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chapter 5

Analysis 
Techniques

Remember that time is money.
—Benjamin Franklin (1706–1790)

Time and space are important words in computer science because we want fast
algorithms and we want algorithms that don’t use a lot of memory. The purpose
of this chapter is to study some fundamental techniques and tools that can be
used to analyze algorithms for the time and space that they require. Although
the study of algorithm analysis is beyond our scope, we’ll give some examples to
show how the process works.

The cornerstone of algorithm analysis is counting. So after an introduc-
tion to the ideas algorithm analysis, we’ll concentrate on techniques to aid the
counting process. We’ll discuss techniques for finding closed forms for summa-
tions. Then we’ll discuss permutations, combinations, and discrete probability.
Next we’ll introduce techniques for solving recurrences. Lastly, with an eye to-
ward comparing algorithms, we’ll discuss how to compare the growth rates of
functions.

chapter guide

Section 5.1 introduces some ideas about analyzing algorithms. We’ll define the
worst-case performance of an algorithm and the idea of an optimal algorithm.
Then we’ll analyze a few example algorithms.
Section 5.2 introduces techniques for finding closed forms for sums that crop
up in the analysis of algorithms.

Section 5.3 introduces basic counting techniques for permutations and combi-
nations. We’ll also introduce discrete probability so that we can discuss the
average-case performance of algorithms.

Section 5.4 introduces techniques for solving recurrences that crop up in the
analysis of algorithms.
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Section 5.5 introduces techniques for comparing the rates of growth of functions.
We’ll apply the results to those functions that describe the approximate
running time of algorithms.

5.1 Analyzing Algorithms
An important question of computer science is: Can you convince another person
that your algorithm is efficient? This takes some discussion. Let’s start by
stating the following problem.

The Optimal Algorithm Problem
Suppose algorithm A solves problem P. Is A the best solution to P?

What does “best” mean? Two typical meanings are least time and least
space. In either case, we still need to clarify what it means for an algorithm to
solve a problem in the least time or the least space. For example, an algorithm
running on two different machines may take different amounts of time. Do we
have to compare A to every possible solution of P on every type of machine?
This is impossible. So we need to make a few assumptions in order to discuss the
optimal algorithm problem. We’ll concentrate on “least time” as the meaning of
“best” because time is the most important factor in most computations.

5.1.1 Worst-Case Running Time

Instead of executing an algorithm on a real machine to find its running time,
we’ll analyze the algorithm by counting the number of certain operations that
it will perform when executed on a real machine. In this way we can compare
two algorithms by simply comparing the number of operations of the same type
that each performs. If we make a good choice of the type of operations to count,
we should get a good measure of an algorithm’s performance. For example, we
might count addition operations and multiplication operations for a numerical
problem. On the other hand, we might choose to count comparison operations
for a sorting problem.

The number of operations performed by an algorithm usually depends on
the size or structure of the input. The size of the input again depends on the
problem. For example, for a sorting problem, “size” usually means the number
of items to be sorted. Sometimes inputs of the same size can have different
structures that affect the number of operations performed. For example, some
sorting algorithms perform very well on an input data set that is all mixed up
but perform badly on an input set that is already sorted!

Because of these observations we need to define the idea of a worst-case input
for an algorithm A. An input of size n is a worst-case input if, when compared to
all other inputs of size n, it causes A to execute the largest number of operations.
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Now let’s get down to business. For any input I we’ll denote its size by size(I ),
and we’ll let time(I ) denote the number of operations executed by A on I. Then
the worst-case function for A is defined as follows:

W A(n) = max{time(I ) | I is an input and size(I ) = n}.

Now let’s discuss comparing different algorithms that solve a problem P.
We’ll always assume that the algorithms we compare use certain specified op-
erations that we intend to count. If A and B are algorithms that solve P and
if W A(n) ≤ W B (n) for all n > 0, then we know algorithm A has worst-case
performance that is better than or equal to that of algorithm B. This gives us
the proper tool to describe the idea of an optimal algorithm.

Definition of Optimal in the Worst Case
An algorithm A is optimal in the worst case for problem P, if for any algorithm
B that exists, or ever will exist the following relationship holds:

W A(n) ≤ W B (n) for all n > 0.

How in the world can we ever find an algorithm that is optimal in the worst
case for a problem P? The answer involves the following three steps:

1. (Find an algorithm) Find or design an algorithm A to solve P. Then do an
analysis of A to find the worst-case function W A.

2. (Find a lower bound) Find a function F such that F (n) ≤ W B (n) for all n
> 0 and for all algorithms B that solve P.

3. Compare F and W A. If F = W A, then A is optimal in the worst case.

Suppose we know that F �= W A in Step 3. This means that F (n) < W A(n)
for some n. In this case there are two possible courses of action to consider:

1. Put on your construction hat and try to build a new algorithm C such that
W C (n) ≤ W A(n) for all n > 0.

2. Put on your analysis hat and try to find a new function G such that
F (n) ≤ G(n) ≤ WB(n) for all n > 0 and for all algorithms B that solve
P.

We should note that zero is always a lower bound, but it’s not very inter-
esting because most algorithms take more than zero time. A few problems have
optimal algorithms. For the vast majority of problems that have solutions, op-
timal algorithms have not yet been found. The examples contain both kinds of
problems.
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example 5.1 Matrix Multiplication

We can “multiply” two n by n matrices A and B to obtain the product AB,
which is the n by n matrix defined by letting the element in the ith row and j th
column of AB be the value of the expression . For example, let A and B be the
following 2 by 2 matrices.

A =

[
a b

c d

]
, B =

[
e f

g h

]
.

The product AB is is the following 2 by 2 matrix:

AB =

[
ae + bg af + bh

ce + dg cf + dh

]
.

Notice that the computation of AB takes eight multiplications and four addi-
tions. The definition of matrix multiplication of two n by n matrices uses n3

multiplication operations and n2(n – 1) addition operations.
A known lower bound for the number of multiplication operations needed

to multiply two n by n matrices is n2. Strassen [1969] showed how to multiply
two matrices with about n2.81 multiplication operations. The number 2.81 is an
approximation to the value of log2 (7). It stems from the fact that a pair of 2
by 2 matrices can be multiplied by using seven multiplication operations.

Multiplication of larger-size matrices is broken down into multiplying many
2 by 2 matrices. Therefore the number of multiplication operations becomes less
than n3. This revelation got research going in two camps. One camp is trying
to find a better algorithm. The other camp is trying to raise the lower bound
above n2. In recent years, algorithms have been found with still lower numbers.
Pan [1978] gave an algorithm to multiply two 70 × 70 matrices using 143,640
multiplications, which is less than 702.81 multiplication operations. Coppersmith
and Winograd [1987] gave an algorithm that, for large values of n, uses n2.376

multiplication operations. So it goes.
end example

example 5.2 Finding the Minimum

Let’s examine an optimal algorithm to find the minimum number in an unsorted
list of n numbers. We’ll count the number of comparison operations that an
algorithm makes between elements of the list. To find the minimum number in
a list of n numbers, the minimum number must be compared with the other
n – 1 numbers. Therefore, n – 1 is a lower bound on the number of comparisons
needed to find the minimum number in a list of n numbers.

If we represent the list as an array a indexed from 1 to n, then the following
algorithm is optimal because the operation ≤ is executed exactly n – 1 times.
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m := a[1];
for i := 2 to n do

m := if m = a[i ] then m else a[i ]
od

end example

5.1.2 Decision Trees

We can often use a tree to represent the decision processes that take place in
an algorithm. A decision tree for an algorithm is a tree whose nodes represent
decision points in the algorithm and whose leaves represent possible outcomes.
Decision trees can be useful in trying to construct an algorithm or trying to find
properties of an algorithm. For example, lower bounds may equate to the depth
of a decision tree.

If an algorithm makes decisions based on the comparison of two objects,
then it can be represented by a binary decision tree. Each nonleaf node in the
tree represents a pair of objects to be compared by the algorithm, and each
branch from that node represents a path taken by the algorithm based on the
comparison. Each leaf can represent an outcome of the algorithm. A ternary
decision tree is similar except that each nonleaf node represents a comparison
that has three possible outcomes.

Lower Bounds for Decision Tree Algorithms
Let’s see whether we can compute lower bounds for decision tree algorithms. If
a decision tree has depth d, then some path from the root to a leaf contains d +
1 nodes. Since the leaf is a possible outcome, it follows that there are d decisions
made on the path. Since no other path from the root to a leaf can have more
than d + 1 nodes, it follows that d is the worst-case number of decisions made
by the algorithm.

Now, suppose that a problem has n possible outcomes and it can be solved by
a binary decision tree algorithm. What is the best binary decision tree algorithm?
We may not know the answer, but we can find a lower bound for the depth of
any binary decision tree to solve the problem. Since the problem has n possible
outcomes, it follows that any binary decision tree algorithm to solve the problem
must have at least n leaves, one for each of the n possible outcomes. Recall that
the number of leaves in a binary tree of depth d is at most 2d .

So if d is the depth of a binary decision tree to solve a problem with n
possible outcomes, then we must have n ≤ 2d . We can solve this inequality for
d by taking log2 of both sides to obtain log2n ≤ d. Since d is a natural number,
it follows that

�log2n� ≤ d.
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In other words, any binary decision tree algorithm to solve a problem with n
possible outcomes must have a depth of at least �log2n�.

We can do the same analysis for ternary decision trees. The number of leaves
in a ternary tree of depth d is at most 3d . If d is the depth of a ternary decision
tree to solve a problem with n possible outcomes, then we must have n ≤ 3d .
Solve the inequality for d to obtain

�log3n� ≤ d.

In other words, any ternary decision tree algorithm to solve a problem with n
possible outcomes must have a depth of at least �log3n� .

Many sorting and searching algorithms can be analyzed with decision trees
because they perform comparisons. Let’s look at some examples to illustrate the
idea.

example 5.3 Binary Search

Suppose we search a sorted list in a binary fashion. That is, we check the middle
element of the list to see whether it’s the key we are looking for. If not, then
we perform the same operation on either the left half or the right half of the
list, depending on the value of the key. This algorithm has a nice representation
as a decision tree. For example, suppose we have the following sorted list of 15
numbers:

x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9, x 10, x 11, x 12, x 13, x 14, x 15.

Suppose we’re given a number key K, and we must find whether it is in the list.
The decision tree for a binary search of the list has the number x 8 at its root.
This represents the comparison of K with x 8. If K = x 8, then we are successful
in one comparison. If K < x 8, then we go to the left child of x 8; otherwise we go
to the right child of x 8. The result is a ternary decision tree in which the leaves
are labeled with either S, for successful search, or U, for unsuccessful search.
The decision tree is pictured in Figure 5.1.

Since the depth of the tree is 4, it follows that there will be four comparisons
in the worst to find whether K is in the list. Is this an optimal algorithm? To
see that the answer is yes, we can observe that there are 31 possible outcomes
for the given problem: 15 leaves labeled with S to represent successful searchs;
and 16 leaves labeled with U to represent the gaps where K < x 1, x i < K < x i +1

for 1 ≤ i < 15, and x 15 < K. Therefore, a worst case lower bound for the number
of comparisons is �log331� = 4. Therefore the algorithm is optimal.

end example
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x4 S

S S

SSSS

x2 x6

x8

x8 x9 x11 x13 x15x5x3x1

x10 x14

x12

U S U U S U U S U U S U U S U U S U U S U U S U

Figure 5.1 Decision tree for binary search.

example 5.4 Finding a Bad Coin

Suppose we are asked to use a pan balance to find the heavy coin among eight
coins with the assumption that they all look alike and the other seven all have
the same weight. One way to proceed is always place coins in the two pans that
include the bad coin, so the pan will always go down.

This gives a binary decision tree, where each internal node of the tree rep-
resents the pan balance. If the left side goes down, then the heavy coin is on
the left side of the balance. Otherwise, the heavy coin is on the right side of the
balance. Each leaf represents one coin that is the heavy coin. Suppose we label
the coins with the numbers 1, 2,. . . , 8.

The decision tree for one algorithm is shown in Figure 5.2, where the numbers
on either side of a nonleaf node represent the coins on either side of the pan
balance. This algorithm finds the heavy coin in three weighings. Can we do any
better? Look at the next example.

end example

1,2,3,4

1,2 3,4 5,6 7,8

5,6,7,8

5 6 7 84321

4321 8765

Figure 5.2 A binary decision tree.
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1,2,3 4,5,6

57 8 421

43 21 87 6 5

Figure 5.3 An optimal decision tree.

example 5.5 An Optimal Solution

The problem is the same as in Example 4. We are asked to use a pan balance
to find the heavy coin among eight coins with the assumption that they all look
alike and the other seven all have the same weight. In this case we’ll weigh coins
with the possibility that the two pans are balanced. So a decision tree can have
nodes with three children.

So we don’t have to use all eight coins on the first weighing. For example,
Figure 5.3 shows the decision tree for one algorithm. Notice that there is no
middle branch on the middle subtree because, at this point, one of the coins 7 or
8 must be the heavy one. This algorithm finds the heavy coin in two weighings.

This algorithm is an optimal pan-balance algorithm for the problem, where
we are counting the number of weighings to find the heavy coin. To see this,
notice that any one of the eight coins could be the heavy one. Therefore, there
must be at least eight leaves on any algorithm’s decision tree. But a binary tree
of depth d can have 2d possible leaves. So to get eight leaves, we must have 2d

≥ 8. This implies that d ≥ 3. But a ternary tree of depth d can have 3d possible
leaves. So to get eight leaves, we must have 3d ≥ 8, or d ≥ 2. Therefore, 2
is a lower bound for the number of weighings. Since the algorithm solves the
problem in two weighings, it is optimal.

end example

example 5.6 A Lower Bound Computation

Suppose we have a set of 13 coins in which at most one coin is bad and a bad
coin may be heavier or lighter than the other coins. The problem is to use a pan
balance to find the bad coin if it exists and say whether it is heavy or light. We’ll
find a lower bound on the heights of decision trees for pan-balance algorithms to
solve the problem.

