omitted. Now we can omit the produc-
tion S → X00 and because X00 does not appear on the right side of any remaining
production and thus can’t be reached in a derivation. Similarly, we can omit the
productions A00 → aA10 and A11 → aA10A01 because A10 does not appear on the
left side of any production. The remaining productions can be listed as follows:

 S → X01
 X11 → b
 A11 → b
 A01 → aA11
 X01 → aA01X11
 A11 → aA11A11

 Since there are no alternative choices for X11, A01 and X01, we can replace the
productions X11 → b, A01 → aA11, and X01 → aA01X11 by substitution to obtain
the following productions:

 S → aaA11b
 A11 → aA11A11 | b

 Now we’ll replace A11 by T to obtain the following grammar:

 S → aaTb
 T → aTT | b.

 c. The language is the set of all strings over {a, b} that have the following proper-
ties:

 1. Each string has the same number of a’s and b’s.

 2. Each string starts with aa and ends with bb.
 3. For each occurrence of a after the prefix aa, there are at least two more a’s

than b’s to its left.

134 Chapter 12

12.3 Context-Free Parsing
Learning Objectives
Be able to describe LL(k) grammars.

Be able to perform factorization, if possible, to reduce the size of k.

Be able to write recursive descent procedures.

Be familiar with the parsing process for simple LL(1) grammars.

Be able to describe the properties of LR(k) grammars.

Be familiar with the parsing process for LR(1) grammars.

Review Questions
 1. What is a deterministic context-free language?

 2. What is top-down parsing?

 3. What is bottom-up parsing?

 4. What is an LL(k) grammar?

 5. What is recursive descent parsing?

 6. What are the characteristics of an LR(k) grammar?

 7. What is a handle?

 8. What is the meaning of the expression (A → y, p)?

Solved Problems
 1. Given the following LL(k) grammar:
 S → aaS | ab | b.

 a. What is the smallest value of k for this grammar?
 b. Transform the LL(k) grammar into an LL(1) grammar.

 Chapter 12 135

 2. Given the following LL(k) grammar:
 S → abA | abbB
 A → Λ | aA
 B → b | bB.

 a. What is the smallest value of k for this grammar?

 b. Transform the LL(k) grammar into an LL(1) grammar.
 3. Remove the left recursion from each of the following grammars and note whether

the resulting grammar is LL(k).
 a. S → SaC | SbC | C | Cb | a
 C → c | cC.

 b. S → SaB | Bc
 B → BbC | C
 C → Cc | Λ.

 c. S → Aaa | aB | c
 A → Sb | b
 B → bB | Λ.

 4. Write down the recursive descent procedures to parse strings in the language de-
fined by the following LL(1) grammar.

 S → aSb | bBCc
 B → bB | Λ
 C → cC | d.

 5. Given the following LL(1) parse table:

 a b c d $

S S → aSbT S → TR S → TR S → TR

T T → Λ T → cT T → Λ T → Λ

R R → b R → dR

 Use the table to parse the string acdbbc by showing at each step the contents of the
stack, the input, and the actions to perform.

 6. Describe for any k ≥ 1 an LL(k + 1) grammar for {anb | n ∈ ℕ} that is not LL(k).

136 Chapter 12

 7. Given the following LR(0) grammar.
 S → aTb | c
 T → aSb | c.

 Find the handle for each of the following sentential forms.
 a. aacbb. b. aaacbbb. c. aaSbb. d. aaaTbbb.

 8. Given the following LR(1) grammar.
 S → dSB | cAb
 A → aA | a
 B → b.

 Complete the following table of sentential forms and handles, where the handle is
used to determine a rightmost derivation in reverse.

 Sentential Form Handle
 ddcaaabbb (S → a, 6)

Solutions
 1. a. k = 2. To see this, notice that two letters of lookahead are sufficient to determine

which production to use for a derivation step.

 b. The two productions S → aaS | ab can be factored to give the following LL(1)
grammar fragment:

 S → aT
 T → aS | b.

 So the desired LL(1) grammar is

 S → aT | b
 T → b | aS.

 2. a. k = 3. To see this, notice that three letters of lookahead are sufficient to deter-
mine which production to use for a derivation step.

 b. The two productions S → abA | abbB can be factored to give the following
LL(1) grammar fragment:

 S → abT
 T → A | bB.

 The two productions B → b | bB can also be factored to give the following
LL(1) fragment:

 B → bC
 C → Λ | B.

 Chapter 12 137

 So the transformed LL(1) grammar can be written as follows:
 S → abT
 T → A | bB
 B → bC
 A → Λ | aA
 C → Λ | B.

 3. a. S → CT | CbT | aT
 T → aCT | bCT | Λ
 C → c | cC.

 b. S → BcT
 T → aBT | Λ
 B → CR
 R → bCR | Λ
 C → Cc| Λ.

 c. We can remove the indirect left recursion by replacing A in S → Aaa by A → Sb
| b to obtain the following grammar.

 S → Sbaa | baa | aB | c
 B → bB | Λ.

 Now remove the direct left recursion to obtain the following grammar.
 S → baaT | aBT | cT
 T → baaT | Λ
 B → bB | Λ.

 4. The procedures for S, B, and C can be written as follows:

procedure S
 if lookahead = a then
 match(a);
 S;
 match(b)
 else
 match(b)
 B;
 C;
 match(c)
 fi

procedure B
 if lookahead = b then
 match(b);
 B
 fi

138 Chapter 12

procedure C
 if lookahead = c then
 match(c);
 C
 else
 match(d)
 fi

 5.
Stack Input Actions to Perform
$S acdbbc$ pop, push T, push b, push S, push a
$TbSa acdbbc$ pop, consume
$TbS cdbbc$ pop, push R, push T
$TbRT cdbbc$ pop, push T, push c
$TbRTc cdbbc$ pop, consume
$TbRT dbbc$ pop
$TbR dbbc$ pop, push R, push d
$TbRd dbbc$ pop, consume
$TbR bbc$ pop, push b
$Tbb bbc$ pop, consume
$Tb bc$ pop, consume
$T c$ pop, push T, push c
$Tc c$ pop, consume
$T $ pop
$ $ accept.

 6. Let L = {anb | n ∈ ℕ}. To get the idea, we’ll write a couple of examples. The fol-
lowing grammar for L is LL(2) but not LL(1):

 S → b | ab | aaS.

 For another example, the following grammar for L is LL(3) but not LL(2):
 S → b | ab | aab | aaaS.

 So a grammar for L that is LL(k + 1) but not LL(k) takes the following form, where
a...aS is a sentential form with a string of k a’s followed by S.

 S → b | ab | aab | ... | a...aS.

 7. a. (S → c, 3).

 b. (T → c, 4).

 c. (T → aSb, 4).

 d. (S → aTb, 5).

 Chapter 12 139

 8. Sentential Form Handle
 ddcaaabbb (A → a, 6)
 ddcaaAbbb (A → aA, 6)
 ddcaAbbb (A → aA, 5)
 ddcAbbb (S → cAb, 5)
 ddSbb (B → b, 4)
 ddSBb (S → dSB, 4)
 dSb (B → b, 3)
 dSB (S → dSB, 3)
 S.

12.4 Context-Free Language Topics
Learning Objectives
Be able to transform grammars by removing all left recursion and by removing all possi-
ble productions that have the empty string on the right side.

Be able to describe and to apply the pumping lemma for context-free languages.

Review Questions
 1. How do you remove Λ-productions from a grammar?

 2. What is the Chomsky normal form?

 3. What is the Greibach normal form?

 4. What is the pumping lemma for context-free languages?

 5. How is the pumping lemma used?

Solved Problems
 1. Transform the following grammar into an equivalent grammar that does not have Λ-

productions.

 S → aAB | bC
 A → aA | Λ
 B → bB | Λ
 C → A | B | cC | Λ.

140 Chapter 12

 2. Transform the following grammar into an equivalent grammar in Chomsky normal
form.

 S → bABc | cBA
 A → aA | a
 B → bcB | Λ.

 3. Transform the following grammar into an equivalent grammar in Greibach normal
form.

 S → ABc | cBA
 A → Aab | a
 B → bcB | Λ.

 4. Outline a proof that uses the pumping lemma for context-free languages to show
that the language {(ab)ncnan | n ∈ ℕ} is not context-free.

 5. Outline a proof that uses morphisms for context-free languages to show that the
language {(ab)ncndn | n ∈ ℕ} is not context-free.