Any solution must tell whether a bad coin is heavy or light. Thus there are
27 possible conditions: no bad coin and the 13 pairs of conditions (ith coin light,
ith coin heavy). Therefore, any decision tree for the problem must have at least
27 leaves. So a ternary decision tree of depth d must satisfy 3d ≥ 27, or d ≥ 3.
This gives us a lower bound of 3.
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Now the big question: Is there an algorithm to solve the problem, where
the decision tree of the algorithm has depth 3? The answer is no. Just look at
the cases of different initial weighings, and note in each case that the remaining
possible conditions cannot be distinguished with just two more weighings. Thus
any decision tree for this problem must have depth 4 or more.

end example

Exercises

1. Draw a picture of the decision tree for an optimal algorithm to find the
maximum number in the list x 1, x 2, x 3, x 4.

2. Suppose there are 95 possible answers to some problem. For each of the
following types of decision tree, find a reasonable lower bound for the number
of decisions necessary to solve the problem.

a. Binary tree. b. Ternary tree. c. Four-way tree.

3. Find a nonzero lower bound on the number of weighings necessary for any
ternary pan-balance algorithm to solve the following problem: A set of 30
coins contains at most one bad coin, which may be heavy or light. Is there
a bad coin? If so, state whether it’s heavy or light.

4. Find an optimal pan-balance algorithm to find a bad coin, if it exists, from
12 coins, where at most one coin is bad (i.e., heavier or lighter than the
others). Hint: Once you’ve decided on the coins to weigh for the root of the
tree, then the coins that you choose at the second level should be the same
coins for all three branches of the tree.

5.2 Finding Closed Forms
In trying to count things we often come up with expressions or relationships
that need to be simplified to a form that can be easily computed with familiar
operations.

Definition of Closed Form
A closed form is an an expression that can be computed by applying a fixed
number of familiar operations to the arguments. A closed form can’t have an
ellipsis because the number of operations to evaluate the form would not be fixed.
For example, the expression n(n+1)/2 is a closed form, but the expression 1 +
2 +... + n is not a closed form. In this section we’ll introduce some closed forms
for sums.
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5.2.1 Closed Forms for Sums

Let’s start by reviewing a few important facts about summation notation and
the indexes used for summing. We can use summation notation to represent a
sum like a1 + a2 + · · · + an by writing

n∑
i=1

ai = a1 + a2 + · · · + an.

Many problems can be solved by the simple manipulation of sums. So we’ll begin
by listing some useful facts about sums, which are easily verified.

Summation Fact (5.1)

a.
n∑

i=m

c = (n − m + 1)c.

b.
n∑

i=m

(ai + bi) =
n∑

i=m

ai +
n∑

i=m

bi.

c.
n∑

i=m

c ai = c
n∑

i=m

ai.

d.

n∑
i=m

ai+k =

n+k∑
i=m+k

. (k is any integer)

e.

n∑
i=m

aix
i+k = xk

n∑
i=m

aix
i. (k is any integer)

These facts are very useful in manipulating sums into simpler forms from
which we might be able to find closed forms. So we better look at a few closed
forms for some elementary sums. We already know some of them.

Closed Forms of Elementary Finite Sums (5.2)

a.

n∑
i=1

=
n(n + 1)

2
.

b.

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
.

c.

n∑
i=1

ai =
an+1 − 1

a − 1
(a �= 1).

d.

n∑
i=1

iai =
a − (n + 1)an+1 + nan + 2

(a − 1)2
(a �= 1).
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These closed forms are quite useful because they pop up in many situations
when we are trying to count the number of operations performed by an algorithm.
Are closed forms easy to find? Sometimes yes, sometimes no. Many techniques
to find closed forms use properties (5.1) to manipulate sums into sums that have
known closed forms such as those in (5.2). The following examples show a variety
of ways to find closed forms.

example 5.7 A Sum of Odd Numbers

Suppose we need a closed form for the sum of the odd natural numbers up to a
certain point:

1 + 3 + 5 + · · · + (2n + 1).

We can write this expression using summation notation as follows:
n∑

i=0

(2i + 1) = 1 + 3 + 5 + · · · + (2n + 1).

Now, let’s manipulate the sum to find a closed form. Make sure you can supply
the reason for each step:

n∑
i=0

(2i + 1) =
n∑

i=0

2i +
n∑

i=0

1

= 2
n∑

i=0

i +
n∑

i=0

1

= 2
n (n + 1)

2
+ (n + 1) = (n + 1)2 .

end example

example 5.8 Finding a Geometric Progression

Suppose we forgot the closed form for a geometric progression (5.2c). Can we
find it again? Here’s one way. Let Sn be the following geometric progression,
where a �= 1.

Sn = 1 + a + a2 + · · · + an .

Notice that we can write the sum Sn+1 in two different ways in terms of Sn :

Sn+1 = 1 + a + a2 + · · · + an+1

=
(
1 + a + a2 + · · · + an

)
+ an+1

= Sn + an+1,
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and

Sn+1 = 1 + a + a2 + · · · + an+1

= 1 + a
(
1 + a + a2 + · · · + an

)
= 1 + aSn.

So we can equate the two expressions for Sn+1 to obtain the equation

Sn + an+1 = 1 + aSn .

Since a �= 1, we can solve the equation for Sn to obtain the well-known formula
(5.2c) for a geometric progression.

n∑
i=0

ai =
an+1 − 1
a− 1

.

We can verify the answer by mathematical induction on n or by multiplying
both sides by a – 1 to get an equality.

end example

example 5.9 Finding a Closed Formula

Let’s try to derive the closed formula given in (5.2d) for the sum
∑n

i=1 ia
i.

Suppose we let Sn =
∑n

i=1 ia
i. As in Example 2, we’ll find two expressions for

Sn+1 in terms of Sn . One expresion is easy:

Sn+1 =
n+1∑
i=1

iai =
n∑

i=1

iai + (n + 1) an+1 = Sn + (n + 1) an+1.

For the other expression we can proceed as follows:

Sn+1 =
n+1∑
i=1

iai

=
n∑

i=0

(i + 1) ai+1 (5.1d)

=
n∑

i=0

iai+1 +
n∑

i=0

ai+1 (algebra and 5.1b)

= a

n∑
i=0

iai + a

n∑
i=0

ai (5.1e)

= aSn + a

(
an+1 − 1
a− 1

)
(5.2c).
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So we can equate the two expressions for Sn+1 to obtain the equation

Sn + (n + 1) an+1 = aSn + a

(
an+1 − 1
a− 1

)
.

Now solve the equation for Sn to obtain the closed form (5.2d):

n∑
i=1

iai =
a− (n + 1) an+1 + nan+2

(a− 1)2
.

end example

example 5.10 A Sum of Powers

A sum like
∑n

i=1 i
3 can be solved in terms of the two sums

n∑
i=1

i and
n∑

i=1

i2.

We’ll start by adding the term (n + 1)4 to
∑n

i=1 i
4. Then we obtain the following

equations.

n∑
i=1

i4 + (n + 1)4 =
n∑

i=0

(i + 1)4

=
n∑

i=0

(
i4 + 4i3 + 6i2 + 4i + 1

)

=
n∑

i=1

i4 + 4
n∑

i=1

i3 + 6
n∑

i=1

i2 + 4
n∑

i=1

i +
n∑

i=0

1.

Now subtract the term
∑n

i=1 i
4 from both sides of the above equation to obtain

the following equation:

(n + 1)4 = 4
n∑

i=1

i3 + 6
n∑

i=1

i2 + 4
n∑

i=1

i +
n∑

i=0

1. (5.3)

Since we know the closed forms for the latter three sums on the right side of the
equation, we can solve for

∑n
i=1 i

3 to find its closed form. We’ll leave this as an
exercise. We can use the same method to find a closed form for the expression∑n

i=1 i
k for any natural number k.

end example
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example 5.11 The Polynomial Problem

EXAMPLE 5 The Polynomial Problem
Suppose we’re interested in the number of arithmetic operations needed to

evaluate the following polynomial at some number x.

c0 + c1x + c2x
2 + · · · + cnx

n.

The number of operations performed will depend on how we evaluate it. for
example, suppose that we compute each term in isolation and then add up all
the terms. There are no operatons if n = 0. If n > 0, then there are n – 1 addition
operations and each term of the form cix i takes i multiplication operations. So
the total number of arithmetic operations for n > 0 is given by the following
sum:

(n− 1) + (1 + 2 + · · · + n) = (n− 1) +
n∑

i=1

i

= (n− 1) +
n (n + 1)

2

=
n2 + 3n− 2

2
.

So for even small values of n there are many operations to perform. For example,
if n = 30, then there are 494 arithmetic operations to perform. Can we do better?
Sure, we can group terms so that we don’t have to repeatedly compute the same
powers of x. We’ll continue the discussion after we’ve introduced recurrences.

end example

example 5.12 Simple Sort

In this example we’ll construct a simple sorting algorithm and analyze it to find
the number of comparison operations. We’ll sort an array a of numbers indexed
from 1 to n as follows: Find the smallest element in a, and exchange it with
the first element. Then find the smallest element in positions 2 through n, and
exchange it with the element in position 2. Continue in this manner to obtain a
sorted array. To write the algorithm, we’ll use a function “min” and a procedure
“exchange,” which are defined as follows:

min(a, i, n) is the index of the minimum number among the elements
a[i ], a[i + 1],. . . , a[n]. We can easily modify the algorithm in Example
2 to accomplish this task with with n – i comparisons.

exchange(a[i ], a[j ]) is the usual operation of swapping elements and does
not use any comparisons.
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Now we can write the sorting algorithm as follows:

for i := 1 to n – 1 do
j := min(a, i, n);
exchange(a[i ], a[j ])

od

Now let’s compute the number of comparison operations. The algorithm for
min(a, i, n) makes n – i comparisons. So as i moves from 1 to n – 1, the
number of comparison operations moves from n – 1 to n – (n – 1). Adding these
comparisons gives the sum of an arithmetic progression,

(n− 1) + (n− 2) + · · · + 1 =
n (n− 1)

2
.

The algorithm makes the same number of comparisons no matter what the form
of the input array, even if it is sorted to begin with. So any arrangement of
numbers is a worst-case input. For example, to sort 1,000 items it would take
499,500 comparisons, no matter how the items are arranged at the start.

end example

There are many faster sorting algorithms. For example, an algorithm called
“heapsort” takes no more than 2n log2 n comparisons for its worst-case perfor-
mance. So for 1000 items, heapsort would take a maximum of 20,000 comparisons—
quite an improvement over our simple sort algorithm. In Section 5.3 we’ll dis-
cover a good lower bound for the worst-case performance of comparison sorting
algorithms.

Exercises

Closed Forms for Sums

1. Expand each expression into a sum of terms. Don’t evaluate.

a.
5∑

i=1

(2i + 3). b.
5∑

i=1

i3i. c.
4∑

i=0

(5 − i) 3i.

2. (Changing Limits of Summation). Given the following summation expres-
sion:

n∑
i=1

g (i− 1) aix
i+1.

For each of the following lower limits of summation, find an equivalent sum-
mation expression that starts with that lower limit.

a. i = 0. b. i = 2. c. i = –1. d. i = 3. e. i = –2.
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3. Find a closed form for each of the following sums.

a. 3 + 6 + 9 + 12 + · · · + 3n.
b. 3 + 9 + 15 + 27 + · · · + (6n + 3).
c. 3 + 6 + 12 + 24 + · · · + 3(2n).
d. 3 + (2) 32 + (3) 33 + (4) 34 + · · · + n3n.

4. For each of the following summations, use summation facts and known closed
forms to transform each summation into a closed form.

a.
n∑

i=1

(2i + 2). b.
n∑

i=1

(2i− 1).

c.
n∑

i=1

(2i + 3). d.
n∑

i=1

(4i− 1).

e.
n∑

i=1

(4i− 2). f.
n∑

i=1

i2i.

g.
n∑

i=1

i (i + 1). h.
n∑

i=2

(
i2 − i

)
.

5. Solve equation (5.3) to find a closed form for the expression
∑n

i=1 i
3.

Analyzing Algorithms

6. For the following algorithm, answer each question by giving a formula in
terms of n:

for i := 1 to n do
for j := 1 to i do x := x + f (x ) od;
x := x + g(x )

od

a. Find the number of times the assignment statement (:=) is executed
during the running of the program.

b. Find the number of times the addition operation (+) is executed during
the running of the program.

7. For the following algorithm, answer each question by giving a formula in
terms of n:

i := 1;
while i < n + 1 do

i := i + 1;
for j := 1 to i do S od

od
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a. Find the number of times the statement S is executed during the run-
ning of the program.

b. Find the number of times the assignment statement (:=) is executed
during the running of the program.

Proofs and Challenges

8. For the following algorithm, answer each question by giving a formula in
terms of n:

i := 1;
while i < n + 1 do

i := i + 2;
for j := 1 to i do S od

od

a. Find the number of times the statement S is executed during the run-
ning of the program.

b. Find the number of times the assignment statement (:=) is executed
during the running of the program.

5.3 Counting and Discrete Probability
Whenever we need to count the number of ways that some things can be arranged
or the number of subsets of things, there are some nice techniques that can help
out. That’s what our discussion of permutations and combinations will be about.