Solutions
 1. The nonterminals that derive Λ are A, B, and C. So we construct new productions

by removing one or more occurrences of A, B, and C from the right sides of existing
productions. This process gives us the following new productions:

 S → aB | aA | a | b
 A → a
 B → b
 C → c.

 Now we combine this productions with the original grammar but without the origi-
nal Λ-productions to obtain the following desired grammar:

 S → aAB | bC | aB | aA | a | b
 A → aA | a
 B → bB | b
 C → A | B | cC | c.

 2. First, we need to remove all Λ-productions. Since B is the only nonterminal that de-
rives Λ, we add the following new productions by removing B from the right sides
of existing productions:

 S → bAc | cA
 B → bc

 Combining these productions with the original productions without the production
B → Λ, we obtain the following grammar:

 S → bABc | cBA | bAc | cA
 A → aA | a
 B → bcB | bc.

 Chapter 12 141

 Now we introduce new nonterminals to replace the terminals a, b, and c that occur
on right sides with two or more symbols. This gives us the following grammar:

 S → DABC | CBA | DAC | CA
 A → EA | a
 B → DCB | DC
 C → c
 D → b
 E → a.

 Lastly, introduce new nonterminals so that no right side has more than two nonter-
minals. This gives the following grammar:

 S → DF | CH | DK | CA
 F → AG
 G → BC
 H → BA
 K → AC
 A → EA | a
 B → DL | DC
 L → CB
 C → c
 D → b
 E → a.

 3. First we must remove all left recursion, which gives us the following grammar:
 S → ABc | cBA
 A → aC
 C → abC | Λ
 B → bcB | Λ.

 Next, we must remove all Λ-productions to obtain the following grammar:

 S → ABc | cBA | Ac | cA
 A → aC | a
 C → abC | ab
 B → bcB | bc.

 Now we need to make substitutions to get each production into the proper form.
We’ll use the productions A → aC | a to replace A in S → ABc to obtain S → aCBc
| aBc. We’ll also use A → aC | a to replace A in S → Ac to obtain S → aCc | ac.
This gives us the following grammar:

 S → aCBc | aBc | cBA | aCc | ac | cA
 A → aC | a
 C → abC | ab
 B → bcB | bc.

142 Chapter 12

 Now we can introduce new nonterminals to replace terminals that don’t appear on
the left end of a right side. This gives the following desired grammar:

 S → aCBD | aBD | cBA | aCD | aD | cA
 A → aC | a
 C → aEC | aE
 B → bDB | bD
 D → c
 E → b.

 4. Let L be the language and assume, by way of contradiction, that L is context-free.
Then we can apply the pumping lemma (12.19). Let z = (ab)mcmam ∈ L, where m is
the integer given by the pumping lemma. Then z has the form z = (ab)mcmam =
uvwxy, where |vx| ≥ 1, |vwx| ≤ m, and uvkwxky ∈ L for all k ≥ 0.

 Now we can try to find contradictions by considering the structure of v and x.
Since |vx| ≥ 1, it follows that at least one of v and x is not the empty string. Since
|vwx| ≤ m, it follows that v and x can’t have the form ...ab...c...a... because any sub-
string of z having this form has length greater than m. Another reason for this is that
if v or x has the form ...ab...c...a... then v2 or x2 has the form

...ab...c...a......ab...c...a... .

 But this pattern can’t occur as a substring of any element of L, contrary to uv2wx2y
∈ L.

 We also obtain contradictions if we assume that v or x has one of the forms
(ab)icj or cjak, where i > 0, j > 0, and k > 0. In this case, either v2 or x2 has the form
(ab)icj(ab)icj or cjakcjak. But neither of these patterns can occur as a substring of any
element of L, contrary to the pumping property uv2wx2y ∈ L.

 Now we’re left with the possibility that v or x has one of the forms (ab)i, cj, or
ak, where i > 0, j > 0, and k > 0. In these cases, the string uv2wx2y would not be in L
because one of the three substrings (ab)i, cj, and ak would be missing. For example,
if v = (ab)i and x = cj, then uv2wx2y = (ab)m+ic m+jam , which is not in L.

 We have obtained contradictions for all possible choices for the form of v and x.
Therefore our original assumption was wrong and it follows that L is not context-
free.