Whenever we need to count the number of operations performed by an al-
gorithm, we need to consider whether the algorithm yields different results with
each execution because of factors such as the size and/or structure of the input
data. More generally, many experiments don’t always yield the same results
each time they are performed. For example, if we flip a coin we can’t be sure
of the outcome. This brings our discussion to probability. After introducing the
basics, we’ll see how probability is used when we need to count the number of
operations performed by an algorithm in the average case.

5.3.1 Permutations (Order is Important)

In how many different ways can we arrange the elements of a set S? If S has n
elements, then there are n choices for the first element. For each of these choices
there are n – 1 choices for the second element. Continuing in this way, we obtain
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n! = n · (n – 1) · · · 2 · 1 different arrangements of n elements. Any arrangement
of n distinct objects is called a permutation of the objects. We’ll write down the
rule for future use:

Permutations (5.4)
There are n! permutations of an n-element set.

For example, if S = {a, b, c}, then the six possible permutations of S, written
as strings, are listed as follows:

abc, acb, bac, bca, cab, cba.

Now suppose we want to count the number of permutations of r elements
chosen from an n-element set, where 1 ≤ r ≤ n. There are n choices for the first
element. For each of these choices there are n – 1 choices for the second element.
We continue this process r times to obtain the answer,

n (n – 1) · · · (n – r + 1).

This number is denoted by the symbol P(n, r) and is read “the number of
permutations of n objects taken r at a time.” We should emphasize here that
we are counting r distinct objects. So we have the formulas shown in (5.5) and
(5.6):

Permutations
The number of permutations of n objects taken r at a time is given by

P (n, r) = n(n− 1) · · · (n− r + 1), (5.5)

which can also be written,

P (n, r) =
n!

(n− 4)!
. (5.6)

Notice that P(n, 1) = n and P(n, n) = n!. If S = {a, b, c, d}, then there are
12 permutations of two elements from S, given by the formula P(4, 2) = 4!/2!
= 12. The permutations are listed as follows:

ab, ba, ac, ca, ad, da, bc, cb, bd, db, cd, dc.
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Permutations with Repeated Elements
Permutations can be thought of as arrangements of objects selected from a set
without replacement. In other words, we can’t pick an element from the set more
than once. If we can pick an element more than once, then the objects are said
to be selected with replacement. In this case the number of arrangements of r
objects from an n-element set is just nr . We can state this idea in terms of
bags as follows: The number of distinct permutations of r objects taken from a
bag containing n distinct objects, each occurring r times, is nr . For example,
consider the bag B = [a, a, b, b, c, c]. Then the number of distinct permutations
of two objects chosen from B is 32, and they can be listed as follows:

aa, ab, ac, ba, bb, bc, ca, cb, cc.

Let’s look now at permutations of all the elements in a bag. For example,
suppose we have the bag B = [a, a, b, b, b]. We can write down the distinct
permutations of B as follows:

aabbb, ababb, abbab, abbba, baabb, babab, babba, bbaab, bbaba, bbbaa.

There are 10 strings. Let’s see how to compute the number 10 from the informa-
tion we have about the bag B. One way to proceed is to place subscripts on the
elements in the bag, obtaining the five distinct elements a1, a2, b1, b2, b3. Then
we get 5! = 120 permutations of the five distinct elements. Now we remove all
the subscripts on the elements, and we find that there are many repeated strings
among the original 120 strings.

For example, suppose we remove the subscripts from the two strings,

a1b1b2a2b3 and a2b1b3a1b2 .

Then we obtain two occurrences of the string abbab. If we wrote all occurrences
down, we would find 12 strings, all of which reduce to the string abbab when
subscripts are removed. This is because there are 2! permutations of the letters
a1 and a2, and there are 3! permutations of the letters b1, b2, and b3. So there
are 2!3! = 12 distinct ways to write the string abbab when we use subscripts. Of
course, the number is the same for any string of two a’s and three b’s. Therefore,
the number of distinct strings of two a’s and three b’s is found by dividing the
total number of subscripted strings by 2!3! to obtain 5!/2!3! = 10. This argument
generalizes to obtain the following result about permutations that can contain
repeated elements.

Permutations of a Bag (5.7)
Let B be an n-element bag with k distinct elements, where each of the num-
bers m1,. . . , mk denotes the number of occurrences of each element. Then
the number of permutations of the n elements of B is

n!
m1! · · ·mk!

.
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Now let’s look at a few examples to see how permutations (5.4)–(5.7) can be
used to solve a variety of problems. We’ll start with an important result about
sorting.

example 5.13 Worst-Case Lower Bound for Comparison Sorting

Let’s find a lower bound for the number of comparisons performed by any algo-
rithm that sorts by comparing elements in the list to be sorted. Assume that we
have a set of n distinct numbers. Since there are n! possible arrangements of
these numbers, it follows that any algorithm to sort a list of n numbers has n!
possible input arrangements. Therefore, any decision tree for a comparison sort-
ing algorithm must contain at least n! leaves, one leaf for each possible outcome
of sorting one arrangement.

We know that a binary tree of depth d has at most 2d leaves. So the
depth d of the decision tree for any comparison sort of n items must satisfy the
inequality

n! = 2d .

We can solve this inequality for the natural number d as follows:

log2 n! ≤ d

�log2 n!� ≤ d.

In other words, � log2 n!� is a worst-case lower bound for the number of com-
parisons to sort n items. The number � log2 n!� is hard to calculate for large
values of n. We’ll see in Section 5.5 that it is approximately n log2 n.

end example

example 5.14 People in a Circle

EXAMPLE 2 People in a Circle
In how many ways can 20 people be arranged in a circle if we don’t count a

rotation of the circle as a different arrangement? There are 20! arrangements of
20 people in a line. We can form a circle by joining the two ends of a line. Since
there are 20 distinct rotations of the same circle of people, it follows that there
are

20!
20

= 19!

distinct arrangements of 20 people in a circle. Another way to proceed is to put
one person in a certain fixed position of the circle. Then fill in the remaining 19
people in all possible ways to get 19! arrangements.

end example
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example 5.15 Rearranging a String

How many distinct strings can be made by rearranging the letters of the word
banana? One letter is repeated twice, one letter is repeated three times, and one
letter stands by itself. So we can answer the question by finding the number of
permutations of the bag of letters [b, a, n, a, n, a]. Therefore, (5.7) gives us the
result

6!
1!2!3!

= 60.

end example

example 5.16 Strings with Restrictions

How many distinct strings of length 10 can be constructed from the two digits
0 and 1 with the restriction that five characters must be 0 and five must be 1?
The answer is

10!
5!5!

= 252

because we are looking for the number of permutations from a 10-element bag
with five 1’s and five 0’s. end example

example 5.17 Constructing a Code

Suppose we want to build a code to represent each of 29 distinct objects with a
binary string having the same minimal length n, where each string has the same
number of 0’s and 1’s. Somehow we need to solve an inequality like

n!
k!k!

≥ 29,

where k = n/2. We find by trial and error that n = 8. Try it.
end example

5.3.2 Combinations (Order Is Not Important)

Suppose we want to count the number of r -element subsets in an n-element set.
For example, if S = {a, b, c, d}, then there are four 3-element subsets of S :
{a, b, c}, {a, b, d}, {a, c, d}, and {b, c, d}. Is there a formula for the general
case? The answer is yes. An easy way to see this is to first count the number of
r -element permutations of the n elements, which is given by the formula

P (n, r) =
n!

(n− 4)!
.
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Now each r -element subset has r ! distinct r -element permutations, which we
have included in our count P(n, r). How do we remove the repeated permutations
from the count? Let C (n, r) denote the number of r -element subsets of an n-
element set. Since each of the r -element subsets has r ! distinct permutations, it
follows that r ! · C (n, r) = P(n, r). Now divide both sides by r ! to obtain the
desired formula C (n, r) = P(n, r)/r !.

The expression C (n, r) is usually said to represent the number of combi-
nations of n things taken r at a time. With combinations, the order in which
the objects appear is not important. We count only the different sets of objects.
C (n, r) is often read “n choose r.” Here’s the formula for the record.

Combinations (5.8)
The number of combinations of n things taken r at a time is given by

C (n, r) =
P (n, r)

r!
=

n!
r! (n− 4!)

.

example 5.18 Subsets of the Same Size

Let S = {a, b, c, d, e}. We’ll list all the three-element subsets of S:

{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e},
{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}.

There are 10 such subsets, which we can verify by the formula

C (5, 3) =
5!

3!2!
= 10.

end example

Binomial Coefficients
Notice how C (n, r) crops up in the following binomial expansion of the expression
(x + y)4:

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

= C (4, 0)x4 + C (4, 1)x3y + C (4, 2)x2y2 + C (4, 3)xy3 + C (4, 4) y4.

A useful way to represent C (n, r) is with the binomial coefficient symbol:(
n

r

)
= C(n, r).
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Using this symbol, we can write the expansion for (x + y)4 as follows:

(x + y)4 = x4 + 4x3y + 6x2y2 + xy3 + y4

=

(
4
0

)
x4 +

(
4
1

)
z3y +

(
4
2

)
x2y2 +

(
4
3

)
xy3 +

(
4
4

)
y4.

This is an instance of a well-known formula called the binomial theorem, which
can be written as follows, where n is a natural number:

Binomial Theorem (5.9)

(x + y)n =
n∑

i=0

(
n

i

)
xn−iyi.

Pascal’s Triangle
The binomial coefficients for the expansion of (x + y)n can be read from the
nth row of the table in Figure 5.4. The table is called Pascal’s triangle—after
the philosopher and mathematician Blaise Pascal (1623–1662). However, prior
to the time of Pascal the triangle was known in China, India, the Middle East,
and Europe. Notice that any interior element is the sum of the two elements
above and to its left.

But how do we really know that the following statement is correct?

1

1

1

1

1

1

1

1

1

1

1

0

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

3

6

10

15

21

28

36

45

1

4

10

20

35

56

84

120

1

5

15

35

70

126

210

1

6

21

56

126

252

1

7

28

84

210

1

8

36

120

1

9

45

1

10 1

n 0 1 2 3 4 5 6 7 8 9 10

Figure 5.4 Pascal’s triangle.
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Elements in Pascal’s Triangle (5.10)

The nth row kth column entry of Pascal’s triangle is

(
n

k

)
.

Proof: For convenience we will designate a position in the triangle by an ordered
pair of the form (row, column). Notice that the edge elements of the triangle are
all 1, and they occur at positions (n, 0) or (n, n). Notice also that(

n

0

)
= 1 =

(
n

n

)
.

So (5.10) is true when k = 0 or k = n. Next, we need to consider the interior
elements of the triangle. So let n > 1 and 0 < k < n. We want to show that the
element in position (n, k) is

(
n
k

)
. To do this, we need the following useful result

about binomial coefficients:(
n

k

)
=

(
n− 1
k

)
+

(
n− 1
k − 1

)
. (5.11)

To prove (5.11), just expand each of the three terms and simplify. Continuing
with the proof of (5.10), we’ll use well-founded induction. To do this, we need
to define a well-founded order on something. For our purposes we will let the
something be the set of positions in the triangle. We agree that any position
in row n – 1 precedes any position in row n. In other words, if n ′ < n, then
(n ′, k ′) precedes (n, k) for any values of k ′ and k. Now we can use well-founded
induction. We pick position (n, k) and assume that (5.10) is true for all pairs in
row n – 1. In particular, we can assume that the elements in positions (n – 1, k)
and (n – 1, k – 1) have values(

n− 1
k

)
and

(
n− 1
k − 1

)
.

Now we use this assumption along with (5.11) to tell us that the value of the
element in position (n, k) is

(
n
k

)
. QED.

Can you find some other interesting patterns in Pascal’s triangle? There are
lots of them. For example, look down the column labeled 2 and notice that, for
each n ≥ 2, the element in position (n, 2) is the value of the arithmetic sum 1
+ 2 + · · · + (n – 1). In other words, we have the formula(

n

2

)
=

n(n− 1)
2

.
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Combinations with Repeated Elements
Let’s continue our discussion about combinations by counting bags of things
rather than sets of things. Suppose we have the set A = {a, b, c}. How many
3-element bags can we construct from the elements of A? We can list them as
follows:

[a, a, a] , [a, a, b] , [a, a, c] , [a, b, c] , [a, b, b] ,
[a, c, c] , [b, b, b] , [b, b, c] , [b, c, c] , [c, c, c] .

So there are ten 3-element bags constructed from the elements of {a, b, c}.
Let’s see if we can find a general formula for the number of k -element bags

that can be constructed from an n-element set. For convenience, we’ll assume
that the n-element set is A = {1, 2,. . . , n}. Suppose that b = [x 1, x 2, x 3,. . . , x k ]
is some k -element bag with elements chosen from A, where the elements of b are
written so that x1 ≤ x2 ≤ · · · ≤ xk . This allows us to construct the following
k -element set:

B = {x 1, x 2 + 1, x 3 + 2,. . . , x k + (k – 1)}.

The numbers x i + (i – 1) are used to ensure that the elements of B are distinct
elements in the set C = {1, 2,. . . , n + (k – 1)}. So we’ve associated each
k -element bag b over A with a k -element subset B of C. Conversely, suppose
that {y1, y2, y3,. . . , yk} is some k -element subset of C, where the elements are
written so that y1 ≤ y2 ≤ · · · ≤ yk . This allows us to construct the k -element
bag

[y1, y2 – 1, y3 – 2,. . . , yk – (k – 1)],

whose elements come from the set A. So we’ve associated each k -element subset
of C with a k -element bag over A.