 5. Define the function ƒ : {a, b, c}* → {a, b, c, d}* as follows: for any string s ∈ {a,
b, c}*, let ƒ(s) be defined by applying the following rules to each letter of s:

ƒ(Λ) = Λ, ƒ(a) = ab, ƒ(b) = c, and ƒ(c) = d.

 This definition makes ƒ into a morphism and we can apply the results of (12.23).
Let L = {(ab)ncndn | n ∈ ℕ}. Then ƒ–1(L) = {anbncn | n ∈ ℕ} and we know this lan-
guage is not context-free by Example 12.24. Now if L is context-free, then (12.23)
tells us that ƒ–1(L) is context-free, which is a contradiction. Therefore L is not con-
text-free.

143

Chapter 13
Turing Machines and Equivalent Models

13.1 Turing Machines
Learning Objectives
Be able to describe a Turing machine.

Be able to write Turing machines (single-tape and muli-tape) to solve simple problems.

Review Questions
 1. What is a Turing machine?

 2. What is the meaning of the expression (i, a, b, L, j)?

 3. How does a Turing machine recognize a string?

 4. Is there a difference in the power of deterministic Turing machines and nondeter-
ministic Turing machines?

Solved Problems
 1. Write down the instructions for a single-tape Turing machine that accepts the lan-

guage {abnacn | n ∈ ℕ}.

 2. Write down the instructions for a single-tape Turing machine that searches for the
leftmost occurrence of the string abc on the tape. Assume that the tape contains a
string over the alphabet {a, b, c}. If abc is found, the machine halts with a 1 in the
current cell. Otherwise the machine halts with a 0 in the current cell.

 3. Construct a 2-tape to test divisibility of nonzero natural numbers represented in
unary notation. Assume that the two tapes contain the numbers A and B with the
tape heads initially at the left end of each number. If A divides B, then write Y in the
current cell of A and if not, then write N in the current cell of A.

144 Chapter 13

 4. Construct a 2-tape Turing machine to test the relationship between two binary num-
bers. Assume that the tapes contain binary representations of the two numbers A
and B, and the tape heads are initially at the rightmost bits of the numbers. The Tur-
ing machine should halt with the current pair of cells containing one of the follow-
ing three values with the associated meanings.

 (A, B) means A > B
 (B, A) means A < B
 (E, E) means A = B.

Solutions
 1. Assume that the tape head is at the left end of the input string. The following Turing

machine keeps track of the b’s and c’s by replacing them with X’s and Y’s to indi-
cate that a pair has been matched.

 Start by checking whether the first letter is an a. If so, then look for a b.
 (0, a, a, R, 1)

 If there are b’s to mark, then mark the next b and then go find a matching c.
 (1, b, X, R, 2)
 (1, a, a, R, 5) Done with b’s. Go check to see that c’s are done.
 Scan right to find a c to mark.

 (2, b, b, R, 2)
 (2, a, a, R, 3)
 (3, Y, Y, R, 3)
 (3, c, Y, L, 4)

 Scan left to find another b to mark.
 (4, a, a, L, 4)
 (4, Y, Y, L, 4)
 (4, b, b, L, 4)
 (4, X, X, R, 1)
 Final check to see that there are no more c’s than b’s.

 (5, Y, Y, R, 5)
 (5, Λ, Λ, S, halt) Success.

 2. Look for the letter a.

 (0, a, a, R, 1)
 (0, b, b, R, 0)
 (0, c, c, R, 0)
 (0, Λ, 0, S, Halt) abc does not occur in the string.

 Chapter 13 145

 Look for the letter b in a substring ab.
 (1, a, a, R, 1)
 (1, b, b, R, 2)
 (1, c, c, R, 0)
 (1, Λ, 0, S, Halt) abc does not occur in the string.

 Look for the letter c in a substring abc.
 (2, a, a, R, 1)
 (2, b, b, R, 0)
 (2, c, 1, S, Halt) Found leftmost substring abc.
 (2, Λ, 0, S, Halt) abc does not occur in the string.

 3. Scan right on both tapes until the end of either number is reached. If the end of A is
reached, reset the tape head for A to the left end and scan right on both tapes as be-
fore. Continue this process until both ends are reached at the same time, which
means that B is a multiple of A (i.e., A divides B), or until the end of B is reached
without reaching the end of A, which means that B is not a multiple of A (i.e., A
does not divide B). Here is the algorithm, where (x, y) means that x is for A and y is
B.