Therefore, the number of k -element bags over an n-element set is exactly
the same as the number of k -element subsets of a set with n + (k – 1) elements.
This gives us the following result.

Bag Combinations (5.12)
The number of k -element bags whose distinct elements are chosen from an
n-element set, where k and n are positive, is given by(

n + k − 1
k

)
.
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example 5.19 Selecting Coins

In how many ways can four coins be selected from a collection of pennies, nickels,
and dimes? Let S = {penny, nickel, dime}. Then we need the number of
4-element bags chosen from S. The answer is(

3 + 4 − 1
4

)
=

(
6
4

)
= 15.

end example

example 5.20 Selecting a Committee

In how many ways can five people be selected from a collection of Democrats,
Republicans, and Independents? Here we are choosing five-element bags from a
set of three characteristics {Democrat, Republican, Independent}. The answer is(

3 + 5 − 1
5

)
=

(
7
5

)
= 21.

end example

5.3.3 Discrete Probability

The founders of probability theory were Blaise Pascal (1623–1662) and Pierre
Fermat (1601–1665). They developed the principles of the subject in 1654 during
a correspondence about games of chance. It started when Pascal was asked
about a gambling problem. The problem asked how the stakes of a “points”
game should be divided up between two players if they quit before either had
enough points to win.

Probability comes up whenever we ask about the chance of something hap-
pening. To answer such a question requires one to make some kind of assumption.
For example, we might ask about the average behavior of an algorithm. That
is, instead of the worst case performance, we might be interested in the average
case performance. This can be bit tricky because it usually forces us to make
one or two assumptions. Some people hate to make assumptions. But it’s not
so bad. Let’s do an example.

Suppose we have a sorted list of the first 15 prime numbers, and we want
to know the average number of comparisons needed to find a number in the list,
using a binary search. The decision tree for a binary search of the list is pictured
in Figure 5.5.

After some thought, you might think it reasonable to add up all the path
lengths from the root to a leaf marked with an S (for successful search) and
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S
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U S U U S U U S U U S U U S U U S U U S U U S U

19

7

3

2 5 11 17 23 31 41 47

13 29 43

37

Figure 5.5 Binary search decision tree.

divide by the number of S leaves, which is 15. In this case there are eight paths
of length 4, four paths of length 3, two paths of length 2, and one path of length
1. So we get

Average path length =
32 + 12 + 4 + 1

15
=

49
15

≈ 3.27.

This gives us the average number of comparisons needed to find a number in
the list. Or does it? Have we made any assumptions here? Yes, we assumed that
each path in the tree has the same chance of being traversed as any other path.
Of course, this might not be the case. For example, suppose that we always
wanted to look up the number 37. Then the average number of comparisons
would be two. So our calculation was made under the assumption that each of
the 15 numbers had the same chance of being picked.

Probability Terminology
Let’s pause here and introduce some notions and notations for discrete prob-
ability, which gives us methods to calculate the likelihood of events that have
a finite number of outcomes. If some operation or experiment has n possible
outcomes and each outcome has the same chance of occurring, then we say that
each outcome has probability 1/n. In the preceding example we assumed that
each number had probability 1/15 of being picked. As another example, let’s
consider the coin-flipping problem. If we flip a fair coin, then there are two
possible outcomes, assuming that the coin does not land on its edge. Thus the
probability of a head is 1/2, and the probability of a tail is 1/2. If we flip the
coin 1,000 times, we should expect about 500 heads and 500 tails. So probability
has something to do with expectation.

Now for some terminology. The set of all possible outcomes of an experiment
is called a sample space. The elements in a sample space are called sample points
or simply points. Further, any subset of a sample space is called an event. For
example, suppose we flip two coins and are interested in the set of possible
outcomes. Let H and T mean head and tail, respectively, and let the string HT
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mean that the first coin lands H and the second coin lands T. Then the sample
space for this experiment is the set

{HH, HT, TH, TT}.

For example, the event that one coin lands as a head and the other coin lands
as a tail can be represented by the subset {HT, TH }.

To discuss probability we need to make assumptions or observations about
the probabilities of sample points. Here is the terminology.

Probability Distribution
A probability distribution on a sample space S is an assignment of probabilities
to the points of S such that the sum of all the probabilities is 1.

Let’s describe a probability distribution from a more formal point of view.
Let S = {x 1, x 2,. . . , xn} be a sample space. A probability distribution P on S
is a function

P : S → [0, 1]

such that

P(x 1) + P(x 2) + · · · + P(xn) = 1.

For example, in the two-coin-flip experiment it makes sense to define the following
probability distribution on the sample space S = {HH, HT, TH, TT}:

P (HH) = P (HT ) = P (TH) = P (TT ) =
1
4
.

Probability of an Event
Once we have a probability distribution P defined on the points of a sample
space S, we can use P to define the probability of any event E in S.

Probability of an Event
The probability of an event E is denoted by P(E ) and is defined by

P (E) =
∑
x∈E

P (x) .

In particular, we have P(S ) = 1 and P(∅) = 0. If A and B are two events,
then the following formula follows directly from the definition and the inclusion-
exclusion principle.

P(A ∪ B) = P(A) + P(B) – P(A ∩ B).
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This formula has a very useful consequence. If E ′ is the complement of E in S,
then S = E ∪ E ′ and E ∩ E ′ = ∅. So it follows from the formula that

P(E ′) = 1 – P(E ).

example 5.21 Complement of an Event

In our two-coin-flip example, let E be the event that at least one coin is a tail.
Then E = {HT, TH, TT}. We can calculate P(E ) as follows:

P(E ) = P({HT, TH, TT}) = P(HT ) + P(TH ) + P(TT ) = 1
4 + 1

4 + 1
4 = 3

4 .

But we also could observe the that the complement E ′ is the event that both
coins are heads. So we could calulate

P(E ) = 1 – P(E ′) = 1 – P(HH ) = 1 − 1
4 = 3

4 .

end example

Classic Example: The Birthday Problem
Suppose we ask 25 people, chosen at random, their birthday (month and day).
Would you bet that they all have different birthdays? It seems a likely bet that
no two have the same birthday since there are 365 birthdays in the year. But, in
fact, the probability that two out of 25 people have the same birthday is greater
than 1/2. Again, we’re assuming some things here, which we’ll get to shortly.
Let’s see why this is the case. The question we want to ask is:

Given n people in a room, what is the probability that at least two of
the people have the same birthday (month and day)?

We’ll neglect leap year and assume that there are 365 days in the year. So
there are 365n possible n-tuples of birthdays for n people. This set of n-tuples
is our sample space S. We’ll also assume that birthdays are equally distributed
throughout the year. So for any n-tuple (b1,. . . , bn) of birthdays, we have
P(b1,. . . , bn) = 1/365n . The event E that we are concerned with is the subset
of S consisting of all n-tuples that contain two or more equal entries. So our
question can be written as follows:

What is P(E )?

To answer the question, let’s use the negation technique. That is, we’ll
compute the probability of the event E ′ = S – E, consisting of all n-tuples that
have distinct entries. In other words, no two of the n people have the same
birthday. Then the probability that we want is P(E ) = 1 – P(E ′). So let’s
concentrate on E ′.
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10

20

23

30

40

0.117

0.411

0.507

0.706

0.891

n P (E )

Figure 5.6 Birthday table.

An n-tuple is in E ′ exactly when all its components are distinct. The car-
dinality of E ′ can be found in several ways. For example, there are 365 possible
values for the first element of an n-tuple in E ′. For each of these 365 values
there are 364 values for the second element of an n-tuple in E ′. Thus we obtain

365 · 364 · 363 · · · (365 – n + 1)

n-tuples in E ′. Of course, this is also the number P(365, n) of permutations
of 365 things taken n at a time. Since each n-tuple of E ′ is equally likely with
probability 1/365n , it follows that

P (E′) =
365 · 364 · 363 · · · (365 − n + 1)

365n
.

Thus the probability that we desire is

P (E) = 1 − P (E′) = 1 − 365 · 364 · 363 · · · (365 − n + 1)
365n

.

The table in Figure 5.6 gives a few calculations for different values of n.
Notice the case when n = 23. The probability is better than 0.5 that two

people have the same birthday. Try this out next time you’re in a room full of
people. It always seems like magic when two people have the same birthday.

example 5.22 Switching Pays

Suppose there is a set of three numbers. One of the three numbers will be chosen
as the winner of a three-number lottery. We pick one of the three numbers. Later,
we are told that one of the two remaining numbers is not a winner, and we are
given the chance to keep the number that we picked or to switch and choose the
remaining number. What should we do? We should switch.

To see this, notice that once we pick a number, the probability that we did
not pick the winner is 2/3. In other words, it is more likely that one of the other
two numbers is a winner. So when we are told that one of the other numbers is
not the winner, it follows that the remaining other number has probability 2/3
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of being the winner. So go ahead and switch. Try this experiment a few times
with a friend to see that in the long run it’s better to switch.

Another way to see that switching is the best policy is to modify the problem
to a set of 50 numbers and a 50-number lottery. If we pick a number, then the
probability that we did not pick a winner is 49/50. Later we are told that 48 of
the remaining numbers are not winners, but we are given the chance to keep the
number we picked or switch and choose the remaining number. What should
we do? We should switch because the chance that the remaining number is the
winner is 49/50.

end example

Conditional Probability
If we ask a question about the chance of something happening given that some-
thing else has happened, we are using conditional probability.

Conditional Probability
If A and B are events and P(B) �= 0, then the conditional probability of A
given B is denoted by P(A|B) and defined by

P (A|B) =
P (A ∩B)
P (B)

.

We can think of P(A|B) as the probability of the event A ∩ B when the sam-
ple space is restricted to B once we make an appropriate adjustment to the
probability distribution.

example 5.23 Conditional Probability

In a university it is known that 1% of students major in mathematics and 2%
major in computer science. Further, it is known that 0.1% of students major
in both mathematics and computer science. If a student is chosen at random
and happens to be a computer science major, what is the probability that the
student is also majoring in mathematics?

To solve the problem we can let A and B be the sets of mathematics majors
and computer science majors, respectively. Then the question asks for the value
of P(A|B). This is easily calculated because P(A) =.01, P(B) =.02, and P(A ∩
B) =.001. Therefore P(A|B) =.001/.02 =.05.

end example

Suppose a sample space S is partitioned into disjoint events E 1,. . . , En and
B is another event such that P(B) �= 0. Then we can answer some interesting
questions about the chance that “B was caused by E i” for each i. In other
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words, we can calculate P(E i |B) for each i. Although this is just a conditional
probability, there is an interesting way to compute it in terms of the probabilities
P(B |E i) and P(E i). The following formula, which is known as Bayes’ theorem,
follows from the assumption that the events E 1,. . . , En form a partition the
sample space.

P (Ei|B) =
P (Ei)P (B|Ei)

P (E1)P (B|E1) + · · · + P (En)P (B|En)
.

When using Bayes’ theorem we can think of P(E i |B) as the probability that B
is caused by E i .

example 5.24 Probable Cause

Suppose that the input data set for a program is partitioned into two types, one
makes up 60% of the data and the other makes up 40%. Suppose further that
inputs from the two types cause warning messages 30% of the time and 20% of
the time, respectively. If a random warning message is received, what are the
chances that it was caused by an input of each type?

To solve the problem we can use Bayes’ theorem. Let E 1 and E 2 be the
two sets of data and let B be the set of data that causes warning messages.
Then we want to find P(E 1|B) and P(E 2|B). Now we are given the following
probabilities:

P(E 1) =.6, P(E 2) = 0.4, P(B |E 1) =.3, P(B |E 2) =.2

So we can calculate P() as follows:

P (E1|B) =
P (E1)P (B|E1)

P (E1)P (B|E1) + P (E2)P (B|E2)

=
(.6) (.15)

(.6) (.15) + (.4) (.2)
=

.09

.17
≈ .53.

A similar calculation gives P(E 2|B) ≈ .47.
end example

Independent Events
Informally, two events A and B are independent if they don’t influence each
other. If A and B don’t influence each other and their probabilities are nonzero,
we would like to say that P(A|B) = P(A) and P(B |A) = P(B). This condition
follows from the definition of independence. Two events A and B are independent
if the following equation holds:

P(A ∩ B) = P(A) · P(B).
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It’s interesting to note that if A and B are independent events, then so are the
three pairs of events A and B ′, A′ and B, and A′ and B ′. We’ll discuss this in
the exercises.

The nice thing about independent events is that it simplifies the task of
assigning probabilities and computing probabilities.

example 5.25 Independence of Events

In the two-coin-flip example, let A be the event that the first coin is heads and
let B be the event that the two coins come up different. Then A = {HT, HH },
B = {HT, TH }, and A ∩ B = {HT}. If we each coin is fair, then A and B are
independent because P(A) = P(B) = 1/4 and P(A ∩ B) = 1/2.

Of course many events are not independent. For example, if C is the event
that the at least one coin is tails, then C = {HT, TH, TT}. It follows that A ∩
C = {HT} and B ∩ C = {HT, TH }. If the coins are fair, then it follows that
A and C are dependent events and also that B and C are dependent events.

end example

Repeated Independent Trials
Independence is often used to assign probabilities for repeated trials of the same
experiment. We’ll be content here to discuss repeated trials of an experiment
with two outcomes, where the trials are independent. For example, if we flip
a coin n times, it’s reasonable to assume that each flip is independent of the
other flips. To make things a bit more general, we’ll assume that a coin comes
up either heads with probability p or tails with probability 1 – p. Here is the
question that we want to answer.

What is the probability that the coin comes up heads exactly k times?