 Scan right to see if B is a multiple of A.
 (0, (1, 1), (1, 1), (R, R), 0)
 (0, (1, Λ), (N, Λ), (S, S), Halt)
 (0, (Λ, 1), (Λ, 1), (L, S), 1)
 (0, (Λ, Λ), (Y, Λ), (S, S), Halt)

 Reset the tape head for A to left end.
 (1, (1, 1), (1, 1), (L, S), 1)
 (1, (Λ, 1), (Λ, 1), (R, S), 0).

 4. Here is a 3-state solution, where each state represents the current relationship of the
numbers. The main idea is to compare two bits, move both tape heads left, and enter
the appropriate state. Repeat this process until an ending condition involving Λ is
found.

 The equality state

 (0, (0, 0), (0, 0), (L, L), 0)
 (0, (1, 1), (1, 1), (L, L), 0)
 (0, (0, 1), (0, 1), (L, L), 1)
 (0, (1, 0), (1, 0), (L, L), 2)
 (0, (0, Λ), (0, Λ), (L, S), 0)
 (0, (Λ, 0), (Λ, 0), (S, L), 0)
 (0, (1, Λ), (A, B), (L, S), Halt) A > B
 (0, (Λ, 1), (B, A), (S, L), Halt) A < B
 (0, (Λ, Λ), (E, E), (S, S), Halt) A = B

146 Chapter 13

 The less-than state (first < second)
 (1, (0, 0), (0, 0), (L, L), 1)
 (1, (1, 1), (1, 1), (L, L), 1)
 (1, (0, 1), (0, 1), (L, L), 1)
 (1, (1, 0), (1, 0), (L, L), 2)
 (1, (0, Λ), (0, Λ), (L, S), 1)
 (1, (Λ, 0), (B, A), (S, S), Halt) A < B
 (1, (1, Λ), (A, B), (L, S), Halt) A > B
 (1, (Λ, 1), (B, A), (S, L), Halt) A < B
 (1, (Λ, Λ), (E, E), (S, S), Halt) A < B

 The greater-than state (first > second)
 (2, (0, 0), (0, 0), (L, L), 2)
 (2, (1, 1), (1, 1), (L, L), 2)
 (2, (0, 1), (0, 1), (L, L), 1)
 (2, (1, 0), (1, 0), (L, L), 2)
 (2, (0, Λ), (0, Λ), (L, S), Halt) A > B
 (2, (Λ, 0), (Λ, 0), (S, L), 2)
 (2, (1, Λ), (A, B), (L, S), Halt) A > B
 (2, (Λ, 1), (B, A), (S, L), Halt) A < B
 (2, (Λ, Λ), (E, E), (S, S), Halt) A < B.

13.2 The Church-Turing Thesis
Learning Objectives
Be able to state the Church-Turing Thesis.

Be able to solve simple problems with each of the following models of computation:
simple while-loop programs; partial recursive functions; Markov algorithms; Post algo-
rithms; and Post systems.

Review Questions
 1. What does the Church-Turing thesis say?

 2. What is a partial recursive function?

 3. What is a Markov algorithm?

 4. What does the Markov expression x → y mean?

 5. What is a Post algorithm?

 Chapter 13 147

 6. What does the Post expression x → y mean?

 7. What is a Post system?

 8. What does the Post system expression s, t → u mean?

Solved Problems
 1. Write a simple program to test whether one natural number divides another. As-

sume that the output values 0 and 1 denote False and True, respectively. You may
use macros from either the text or exercises in Section 13.2 of the book.

 2. Show that multiplication is a partial recursive function by defining it by primitive
recursion and using the add operation from Figure 13.3 of the book.

 3. Show that each of the following logic functions is partial recursive by writing it in
terms of known partial recursive functions. Assume that P and Q return the values 0
and 1, which denote False and True, respectively. You may use any previously de-
fined partial recursive function.

 a. P(x) ∧ Q(x).

 b. ¬ P(x).

 c. P(x) ∨ Q(x).

 4. Suppose the function ƒ is defined by the following if-then-else statement:

ƒ(x) = if B(x) then C(x) else D(x),
 where B, C, and D are partial recursive functions and B(x) takes only the values 0

and 1, which we interpret as False and True, respectively. Show that ƒ is partial re-
cursive. You may use any previously defined partial recursive function from the
text or these problems.

 5. Given the function

ƒ(x, y) = min(z, monus(y, mult(x, z)) = 0).
 Try to describe ƒ for each of the following conditions.

 a. ƒ(0, y).
 b. ƒ(x, 0).

 c. ƒ(x, y) when 0 < x < y.
 d. ƒ(x, y) when 0 < y < x.

 6. Find a Markov algorithm to transform any string of the form anc into can, where n ∈
ℕ.

 7. Find a Markov algorithm that transforms any string of the form an for n ∈ ℕ into a
string of the form anb.

148 Chapter 13

 8. Find a Markov algorithm to transform any string of the form anbm into a string of
the form bnam, where m, n ∈ ℕ.

 9. Find a Post algorithm to transform any string of the form anc into can, where n ∈ ℕ.

 10. Find a Post algorithm that transforms any string of the form ambn, for m, n ∈ ℕ, into
a string of the form amcbn.

 11. Find a Post algorithm to transform any string of the form anc into cna, where n ∈ ℕ.

 12. Find a Post algorithm to transform any string of the form anbm into a string of the
form bnam, where m, n ∈ ℕ.

 13. Find a Post system that generates the language {(ab)mcan | m, n ∈ ℕ}.

 14. Find a Post system that generates the language {anbcn | n ∈ ℕ} ∪ {cnban | n ∈ ℕ}.

Solutions
 1. The algorithm will test whether A divides B by finding out if some multiple of A

can be subtracted from B to yield the value zero. The output of the program will be
contained in the variable Z. The first if-then statement makes sure that divisors can
only be positive. We’ll use macros that are already defined. Here is the algorithm.

if A ≠ 0 then
 while A < B do
 B := B monus A
 od
else
 A := B + 1;
fi;
X := A monus B;
if X ≠ 0 then Z := 0 else Z := 1 fi.

 2. Let mult(x, y) denote the product of two natural numbers x and y. Then mult has the
following definition:

 mult(x, 0) = 0
 mult(x, succ(y)) = add(x, mult(x, y)).

 3. a. P(x) ∧ Q(x) = mult(P(x), Q(x)).

 b. ¬ P(x) = monus(1, P(x))

 c. P(x) ∨ Q(x) = add(P(x), mult(monus(1, P(x)), Q(x))).

 4. We can define ƒ informally as follows:
 ƒ(x) = B(x)C(x) + (1 – B(x))D(x).

 This definition can be represented by the following composition of known partial
recursive functions.

 ƒ(x) = add(mult(B(x), C(x)), mult(monus(1, B(x)), D(x))).

 Chapter 13 149

 5. a. ƒ(0, y) = if y = 0 then 0 else ∞.
 b. ƒ(x, 0) = 0.

 c. If 0 < x < y, then ƒ(x, y) = ceiling(y/x).
 d. If 0 < y < x, then ƒ(x, y) = 1, which is also ceiling(y/x).

 6. One instruction will do the job.
 1. ac → ca.

 7. One solution is to attach a symbol x to the left end of the input string. Then move x
to the right until it reaches b and remove them both. Here is the algorithm.

 1. xa → ax
 2. xb → Λ (halt)

 8. One solution is to attach a symbol x to the left end of the input string. Then move x
to the right, while changing a’s to b’s and b’s to a’s. Here is the algorithm.

 1. xa → bx
 2. xb → xa
 3. x → a (halt)
 4. Λ → x.

 9. One instruction will do the job.
 1. Xc → cX.

 10. Find the point where a meets b and place c between them.
 XabY → XacbY
 Xa → Xac
 bX → cbX.

 11. One deterministic solution is to place markers around the string of a’s and replace
the c by a. Then replace each a by c, always keeping the markers around the a’s that
are yet to be replaced. Then remove the markers when there is nothing between
them. Here’s the algorithm.

 Xc → @X#a

 @aX#a → c@X#a

 X@aY#a → Xc@Y#a

 X@#a → Xa (halt).

150 Chapter 13

 12. One solution places two markers at the left end and then moves one of them to the
right end, changing a’s to b’s and b’s to a’s as it goes. Here is the algorithm.

 aX → @#aX
 bX → @#bX
 X#aY → Xb#Y
 X#bY → Xa#Y
 @X# → X (halt).