To answer this question we need to consider the independence of the flips. For
example, if we let Ai be the event that the ith coin comes up heads, then
P (Ai) = p and P (A′

i) = 1 − p. Suppose now that we ask the probability that
the first k flips come up heads and the last n – k flips come up tails, then we
are asking about the probability of the event

A1 ∩ · · · ∩Ak ∩A
′

k+1 ∩ · · · ∩A
′

n.

Since each event in the intersection is independent of the others events, the
probability of the intersection is the product of probabilities

pk (1 – p)n – k .

We get the same answer for each arrangement of k heads and n – k tails. So we’ll
have an answer the question if we can find the number of different arrangements
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of k heads and n – k tails. By (5.7) there are

n!
k! (n− k)!

such arrangements. This is also C (n, k), which we can represent by the binomial
coefficient symbol. So if a coin flip is repeated n times, then the probability of
k successes is given by the expression(

n

k

)
pk(1 − p)n−k.

This set of probabilities is called the binomial distribution. The name fits because
by the binomial theorem, the sum of the probabilities as k goes from 0 to n is
1. We should note that although we used coin flipping to introduce the ideas,
the binomial distribution applies to any experiment with two outcomes that has
repeated trials.

Expectation = Average Behavior
Let’s get back to talking about averages and expectations. We all know that the
average of a bunch of numbers is the sum of the numbers divided by the number
of numbers. So what’s the big deal? The deal is that we often assign numbers
to each outcome in a sample space. For example, in our beginning discussion we
assigned a path length to each of the first 15 prime numbers. We added up the
15 path lengths and divided by 15 to get the average. Makes sense, doesn’t it?
But remember, we assumed that each number was equally likely to occur. This
is not always the case. So we also have to consider the probabilities assigned to
the points in the sample space.

Let’s look at another example to set the stage for a definition of expectation.
Suppose we agree to flip a coin. If the coin comes up heads, we agree to pay 4
dollars; if it comes up tails, we agree to accept 5 dollars. Notice here that we have
assigned a number to each of the two possible outcomes of this experiment. What
is our expected take from this experiment? It depends on the coin. Suppose the
coin is fair. After one flip we are either 4 dollars poorer or 5 dollars richer.
Suppose we play the game 10 times. What then? Well, since the coin is fair, it
seems likely that we can expect to win five times and lose five times. So we can
expect to pay 20 dollars and receive 25 dollars. Thus our expectation from 10
flips is 5 dollars.

Suppose we knew that the coin was biased with P(head) = 2/5 and P(tail)
= 3/5. What would our expectation be? Again, we can’t say much for just one
flip. But for 10 flips we can expect about four heads and six tails. Thus we can
expect to pay out 16 dollars and receive 30 dollars, for a net profit of 14 dollars.
An equation to represent our reasoning follows:

10P (head) (−4) + 10P (tail) (5) = 10
(

2
5

)
(−4) + 10

(
3
5

)
(5) =

70
5

= 14.
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Can we learn anything from this equation? Yes, we can. The 14 dollars
represents our take over 10 flips. What’s the average profit? Just divide by 10
to get $1.40. This can be expressed by the following equation:

P (head) (−4) + P (tail) (5) =
(

2
5

)
(−4) +

(
3
5

)
(5) =

70
5

= 1.4.

So we can compute the average profit per flip without using the number
of coin flips. The average profit per flip is $1.40 no matter how many flips
there are. That’s what probability gives us. It’s called expectation, and we’ll
generalize from this example to define expectation for any sample space having
an assignment of numbers to the sample points.

Definition of Expectation
Let S be a sample space, P a probability distribution on S, and V : S → R an
assignment of numbers to the points of S. Suppose S = {x 1, x 2,. . . , xn}. Then
the expected value (or expectation) of V is defined by the following formula.

E (V ) = V (x 1)P(x 1) + V (x 2)P(x 2) + · · · + V (xn)P(xn).

So when we want the average behavior, we’re really asking for the expectation.
For example, in our little coin-flip example we have S = {head, tail}, P(head)
= 2/5, P(tail) = 3/5, V (head) = –4, and V (tail) = 5. So the expectation of V
is calculated by E (V ) = (–4)(2/5) + 5(3/5) = 1.4.

We should note here that in probability theory the function V is called a
random variable.

Average Performance of an Algorithm
To compute the average performance of an algorithm A, we must do several
things: First, we must decide on a sample space to represent the possible inputs
of size n. Suppose our sample space is S = {I 1, I 2,. . . , I k}. Second, we must
define a probability distribution P on S that represents our idea of how likely
it is that the inputs will occur. Third, we must count the number of operations
required by A to process each sample point. We’ll denote this count by the
function V : S → N. Lastly, we’ll let AvgA(n) denote the average number of
operations to execute A as a function of input size n. Then AvgA(n) is just the
expectation of V :

AvgA(n) = E (V ) = V (I 1)P(I 1) + V (I 2)P(I 2) + · · · + V (I k )P(I k ).

To show that an algorithm A is optimal in the average case for some problem,
we need to specify a particular sample space and probability distribution. Then
we need to show that AvgA(n) ≤ AvgB (n) for all n > 0 and for all algorithms
B that solve the problem. The problem of finding lower bounds for the average
case is just as difficult as finding lower bounds for the worst case. So we’re often
content to just compare known algorithms to find the best of the bunch.

We’ll finish the section with an example showing an average-case analysis of
a simple algorithm for sequential search.
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Analysis of Sequential Search
Suppose we have the following algorithm to search for an element X in an array
L, indexed from 1 to n. If X is in L, the algorithm returns the index of the
rightmost occurrence of X. The index 0 is returned if X is not in L:

i := n;
while i ≥ 1 and X �= L[i ] do

i := i – 1
od

We’ll count the average number of comparisons X �= L[i ] performed by the
algorithm. Frst we need a sample space. Suppose we let I i denote the input
case where the rightmost occurrence of X is at the ith position of L. Let I n+1

denote the case in which X is not in L. So the sample space is the set

{I 1, I 2,. . . , I n+1}.

Let V (I ) denote the number of comparisons made by the algorithm when the
input has the form I. Looking at the algorithm, we obtain

V (Ii) = n− i + 1 for 1 ≤ i ≤ n,

V (In+1) = n.

Suppose we let q be the probability that X is in L. Thus 1 – q is the probability
that X is not in L. Let’s also assume that whenever X is in L, its position is
random. This gives us the following probability distribution P over the sample
space:

P (Ii) =
q

n
for 1 ≤ i ≤ n,

P (In+1) = 1 − q.

Therefore, the expected number of comparisons made by the algorithm for this
probability distribution is given by the expected value of V :

AvgA (n) = E (V ) = V (I1)P (I1) + · · · + V (In+1)P (In+1)

=
q

n
(n + (n− 1) + · · · + 1) + (1 − q)n

= q

(
n + 1

2

)
+ (1 − q)n.

Let’s observe a few things about the expected number of comparisons. If we
know that X is in L, then q = 1. So the expectation is (n + 1)/2 comparisons.
If we know that X is not in L, then q = 0, and the expectation is n comparisons.
If X is in L and it occurs at the first position, then the algorithm takes n
comparisons. So the worst case occurs for the two input cases I n+1 and I 1, and
we have W A(n) = n.
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Approximations (Monte Carlo Method)
Sometimes it is not so easy to find a formula to solve a problem. In some of these
cases we can find reasonable approximations by repeating some experiment many
times and then observing the results. For example, suppose we have an irregular
shape drawn on a piece of paper and we would like to know the area of the
shape. The Monte Carlo method would have us randomly choose a large number
of points on the paper. Then the area of the shape would be pretty close to
the percentage of points that lie within the shape multiplied by the area of the
paper.

The Monte Carlo method is useful in probability not only to check a calcu-
lated answer for a problem, but to find reasonable answers to problems for which
we have no other answer. For example, a computer simulating thousands of rep-
etitions of an experiment can give a pretty good approximation to the average
outcome of the experiment.

Exercises

Permutations and Combinations

1. Evaluate each of the following expressions.

a. P(6, 6). b. P(6, 0). c. P(6, 2).
d. P(10, 4). e. C (5, 2). f. C (10, 4).

2. Let S = {a, b, c}. Write down the objects satisfying each of the following
descriptions.

a. All permutations of the three letters in S.
b. All permutations consisting of two letters from S.
c. All combinations of the three letters in S.
d. All combinations consisting of two letters from S.
e. All bag combinations consisting of two letters from S.

3. For each part of Exercise 2, write down the formula, in terms of P or C, for
the number of objects requested.

4. Given the bag B = [a, a, b, b], write down all the bag permutations of B,
and verify with a formula that you wrote down the correct number.

5. Find the number of ways to arrange the letters in each of the following words.
Assume all letters are lowercase.
a. Computer. b. Radar. c. States.
d. Mississippi. e. Tennessee.

6. A derangement of a string is a permutation of the letters such that each
letter changes its position. For example, a derangement of the string ABC
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is BCA. But ACB is not a derangement of ABC, since A does not change
position. Write down all derangements for each of the following strings.

a. A. b. AB. c. ABC. d. ABCD.

7. Suppose we want to build a code to represent 29 objects in which each object
is represented as a binary string of length n, which consists of k 0’s and m
1’s, and n = k + m. Find n, k, and m, where n has the smallest possible
value.

8. We wish to form a committee of seven people chosen from five Democrats,
four Republicans, and six Independents. The committee will contain two
Democrats, two Republicans, and three Independents. In how many ways
can we choose the committee?

9. Each row of Pascal’s triangle (Figure 5.4) has a largest number. Find a
formula to describe which column contains the largest number in row n.

Discrete Probability

10. Suppose three fair coins are flipped. Find the probability for each of the
following events.

a. Exactly one coin is a head. b. Exactly two coins are tails.
c. At least one coin is a head. d. At most two coins are tails.

11. Suppose a pair of dice are flipped. Find the probability for each of the
following events.

a. The sum of the dots is 7.
b. The sum of the dots is even.
c. The sum of the dots is either 7 or 11.
d. The sum of the dots is at least 5.

12. A team has probability 2/3 of winning whenever it plays. Find each of the
following probabilities that the team will win.

a. Exactly 4 out of 5 games.
b. At most 4 out of 5 games.
c. Exactly 4 out of 5 games given that it has already won the first 2 games

of a 5-game series.

13. A baseball player’s batting average is.250. Find each of the following prob-
abilities that he will get hits.

a. Exactly 2 hits in 4 times at bat.
b. At least one hit in 4 times at bat.

14. A computer program uses one of three procedures for each piece of input.
The procedures are used with probabilities 1/3, 1/2, and 1/6. Negative
results are detected at rates of 10%, 20%, and 30% by the three procedures,
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respectively. Suppose a negative result is detected. Find the probabilities
that each of the procedures was used.

15. A commuter crosses one of three bridges, A, B, or C, to go home from
work, crossing A with probability 1/3, B with probability 1/6, and C with
probability 1/2. The commuter arrives home by 6 p.m. 75%, 60%, and 80%
of the time by crossing bridges A, B, and C, respectively. If the commuter
arrives home after 6 p.m., find the probability that bridge A was used. Also
find the probabilities for bridges B and C.

16. A student is chosen at random from a class of 80 students that has 20 honor
students, 30 athletes, and 40 that are neither honor students nor athletes.

a. What is the probability that the student selected is an athlete given
that he or she is an honors student?

b. What is the probability that the student selected is an honors student
given that he or she is an athlete?

c. Are the events “honors student” and “athlete” independent?

17. Suppose we have an algorithm that must perform 2,000 operations as follows:
The first 1,000 operations are performed by a processor with a capacity
of 100,000 operations per second. Then the second 1,000 operations are
performed by a processor with a capacity of 200,000 operations per second.
Find the average number of operations per second performed by the two
processors to execute the 2,000 operations.

18. Consider each of the following lottery problems.

a. Find the chances of winning a lottery that allows you to pick six num-
bers from the set {1, 2,. . . , 49}.

b. Suppose that a lottery consists of choosing a set of five numbers from
the set {1, 2,. . . , 49}. Suppose further that smaller prizes are given to
people with four of the five winning numbers. What is the probability
of winning a smaller prize?

c. Suppose that a lottery consists of choosing a set of six numbers from
the set {1, 2,. . . , 49}. Suppose further that smaller prizes are given to
people with four of the six winning numbers. What is the probability
of winning a smaller prize?

d. Find a formula for the probability of winning a smaller prize that goes
with choosing k of the winning m numbers from the set {1,. . . , n},
where k < m < n.

19. For each of the following problems, compute the expected value.

a. The expected number of dots that show when a die is tossed.
b. The expected score obtained by guessing all 100 questions of a true-

false exam in which a correct answer is worth 1 point and an incorrect
answer is worth –1/2 point.
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Challenges

20. Test the birthday problem on a group of people.

21. Show that if S is a sample space and A is an event, then S and A are
independent events. What about the independence of two events A and B
that are disjoint?

22. Prove that if A and B are independent events, then so are the three pairs of
events A and B ′, A′ and B, and A′ and B ′.

23. Suppose an operating system must schedule the execution of n processes,
where each process consists of k separate actions that must be done in order.
Assume that any action of one process may run before or after any action
of another process. How many execution schedules are possible?

24. Count the number of strings consisting of n 0’s and n 1’s such that each
string is subject to the following restriction: As we scan a string from left
to right, the number of 0’s is never greater than the number of 1’s. For
example, the string 110010 is OK, but the string 100110 is not. Hint: Count
the total number of strings of length 2n with n 0’s and n 1’s. Then try to
count the number that are not OK, and subtract this number from the total
number.

25. Given a nonempty finite set S with n elements, prove that there are n!
bijections from S to S.

26. (Average-Case Analysis of Binary Search).

a. Assume that we have a sorted list of 15 elements, x 1, x 2,. . . , x 15. Cal-
culate the average number of comparisons made by a binary search
algorithm to look for a key that may or may not be in the list. Assume
that the key has probability 1/2 of being in the list and that each of
the events “key = x i” is equally likely for 1 ≤ i ≤ 15.

b. Generalize the problem to find a formula for the average number of
comparisons used to look for a key in a sorted list of size n = 2k – 1,
where k is a natural number. Assume that the key has probability p of
being in the list and that each of the events “key = x i” is equally likely
for 1 ≤ i ≤ n. Test your formula with n = 15 and p = 1/2 to see that
you get the same answer as part (a).

5.4 Solving Recurrences
Many counting problems result in answers that are expressed in terms of recur-
sively defined functions. For example, any program that contains recursively
defined procedures or functions will give rise to such expressions. Many of these
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expressions have closed forms that can simplify the counting process. So let’s
discuss how to find closed forms for such expressions.

Definition of Recurrence Relation
Any recursively defined function f with domain N that computes numbers is
called a recurrence or a recurrence relation. When working with recurrences
we often write f n in place of f (n). For example, the following definition is a
recurrence:

r (0) = 1
r (n) = 2r (n− 1) + n.

We can also write this recurrence in the following useful form.

r0 = 1
rn = 2rn+1 + n.

To solve a recurrence r we must find an expression for the general term rn that
is not recursive.

5.4.1 Solving Simple Recurrences

Let’s start by with some simple recurrences that can be solved without much
fanfare. The recurrences we’ll be considering have the following general form,
where an and bn denote either constants or expressions involving n but not
involving r.

r0 = b0, (5.13)
rn = anrn−1 + bn.

We’ll look at two similar techniques for solving these recurrences.

Solving by Substitution
One way to solve ecurrences of the form (5.13) is by substitution, where we start
with the definition for rn and keep substituting for occurrences of r on the right
side of the equation until we discover a pattern that allows us to skip ahead and
eventually replace the basis r0.
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We’ll demonstrate the substitution technique in general terms by solving
(5.13). Note the patterns that emerge with each substitution for r.

rn = anrn−1 + bn

= an (an−1rn−2 + bn−1) + bn (replace rn−1 = an−1rn−2 + bn−1)
= anan−1rn−2 + anbn−1 + bn (regroup)
= anan−1 (an−2rn−3 + bn−3) + anbn−1 + bn

(replace rn−2 = an−2rn−3 + bn−2)

= anan−1an−2rn−3 + anan−1bn−3 + anbn−1 + bn (regroup)
...

= an · · · a2r1 + an · · · a3b2 + · · · + anbn−1 + bn (regroup)
= an · · · a2 (a1r0 + b1) + an · · · a3b2 + · · · + anbn−1 + bn

(replace r1 = a1r0 + b1)

= an · · · a2a1r0 + an · · · a2b1 + an · · · a3b2 + · · · + anbn−1 + bn (regroup)
= an · · · a2a1b0 + an · · · a2b1 + an · · · a3b2 + · · · + anbn−1 + bn

(replace r0 = b0)

example 5.26 Solving by Substitution

We’ll solve the following recurrence by substitution.

r0 = 1,
rn = 2rn−1 + n.

Notice in the following solutions that we never multply numbers. Instead we
keep track of products to help us discover general patterns. Once we find a
pattern we emphasize it with parentheses and exponents. Each line represents a
substitution and regrouping of terms.

rn = 2rn−1 + n

= 22rn−2 + 2 (n− 1) + n

= 23rn−3 + 22 (n− 2) + 2 (n− 1) + n

...

= 2n−1r1 + 2n−2 (2) + 2n−2 (2) + · · · + 22 (n− 2) + 21 (n− 1) + 20 (n)

= 2nr0 + 2n−1 (1) + 2n−2 (2) + · · · + 22 (n− 2) + 21 (n− 1) + 20 (n)

= 2n (1) + 2n−1 (1) + 2n−2 (2) + · · · + 22 (n− 2) + 21 (n− 1) + 20 (n) .
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Now we’ll put it into closed form using (5.1), (5.2c), and (5.2d). Be sure you
can see the reason for each step. We’ll start by keeping the first term where it
is and reversing the rest of the sum to get it in a nicer form.

rn = 2n (1) + n + 2 (n− 1) + 22 (n− 2) + · · · + 2n−2 (2) + 2n−1 (1)

= 2n +
[
20 (n) + 21 (n− 1) + 22 (n− 2) + · · · + 2n−2 (2) + 2n−1 (1)

]
(group terms)

= 2n +
n−1∑
i=0

2i (n− i)

= 2n + n

n−1∑
i=0

2i −
n−1∑
i=0

i2i

= 2n + n (2n − 1) −
(
2 − n2n + (n− 1) 2n+1

)
= 2n (1 + n + n− 2n + 2) − n− 2
= 3 (2n) − n− 2.

Now check a few values of rn to make sure that the sequence of numbers for the
closed form and the recurrence are the same: 1, 3, 8, 19, 42, . . . .

end example

Solving by Cancellation
An alternative technique to solve recurences of the form (5.13) is by cancellation,
where we start with the general equation for rn . The term on the left side of
each succeeding equation is the same as the term that contains r on the right
side of the preceding equation. We normally write a few terms until a pattern
emerges. The last equation always contains the basis element r0 on the right
side. Here is a sample.

rn = anrn−1 + bn

anrn−1 = anan−1rn−2 + anbn−1

anan−1rn−2 = anan−1an−2rn−3 + anan−1bn−2

...
an · · · a3r2 = an · · · a2r1 + an · · · a3b2

an · · · a2r1 = an · · · a1r0 + an · · · a2b1

Now we add up the equations and observe that, except for rn in the first equation,
all terms on the left side of the remaning equations cancel with like terms on the
right side of preceding equations. So that the sum of the equations gives us the
following formula for rn , where we have replaced r0 by its basis value b0.

rn = an · · · a1b0 + (bn + anbn−1 + anan−1bn−2 + · · · + an · · · a3b2 + an · · · a2b1)
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So we get to the same place by either substitution or cancellation. Since mistakes
are easy to make it is nice to know that you can always check your solution against
the original recurrence by testing. You also give an induction proof that your
solution is correct.

example 5.27 Solving by Cancellation

We’ll solve the recurrence in Example 1 by cancellation:

r0 = 1,
rn = 2rn−1 + n.

Starting with the general term, we obtain the following sequence of equations,
where the term on the left side of a new equation is always the term that contains
r from the right side of the preceding equation.

rn = 2rn−1 + n

2rn−1 = 22rn−2 + 2 (n− 1)

22rn−2 = 23rn−3 + 22 (n− 2)
...

2n−2r2 = 2n−1r1 + 2n−2 (2)

2n−1r1 = 2nr0 + 2n−1 (1)

Now add up all the equations, cancel the like terms, and replace r0 by its value,
to get the following equation.

rn = 2n (1) + n + 2 (n− 1) + 22 (n− 2) + · · · + 2n−2 (2) + 2n−1 (1) .

Notice that, except for the ordering of terms, the solution is the same as the one
obtained by substitution in Example 1.

end example

The Polynomial Problem
In Example 5 of Section 5.2 we found the number of arithmetic operations in
a polynomial of degree n. By grouping terms of the polynomial we can reduce
repeated multiplications. For example, here is the grouping when n = 3:

c0 + c1x + c2x
2 + c3x

3 = c0 + x (c1 + x (c2 + x (c3))) .

Notice that the expression on the left uses 9 operations while the expression on
the right uses 6. The following function will evaluate a polynomial with terms
grouped in this way, where C is the list of coefficients.
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poly(C, x ) = if C = 〈 〉 then 0 else head(C ) + x ∗ poly(tail(C ), x ).

For example, we’ll evaluate the expression poly(〈 a, b, c, d〉 , x ):

poly (〈a, b, c, d〉 , x) = a + x ∗ poly (〈b, c, d〉 , x)
= a + x ∗ (b + x ∗ poly (〈c, d〉 , x))
= a + x ∗ (b + x ∗ (c + x ∗ poly (〈d〉 , x)))
= a + x ∗ (b + x ∗ (c + x ∗ (d + x ∗ poly (〈〉 , x))))
= a + x ∗ (b + x ∗ (c + d ∗ 0))

So there are 6 arithmetic operations performed by poly to evaluate a polynomial
of degree 3. Let’s figure out how many operations are performed to evalutate a
polynomial of degree n. Let a(n) denote the number of arithmetic operations
performed by poly(C, x ) when C has length n. If n = 0, then C = 〈 〉 and

poly(C, x ) = poly(〈 〉 , x ) = 0.

Therefore, a(0) = 0. If n > 0, then C �= 〈 〉 and

poly(C, x ) = head(C ) + x ∗ poly(tail(C ), x ).

This expression has two arithmetic operations plus the number of operations
performed by poly(tail(C ), x ). Since tail(C ) has n – 1 elements, it follows that
poly(tail(C ), x ) performs a(n – 1) operations. Therefore, for n > 0 we have a(n)
= a(n – 1) + 2. So we have the following recursive definition:

a (0) = 0
a (n) = a (n− 1) + 2.

Writing it in subscripted form we have

a0 = 0
an = an−1 + 2

It’s easy to solve this recurrence by cancellation:

an = an−1 + 2
an−1 = an−2 + 2
an−2 = an−3 + 2

...
a2 = a1 + 2
a1 = a0 + 2

Add up the equations and replace a0 = 0 to obtain the solution

an = 2n.

This is quite a savings in the number of arithmetic operations to evaluate a
polynomial of degree n. For example, if n = 30, then poly uses only 60 opera-
tions compared with 494 operations using the method discussed in Example 5 of
Section 5.2.
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Figure 5.7 1-, 2-, and 3-ovals.

The n-Ovals Problem
Suppose we are given the following sequence of three numbers:

2, 4, 8.

What is the next number in the sequence? The problem below might make you
think about your answer.

The n-Ovals Problem
Suppose that n ovals (an oval is a closed curve that does not cross over itself)
are drawn on the plane such that no three ovals meet in a point and each
pair of ovals intersects in exactly two points. How many distinct regions of
the plane are created by n ovals?

For example, the diagrams in Figure 5.7 show the cases for one, two, and
three ovals.

If we let rn denote the number of distinct regions of the plane for n ovals,
then it’s clear that the first three values are

r1 = 2,
r2 = 4,
r3 = 8.

What is the value of r4? Is it 16? Check it out. To find rn , consider the
following description: n – 1 ovals divide the region into rn–1 regions. The nth
oval will meet each of the previous n – 1 ovals in 2(n – 1) points. So the nth
oval will itself be divided into 2(n – 1) arcs. Each of these 2(n – 1) arcs splits
some region in two. Therefore, we add 2(n – 1) regions to rn–1 to obtain rn .
This gives us the following recurrence.

r1 = 2,
rn = rn−1 + 2 (n− 1) .
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We’ll solve it by the substitution technique:

rn = rn−1 + 2 (n− 1)
= rn−2 + 2 (n− 2) + 2 (n− 1)
...
= r1 + 2 (1) + · · · + 2 (n− 2) + 2 (n− 1)
= 2 + 2 (1) + · · · + 2 (n− 2) + 2 (n− 1) .

Now we can find a closed from for rn.

rn = 2 + 2 (1) + · · · + 2 (n− 2) + 2 (n− 1)
= 2 + 2 (1 + 2 + · · · (n− 2) + (n− 1))

= 2 + 2
n−1∑
i=1

i

= 2 + 2
(n− 1) (n)

2
= n2 − n + 2.

For example, we can use this formula to calculate r4 = 14. Therefore, the
sequence of numbers 2, 4, 8 could very well be the first three numbers in the
following sequence for the n-ovals problem.

2, 4, 8, 14, 22, 32, 44, 62, 74, 92,....

5.4.2 Generating Functions

For some recurrence problems we need to find new techniques. For example,
suppose we wish to find a closed form for the nth Fibonacci number Fn , which
is defined by the recurrence system

F0 = 0,
F1 = 1,
Fn = Fn−1 + Fn−2 (n ≥ 2) .

We can’t use the cancellation technique with this system because F occurs twice
on the right side of the general equation. This problem belongs to a large class
of problems that need a more powerful technique.

The technique that we present comes from the simple idea of equating the
coefficients of two polynomials. For example, suppose we have the following
equation.

a + bx + cx 2 = 4 + 7x 2.
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We can solve for a, b, and c by equating coefficients to yield a = 4, b = 0, and
c = 7. We’ll extend this idea to expressions that have infinitely many terms of
the form an xn for each natural number n. Let’s get to the definition.

Definition of Generating Function
The generating function for the infinite sequence a0, a1, . . . , an , . . . is the
following infinite expression, which is also called a formal power series or an
infinite polynomial:

A (x) = a0 + a1x + a2x
2 + · · · + anx

n + · · ·

=
∞∑

n=0

anx
n.

Two generating functions may be added by adding the corresponding coef-
ficients. Similarly, two generating functions may be multiplied by extending the
rule for multiplying regular polynomials. In other words, multiply each term of
one generating function by every term of the other generating function, and then
add up all the results. Two generating functions are equal if their corresponding
coefficients are equal.

We’ll be interested in those generating functions that have closed forms. For
example, let’s consider the following generating function for the infinite sequence
1, 1,. . . , 1, . . . :

∞∑
n=0

xn.

This generating function is often called a geometric series, and its closed form
is given by the following formula.

Geometric Series Generating Function (5.14)

1
1 − x

=
∞∑

n=0

xn.

To justify equation (5.14), multiply both sides of the equation by 1 – x.