 13. Axiom: c.
 Inference rules: XcY → XabcY
 XcY → XcaY.

 14. Axioms: b, abc, cba.
 Inference rules: XabcY → XaabccY
 XcbaY → XccbaaY

151

Chapter 14
Computational Notions

14.1 Computability
Learning Objectives
Be able to describe the concepts of undecidable and partially decidable.

Be able to state the halting problem and prove that it is undecidable and partially
decidable.

Be able to use diagonalization to prove that the set of total computable functions cannot
be enumerated.

Review Questions
 1. What is a decidable problem?

 2. What is a partially decidable problem?

 3. What is an undecidable problem?

 4. What is the halting problem?

 5. What is the total problem?

 6. What is the equivalence problem?

 7. What is the Post correspondence problem?

Solved Problems
 1. Suppose we are given the following list of computable functions, each of which

halts on its own index.

ƒ0, ƒ1, ƒ2, ..., ƒn,

 In other words, ƒn(n) ∈ ℕ for all n ∈ ℕ. Show that there is some computable func-
tion that halts on its own index, but is not in the list.

152 Chapter 14

 2. Show that the problem of deciding whether two regular grammars derive the same
language is decidable.

 3. Show that the problem of deciding whether two regular expressions are equal is
decidable.

 4. Find a solution to the following instance of the Post correspondence problem, where
the tuples are numbered 1, 2, 3, and 4.

(a, ab), (a, ba), (baa, a), (b, a).

Solutions
 1. Let h(x) = ƒx(x) + 1. Then h is computable and is total, so it must halt on its own

index. If h is in the list, then h = ƒn for some n ∈ ℕ. But now we’ll obtain a contra-
diction when we calculate the value h(n). If we use the definition of h, then h(n) =
ƒn(n) + 1. But since h = ƒn, we also have h(n) = ƒn(n). In other words, we have
ƒn(n) = ƒn(n) + 1, which is a contradiction. Therefore h halts on its own index and is
not in the list.

 2. Use (11.12) to transform each grammar into an NFA. Then use (11.8) to transform
each NFA into a DFA. Then use (11.10) to transform each DFA into a minimum-
state DFA. Now compare the two DFA tables to see whether they have the same
number of states and, if so, whether they have the same start and final states (after
possibly renaming states), and whether the table entries are the same.

 3. Use either (11.4) or (11.7) to transform each regular expression into an NFA. Then
proceed in the same way as outlined in the preceding problem.

 4. One solution is 1, 4, 2, 3, which produces ababaa = ababaa.

14.2 A Hierarchy of Languages
Learning Objectives
Be able to describe the hierarchy of languages and to give an example of a language at
each level of the hierarchy that does not belong in a lower level.

Review Questions
 1. What is a context-sensitive grammar?

 2. What is a monotonic grammar?

 3. What is a linear bounded automaton?

 4. What is the hierarchy of languages?

 Chapter 14 153

Solved Problems
 1. Use the following monotonic grammar to write down a derivation for the string aa-

baaabb.

 S → aSbA | Ab
 A → bB | a
 bA → aaAB | bb
 B → bB | bb.

 2. The language of the following context-sensitive grammar is actually a regular lan-
guage.

 S → AS | a
 Aa → aba.

 Describe the language with a regular grammar.

 3. The language of the following monotonic grammar is actually a context-free lan-
guage.

 S → AS | ab
 Aa → aaB
 Ba → aB
 Bb → bb.

 Describe the language with a context-free grammar.

Solutions
 1. Here is a leftmost derivation of the string.

S ⇒ aSbA ⇒ aAbbA ⇒ aabbA ⇒ aabbaaAB ⇒ aabbaaaB ⇒ aabbaaabb.

 2. The following few derivations give the pattern for the strings derived by the gram-
mar.

 S ⇒ a,
 S ⇒ AS ⇒ Aa ⇒ aba,
 S ⇒ AS ⇒ AAS ⇒ AAa ⇒ Aaba ⇒ ababa,
 S ⇒ AS ⇒ AAS ⇒ AAAS ⇒ AAAa ⇒ AAaba ⇒ Aababa ⇒ abababa.

 The grammar derives the language {(ab)na | n ∈ ℕ}, and a regular grammar for this
language can be written as follows:

 S → abS | a.

 3. The following few derivations give the pattern for the strings derived by the gram-
mar.

 S ⇒ ab,
 S ⇒ AS ⇒ Aab ⇒ aaBb ⇒ aabb,
 S ⇒ AS ⇒ AAS ⇒ AAab ⇒ AaaBb ⇒ aaBaBb ⇒ aaaBBb
 ⇒ aaaBbb ⇒ aaabbb,

154 Chapter 14

 S ⇒ AS ⇒ AAS ⇒ AAAS ⇒ AAAab ⇒ AAaaBb ⇒ AaaBaBb
 ⇒ aaBaBaBb ⇒ aaaBBaBb ⇒ aaaBaBBb ⇒ aaaaBBBb
 ⇒ aaaaBBbb ⇒ aaaaBbbb ⇒ aaaabbbb.

 The grammar derives the language {anbn | n ≥ 1}, and a context-free grammar for
this language can be written as follows:

 S → aSb | ab.

14.3 Complexity Classes
Learning Objectives
Be able to describe the complexity classes P, NP, and PSPACE.

Be able to describe polynomially reducible.

Be able to describe what it means for a class to be NP-complete.

Review Questions
 1. What is the class P?

 2. What is the class NP?

 3. What is the class PSPACE?

 4. What is the known relationship between the three classes P, NP, and PSPACE?

Solved Problems
 1. Transform the following CNF into an equivalent CNF for the 3-satisfiability prob-

lem.

(a ∨ b ∨ ¬ c ∨ d) ∧ (¬ a ∨ ¬ b ∨ c ∨ ¬ d ∨ e).

 2. Find the truth value for each of the following wffs in Presburger arithmetic.

 a. ∀x ∀y (x + y = y + x).

 b. ∃y ∀x (x + y = x).

 c. ∀x ∀y ∃z (¬ (x = y) → (x + z = y)).

 d. ∀x ∀y ∀z (x + (y + z) = (x + y) + z).

 e. ∀x ∀y ((x + x = x) → (x + y = y)).

 3. Finish each of the following sentences.
 a. If p ∈ P and p is polynomially reducible to problem q, then .

 b. If p is NP-complete and p ∈ P, then .

 Chapter 14 155

 c. If p ∈ NP and p is intractable, then .

 d. If p is NP-complete and p is intractable, then .
 4. Label each decision problem with those classes from the following list to which it is

known to belong.
P, NP, PSPACE, Intractable.

 a. Traveling salesman’s problem.
 b. Quantified Boolean formula problem.

 c. Presburger arithmetic problem.
 d. Generalized regular expression problem.

 e. CNF-satisfiability problem.
 f. 3-satisfiability problem.

 g. 2-satisfiability problem.
 5. Which decision problems listed in Problem 4 are NP-complete?

Solutions
 1. Since the fundamental disjunction (a ∨ b ∨ ¬ c ∨ d) has four literals, we create three

new variables x1, x2, and x3 and then construct the following CNF:
(a ∨ b ∨ x1) ∧ (¬ c ∨ ¬ x1 ∨ x2) ∧ (d ∨ ¬ x2 ∨ x3).

 Since there are five literals in (¬ a ∨ ¬ b ∨ c ∨ ¬ d ∨ e), we create four new vari-
ables y1, y2, y3 , and y4 and then construct the following CNF:

(¬ a ∨ ¬ b ∨ y1) ∧ (c ∨ ¬ y1 ∨ y2) ∧ (¬ d ∨ ¬ y2 ∨ y3) ∧ (e ∨ ¬ y3 ∨ y4).

 The desired CNF is the conjunction of the preceding two CNFs.
 2. a. True, because of the commutative law for addition.

 b. True, because y = 0 is the identity for addition.
 c. False. For example, no natural number z satisfies 1 + z = 0.

 d. True, because of the associative law for addition.
 e. True. To see this, notice that if x + x = x, then x = 0. For if x > 0, then it follows

that x + x > x, which is contrary to hypothesis. So if x + x = x, it follows that x =
0 and thus x + y = 0 + y = y.

 3. a. q ∈ P.

 b. P = NP.

 c. P ≠ NP.
 d. P ≠ NP and all NP-complete problems are intractable.

 4. a. NP. b. PSPACE. c. Intractable. d. Intractable. e. NP. f. NP. g. P.
 5. Traveling salesman, CNF-satisfiability, and 3-satisfiability.