Using a Generating Function Formula
But how can we use this formula to solve recurrences? The idea, as we shall see,
is to create an equation in which A(x ) is the unknown, solve for A(x ), and hope
that our solution has a nice closed form. For example, if we find that

A (x) =
1

1 − 2x
,
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then we can rewrite it using (5.14) in the following way.

A (x) =
1

1 − 2x
=

1
1 − (2x)

=
∞∑

n=0

(2x)n =
∞∑

n=0

2nxn.

Now we can equate coefficients to obtain the solution an = 2n . In other words,
the solution sequence is 1, 2, 4,. . . , 2n , . . . .

Finding a Generating Function Formula
How do we obtain the closed form for A(x )? It’s a four-step process, and we’ll
present it with an example. Suppose we want to solve the following recurrence:

a0 = 0, (5.15)
a1 = 1,
an = 5an−1 − 6an−2 (n ≥ 2) .

Step 1
Use the general equation in the recurrence to write an infinite polynomial with
coefficients an . We start the index of summation at 2 because the general equa-
tion in (5.15) holds for n ≥ 2. Thus we obtain the following equation:

∞∑
n=2

anx
n =

∞∑
n=2

(5an−1 − 6an−2)xn

=
∞∑

n=2

5an−1x
n −

∞∑
n=2

6an−2x
n (5.16)

= 5
∞∑

n=2

an−1x
n − 6

∞∑
n=2

an−2x
n

We want to solve for A(x ) from this equation. Therefore, we need to transform
each infinite polynomial in (5.16) into an expression containing A(x ). To do this,
notice that the left-hand side of (5.16) can be written as

∞∑
n=2

anx
n = A (x) − a0 − a1x

= A (x) − x (substitute for a0 and a1).
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The first infinite polynomial on the right side of (5.16) can be written as

∞∑
n=2

an−1x
n =

∞∑
n=1

anx
n−1 (by a change of indices)

= x

∞∑
n=1

anx
n

= x (A (x) − a0)
= xA (x) .

The second infinite polynomial on the right side of (5.16) can be written as

∞∑
n=2

an−2x
n =

∞∑
n=0

anx
n+2 (by a change of indices)

= x2
∞∑

n=0

anx
n

= x2A (x) .

Thus Equation (5.16) can be rewritten in terms of A(x ) as

A(x) − x = 5xA(x) − 6x2A(x). (5.17)

Step 1 can often be done equationally by starting with the definition of A(x )
and continuing until an equation involving A(x ) is obtained. For this example
the process goes as follows:

A (x) =
∞∑

n=0

anx
n

= a0 + a1x +
∞∑

n=2

anx
n

= x +
∞∑

n=2

anx
n

= x +
∞∑

n=2

(5an−1 − 6an−2)xn

= x + 5
∞∑

n=0

an−1x
n − 6

∞∑
n=2

an−2x
n

= x + 5x (A (x) − a0) − 6x2A (x)

= x + 5xA (x) − 6x2A (x) .
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Step 2
Solve the equation for A(x ) and try to transform the result into an expression
containing closed forms of known generating functions. We solve Equation (5.17)
by isolating A(x ) as follows:

A(x )(1 – 5x + 6x 2) = x.

Therefore, we can solve for A(x ) and try to obtain known closed forms, which
can then be replaced by generating functions:

A (x) =
x

1 − 5x + 6x2

=
x

(2x− 1) (3x− 1)

=
1

2x− 1
− 1

3x− 1
(partial fractions)

= − 1
1 − 2x

− 1
1 − 3x

(put into the form 1
1−t )

= −
∞∑

n=0

(2x)n +
∞∑

n=0

(3x)n

= −
∞∑

n=0

2nxn +
∞∑

n=0

3nxn

=
∞∑

n=0

(−2n + 3n)xn.

Step 3
Equate coefficients, and obtain the result. In other words, we equate the original
definition for A(x ) and the form of A(x ) obtained in Step 2:

∞∑
n=0

anx
n =

∞∑
n=0

(−2n + 3n)xn.

These two infinite polynomials are equal if and only if the corresponding coeffi-
cients are equal. Equating the coefficients, we obtain the following closed form
for an :

an = 3n − 2n for n ≥ 0. (5.18)

Step 4 (Check the answer)
To make sure that no mistakes were made in Steps 1 to 3, we should check to
see whether (5.18) is the correct answer to (5.15). Since the recurrence has two
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basis cases, we’ll start by verifying the special cases for n = 0 and n = 1. These
cases are verified below:

a0 = 30 − 20 = 0,

a1 = 31 − 21 = 1.

Now verify that (5.18) satisfies the general case of (5.15) for n ≥ 2. We’ll start
on the right side of (5.15) and substitute (5.18) to obtain the left side of (5.15).

5an−1 − 6an−2 = 5
(
3n−1 − 2n−1

)
− 6

(
3n−2 − 2n−2

)
(substitution)

= 3n − 2n (simplification)
= an.

An Aside on Partial Fractions
Let’s recall a few facts about partial fractions. Suppose we are given the following
quotient of two polynomials p(x ) and q(x ):

p (x)
q (x)

,

where the degree of p(x ) is less than the degree of q(x ). The first thing to do is
factor q(x ) into a product of linear and/or quadratic polynomials that can’t be
factored further (say, over the real numbers). Therefore, each factor of q(x ) has
one of the following forms:

ax + b or cx2 + dx + e.

The partial fraction representation of

p (x)
q (x)

is a sum of terms, where each term in the sum is a quotient as follows:

Partial Fractions

1. If the linear polynomial ax + b is repeated k times as a factor of q(x ),
then add the following terms to the partial fraction representation, where
A1,. . . , Ak are constants to be determined:

A1

ax + b
+

A2

(ax + b)2
+ · · · + Ak

(ax + b)k
.

Continued
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2. If the quadratic polynomial cx 2 + dx + e is repeated k times as a factor of
q(x ), then add the following terms to the partial fraction representation,
where Ai and B i are constants to be determined.

A1x + B1

cx2 + dx + e
+

A2x + B2

(cx2 + dx + e)2
+ · · · + Akx + Bk

(cx2 + dx + e)k
.

example 5.28 Sample Partial Fractions

Here are a few samples of partial fractions that can be obtained from the two
rules.

x− 1
x (x− 2) (x + 1)

=
A

x
+

B

x− 2
+

C

x + 1
,

x3 − 1
x2 (x− 2)3

=
A

x
+

B

x2
+

C

x− 2
+

D

(x− 2)2
+

E

(x− 2)3
,

x2

(x− 1) (x2 + 2x + 1)
=

A

x− 1
+

Bx + C

x2 + 2x + 1
,

x

(x− 1) (x2 + 1)2
=

A

x− 1
+

Bx + C

x2 + 1
+

Dx + C

(x2 + 1)2
.

end example

To determine the constants in a partial fraction representation, we can solve
simultaneous equations. Suppose there are n constants to be found. Then we
need to create n equations. To create an equation, pick some value for x, with
the restriction that the value for x does not make any denominator zero. Do this
for n distinct values for x. Then solve the resulting n equations. For example, in
Step 2 of the generating function example we wrote down the following equalities.

A (x) =
x

1 − 5x + 6x2

=
x

(2x− 1) (3x− 1)

=
1

2x− 1
− 1

3x− 1
.

The last equality is the result of partial fractions. Here’s how we got it. First
we write the partial fraction representation

x

(2x− 1) (3x− 1)
=

A

2x− 1
+

B

3x− 1
.
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Then we create two equations in A and B by letting x = 0 and x = 1.

0 = −A−B

1/2 = A + (1/2)B

Solving for A and B, we get A = 1 and B = –1. This yields the desired equality

x

(2x− 1) (3x− 1)
=

1
2x− 1

− 1
3x− 1

.

A Final Note on Partial Fractions
If the degree of the numerator p(x ) is greater than or equal to the degree of q(x ),
then a simple division of p(x ) by q(x ) will yield an equation of the form

p (x)
q (x)

= s (x) +
p′ (x)
q′ (x)

.

where the degree of is less than the degree of q′(x). Then we can apply partial
fractions to the quotient

p′ (x)
q′ (x)

.

More Generating Functions
There are many useful generating functions. Since our treatment is not intended
to be exhaustive, we’ll settle for listing two more generating functions that have
many applications.

Two More Useful Generating Functions

1

(1 − x)k+1
=

∞∑
n=0

(
k + n

n

)
xn for k ∈ N. (5.19)

(1 + x)r =
∞∑

n=0

(
r (r − 1) · · · (r − n + 1)

n!

)
xn for r ∈ R. (5.20)

The numerator of the coefficient expression for the nth term in (5.20) contains
a product of n numbers. When n = 0, we use the convention that a vacuous
product—of zero numbers—has the value 1. Therefore the 0th term of (5.20) is
1
0! = 1. So the first few terms of (5.20) look like the following:

(1 + x)r = 1 + rx +
r (r − 1)

2
x2 +

r (r − 1) (r − 2)
6

x3 + · · · .
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The Problem of Parentheses
Suppose we want to find the number of ways to parenthesize the expression

t1 + t2 + . . . + tn−1 + tn (5.21)

so that a parenthesized form of the expression reflects the process of adding two
terms. For example, the expression t1 + t2 + t3 + t4 has several different forms
as shown in the following expressions:

((t1 + t2) + (t3 + t4))
(t1 + (t2 + (t3 + t4)))
(t1 + ((t2 + t3) + t4))

...

To solve the problem, we’ll let bn denote the total number of possible parenthe-
sizations for an n-term expression. Notice that if 1 ≤ k ≤ n – 1, then we can
split the expression (5.21) into two subexpressions as follows:

t1 + · · · + tn−k and tn−k+1 + · · · + tn. (5.22)

So there are bn–kbk ways to parenthesize the expression (5.21) if the final + is
placed between the two subexpressions (5.22). If we let k range from 1 to k – 1,
we obtain the following formula for bn when n ≥ 2:

bn = bn−1b1 + bn−2b2 + . . . + b2bn−2 + b1bn−1. (5.23)

But we need b1 = 1 for (5.23) to make sense. It’s OK to make this assumption
because we’re concerned only about expressions that contain at least two terms.
Similarly, we can let b0 = 0. So we can write down the recurrence to describe
the solution as follows:

b0 = 0, (5.24)
b1 = 1,
bn = bnb0 + bn−1b1 + · · · + b1bn−1 + b0bn (n ≥ 2) .

Notice that this system cannot be solved by the cancellation method. Let’s try
generating functions. Let B(x ) be the generating function for the sequence

b0, b1,. . . , bn , . . . .

So B (x) =
∑∞

n=0 bnx
n. Now let’s try to apply the four-step procedure for

generating functions. First we use the general equation in the recurrence to
introduce the partial (since n ≥ 2) generating function

∞∑
n=2

bnx
n =

∞∑
n=2

(bnb0 + bn−1b1 + · · · + b1bn−1 + b0bn)xn. (5.25)
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Now the left-hand side of (5.25) can be written in terms of B(x ):

∞∑
n=2

bnx
n = B (x) − b1x− b0

= B (x) − x (since b0 = 0 and b1 = 1).

Before we discuss the right hand-side of equation (5.25), notice that we can write
the product

B (x)B (x) =

( ∞∑
n=0

bnx
n

) ( ∞∑
n=0

bnx
n

)

=
∞∑

n=0

cnx
n,

where c0 = b0 b0 and for n > 0,

cn = bn b0 + bn–1 b1 + · · · + b1 bn–1 + b0 bn .

So the right-hand side of Equation (5.25) can be written as

∞∑
n=2

(bnb0 + bn−1b1 + · · · + b1bn−1 + b0bn)xn

= B (x)B (x) − b0b0 − (b1b0 + b0b1)x
= B (x)B (x) (since b0 = 0).

Now Equation (5.25) can be written in simplified form as

B (x) − x = B (x)B (x) or B (x)2 −B (x) + x = 0.

Now, thinking of B(x ) as the unknown, the equation is a quadratic equation
with two solutions:

B (x) =
1 ±

√
1 − 4x
2

.
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Notice that
√

1 − 4x is the closed form for a binomial generating function ob-
tained from (5.20), where r = 1

2 . Thus we can write

√
1 − 4x = (1 + (4x))

1
2

=
∞∑

n=0

1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − n + 1

)
n!

(−4x)n

=
∞∑

n=0

1
2

(
− 1

2

) (
− 3

2

)
· · ·

(
− 2n−3

2

)
n!

(−2)n 2nxn

= 1 +
∞∑

n=1

(−1) (1) (3) · · · (2n− 3)
n!

2nxn

= 1 +
∞∑

n=1

(
− 2
n

) (
2n− 2
n− 1

)
xn.

Expansion of the last equality is left as an exercise. Notice that, for n ≥ 1,
the coefficient of xn is negative in this generating function. In other words, the
nth term (n ≥ 1) of the generating function

√
1 − 4x for always has a negative

coefficient. Since we need positive values for bn , we must choose the following
solution of our quadratic equation:

B (x) =
1
2
− 1

2
√

1 − 4x.

Putting things together, we can write our desired generating function as follows:

∞∑
n=0

bnx
n = B (x) =

1
2
− 1

2
√

1 − 4x

=
1
2
− 1

2

{
1 +

∞∑
n=1

(
− 2
n

) (
2n− 2
n− 1

)
xn

}

= 0 +
∞∑

n=1

1
n

(
2n− 2
n− 1

)
xn.

Now we can finish the job by equating coefficients to obtain the following solution:

bn = if n = 0 then 0 else
1
n

(
2n− 2
n− 1

)
.

The Problem of Binary Trees
Suppose we want to find, for any natural number n, the number of structurally
distinct binary trees with n nodes. Let bn denote this number. We can figure
out a few values by experiment. For example, since there is one empty binary
tree and one binary tree with a single node, we have b0 = 1 and b1 = 1. It’s also
easy to see that b2 = 2, and for n = 3 we see after a few minutes that b3 = 5.
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Let’s consider bn for n ≥ 1. A tree with n nodes has a root and two subtrees
whose combined nodes total n – 1. For each k in the interval 0 ≤ k ≤ n – 1 there
are bk left subtrees of size k and bn−1−k distinct right subtrees of size n – 1 – k.
So for each k there are bkbn−1−k distinct binary trees with n nodes. Therefore,
the number bn of binary trees can be given by the sum of these products as
follows:

bn = b0bn – 1 + b1bn – 2 + · · · + bkbn – k + · · · + bn – 2 b1 + bn – 1b0 .

Now we can write down the recurrence to describe the solution as follows:

b0 = 1,
bn = b0bn−1 + b1bn−2 + · · · + bkbn−k + · · · + bn−2b1 + bn−1b0 (n ≥ 1)

Notice that this system cannot be solved by the cancellation method. Let’s try
generating functions. Let B(x ) be the generating function for the sequence

b0, b1,. . . , bn , . . . .

So B(x) =
∑∞

n=0 bnx
n. Now let’s try to apply the four-step procedure for

generating functions. First we use the general equation in the recurrence to
introduce the partial (since n ≥ 1) generating function

∞∑
n=1

bnx
n =

∞∑
n=1

(b0bn−1 + b1bn−2 + · · · + bn−2bn−1b0)xn. (5.26)

Now the left-hand side of (5.26) can be written in terms of B(x ).

∞∑
n=1

bnx
n = B (x) − b0

= B (x) − 1 (since b0 = 1).

Before we discuss the right hand-side of equation (5.26), notice that we can write
the product

B (x)B (x) =

( ∞∑
n=0

bnx
n

) ( ∞∑
n=0

bnx
n

)

=
∞∑

n=0

cnx
n,

where c0 = b0 b0 and for n > 0,

cn = b0bn + b1bn – 1 + · · · + bn – 1b1 + bnb0
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So the right-hand side of equation (5.26) can be written as

∞∑
n=1

(b0bn−1 + b1bn−2 + · · · + bn−2b1 + bn−1b0)xn

=
∞∑

n=0

(b0bn + b1bn−1 + · · · + bn−1b1 + bnb0)xn+1

= x

∞∑
n=0

(b0bn + b1bn−1 + · · · + bn−1b1 + bnb0)xn

= xB (x)B (x)

Now Equation (5.26) can be written in simplified form as

B (x) − 1 = xB (x)B (x) or xB (x)2 −B (x) + 1 = 0.

Now, thinking of B(x ) as the unknown, the equation is a quadratic equation
with two solutions:

B (x) =
1 ±

√
1 − 4x

2x
.

Notice that is
√

1 − 4x the closed form for a binomial generating function ob-
tained from (5.20), where r = 1

2 . Thus we can write

√
1 − 4x = (1 + (−4x))

1
2

=
∞∑

n=0

1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − n + 1

)
n!

(−4x)n

=
∞∑

n=0

1
2

(
− 1

2

) (
− 3

2

)
· · ·

(
− 2n−3

2

)
n!

(−2)n 2nxn

= 1 +
∞∑

n=1

(−1) (1) (3) · · · (2n− 3)
n!

2nxn

= 1 +
∞∑

n=1

(
− 2
n

) (
2n− 2
n− 1

)
xn.

Notice that for n ≥ 1 the coefficient of xn is negative in this generating function.
In other words, the nth term (n ≥ 1) of the generating function for

√
1 − 4x

always has a negative coefficient. Since we need positive values for bn , we must
choose the following solution of our quadratic equation:

B (x) =
1 −

√
1 − 4x

2x
.
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Putting things together, we can write our desired generating function as follows:

∞∑
n=0

bnx
n = B (x) =

1 −
√

1 − 4x
2x

=
1
2x

(
1 −

√
1 − 4x

)

=
1
2x

∞∑
n=1

(
2
n

) (
2n− 2
n− 1

)
xn

=
∞∑

n=1

1
n

(
2n− 2
n− 1

)
xn+1

=
∞∑

n=0

1
n + 1

(
2n
n

)
xn.

Now we can finish the job by equating coefficients to obtain

bn =
1

n + 1

(
2n
n

)
.

Exercises

Simple Recurrences

1. Solve each of the following recurrences by the substitution technique and the
cancellation technique. Put each answer in closed form (no ellipsis allowed).

a. a1 = 0, b. a1 = 0, c. a0 = 1,
an = an−1 + 4. an = an−1 + 2n. an = 2an−1 + 3.

2. For each of the following functions, find a recurrence to describe the number
of times the cons operation :: is called. Solve each recurrence.

a. cat(L, M ) = if L = 〈 〉 then M else head(L) :: cat(tail(L), M ).
b. dist(x, L) = if L = 〈 〉 then 〈 〉

else (x :: head(L) :: 〈 〉) :: dist(x, tail(L)).
c. power(L) = if L = 〈 〉 then return 〈 〉 :: 〈 〉

else
A := power(tail(L));
B := dist(head(L), A);
C := map(::, B);
return cat(A, C )

fi

3. (Towers of Hanoi). The Towers of Hanoi puzzle was invented by Lucas in
1883. It consists of three stationary pegs with one peg containing a stack of
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n disks that form a tower (each disk has a hole in the center for the peg) in
which each disk has a smaller diameter than the disk below it. The problem
is to move the tower to one of the other pegs by transferring one disk at a
time from one peg to another peg, no disk ever being placed on a smaller
disk. Find the minimum number of moves H n to do the job.

Hint: It takes 0 moves to transfer a tower of 0 disks and 1 move to
transfer a tower of 1 disk. So H 0 = 0 and H 1 = 1. Try it out for n = 2 and
n = 3 to get the idea. Then try to find a recurrence relation for the general
term H n as follows: Move the tower consisting of the top n – 1 disks to the
nonchosen peg; then move the bottom disk to the chosen peg; then move
the tower of n – 1 disks onto the chosen peg.

4. (Diagonals in a Polygon). A diagonal in a polygon is a line from one vertex
to another nonadjacent vertex. For example, a triangle doesn’t have any
diagonals because each vertex is adjacent to the other vertices. Find the
number of diagonals in an n-sided polygon, where n ≥ 3.

5. (The n-Lines Problem). Find the number of regions in a plane that are
created by n lines, where no two lines are parallel and where no more than
two lines intersect at any point.

Generating Functions

6. Given the generating function A (x) =
∑∞

n=0 anx
n, find a closed form for

the general term an for each of the following representations of A(x ).

a. A (x) = 1
x−2 − 2

3x+1 . b. A (x) = 1
2x+1 + 3

x+6 .

c. A (x) = 1
3x−2 − 1

(1−x)2
.

7. Use generating functions to solve each of the following recurrences.

a. a0 = 0,
a1 = 4,
an = 2an−1 + 3an−2 (n = 2).

b. a0 = 0,
a1 = 1,
an = 7an−1 − 12an−2 (n = 2).

c. a0 = 0,
a1 = 1,
a2 = 1,
an = 2an−1 + an−2 − 2an−3 (n = 3).

8. Use generating functions to solve each recurrence in Exercise 1. For those
recurrences that do not have an a0 term, assume that a0 = 0.



“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

334 Chapter 5 � Analysis Techniques

Proofs and Challenges

9. Prove that the following equation holds for all positive integers n, in two
different ways, as indicated:

(1) (1) (3) · · · (2n− 3)
n!

2n =
2
n

(
2n− 2
n− 1

)
.

a. Use induction.
b. Transform the left side into the right side by “inserting” the missing

even numbers in the numerator.

10. Find a closed form for the nth Fibonacci number defined by the following
recurrence system.

F0 = 0,
F1 = 1,
Fn = Fn−1 + Fn−2 (n ≥ 2) .

5.5 Comparing Rates of Growth
Sometimes it makes sense to approximate the number of steps required to execute
an algorithm because of the difficulty involved in finding a closed form for an
expression or the difficulty in evaluating an expression. To approximate one
function with another function, we need some way to compare them. That’s
where “rate of growth” comes in. We want to give some meaning to statements
like “f has the same growth rate as g ′’ and “f has a lower growth rate than g.”

For our purposes we will consider functions whose domains and codomains
are subsets of the real numbers. We’ll examine the asymptotic behavior of two
functions f and g by comparing f (n) and g(n) for large positive values of n (i.e.,
as n approaches infinity).

5.5.1 Big Theta

Let’s begin by discussing the meaning of the statement “f has the same growth
rate as g.”

A function f has the same growth rate as g (or f has the same order as g
if we can find a number m and two positive constants c and d such that

c |g (n)| ≤ |f (n)| ≤ d |g (n)| for all n ≥ m.

In this case we write f (n) = Θ(g(n)) and say that f (n) is big theta of g(n).
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It’s easy to verify that the relation “has the same growth rate as” is an
equivalence relation. In other words, the following three properties hold for all
functions.

f (n) = Θ (f (n)) .
If f (n) = Θ (g (n)) , then g (n) = Θ (f (n)) .
If f (n) = Θ (g (n)) and g (n) = Θ (h (n)) , then f (n) = Θ (h (n)) .

If f (n) = Θ(g(n)) and we also know that g(n) �= 0 for all n ≥ m, then we
can divide the inequality (5.27) by g(n) to obtain

c ≤
∣∣∣∣f (n)
g (n)

∣∣∣∣ ≤ d for all n ≥ m.

This inequality gives us a better way to think about “having the same growth
rate.” It tells us that the ratio of the two functions is always within a fixed
bound beyond some point. We can always take this point of view for functions
that count the steps of algorithms because they are positive valued.

Now let’s see whether we can find some functions that have the same growth
rate. To start things off, suppose f and g are proportional. This means that there
is a nonzero constant c such that f (n) = cg(n) for all n. In this case, definition
(5.27) is satisfied by letting d = c. Thus we have the following statement.

Proportionality (5.28)
If two functions f and g are proportional, then f (n) = Θ(g(n)).

example 5.29 The Log Function

Recall that log functions with different bases are proportional. In other words,
if we have two bases a > 1 and b > 1, then

loga n = (loga b) (logb n) for all n > 0.

So we can disregard the base of the log function when considering rates of growth.
In other words, we have

log a n = θ (log b n) . (5.29)

end example

It’s interesting to note that two functions can have the same growth rate
without being proportional. Here’s an example.
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example 5.30 Polynomials of the Same Degree

Let’s show that n2 + n and n2 have the same growth rate. The following
inequality is true for all n = 1:

1n2 = n2 + n = 2n2.

Therefore, n2 + n = Θ(n2).
end example

The following theorem gives us a nice tool for showing that two functions
have the same growth rate.

Theorem (5.30)

If lim
n→∞

f (n)
g (n)

= c where c �= 0 and c �= ∞, then f (n) = Θ (g (n)) .

For example, the quotient (25n2 + n)/n2 approaches 25 as n approaches
infinity. Therefore we can say that 25n2 + n = Θ(n2).

We should note that the limit in (5.30) is not a necessary condition for f (n)
= Θ(g(n)). For example, suppose we let f and g be the two functions

f (n) = if n is odd then 2 else 4,
g (n) = 2.

We can write 1 · g(n) = f (n) = 2 · g(n) for all n = 1. Therefore f (n) = Θ(g(n)).
But the quotient f (n)/g(n) alternates between the two values 1 and 2. Therefore
the limit of the quotient does not exist. Still the limit test (5.30) will work for
the majority of functions that occur in analyzing algorithms.

Approximations can be quite useful for those of us who can’t remember
formulas that we don’t use all the time. For example, we can write the sums
from (5.2) in terms of Θ as follows:

Some Approximations
n∑

i=1

i = Θ
(
n2

)
. (5.31)

n∑
i=1

i2 = Θ
(
n3

)
. (5.32)

Continued
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If a �= 1, then
n∑

n=0

ai = Θ
(
an+1

)
. (5.33)

If a �= 1, then
n∑

n=0

iai = Θ
(
nan+1

)
. (5.34)

n∑
n=1

ik = Θ
(
nk+1

)
. (5.35)

Notice that (5.31) and (5.32) are special cases of (5.35).

example 5.31 A Worst-Case Lower Bound for Sorting

Let’s clarify a statement that we made in Example 1 of Section 5.3. We showed
that �log2 n!� is the worst case lower bound for comparison sorting algorithms.
But log n! is hard to calculate for even modest values of n. We stated that
�log2 n!� is approximately equal to n log2 n. Now we can make the following
statement:

log n! = Θ (n log n) . (5.36)

To prove this statement, we’ll find some bounds on log n! as follows:

log n! = logn + log (n− 1) + · · · + log 1
≤ log n + log n + · · · + log n (n terms)
= n log n.

log n! = logn + log (n− 1) + · · · + log 1
≥ log n + log (n− 1) + · · · + log (�n/2�) (�n/2� terms)
≥ log �n/2� + · · · + log �n/2� (�n/2� terms)
= �n/2� log �n/2�
≥ (n/2) log (n/2) .

So we have the inequality:

(n/2) log(n/2) ≤ log n! ≤ n log n.

It’s easy to see (i.e., as an exercise) that if n > 4, then (1/2) log n < log (n/2).
Therefore, we have the following inequality for n > 4:

(1/2) (n log n) ≤ (n/2) log (n/2) ≤ log n! = n log n.
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So there are nonzero constants 1/2 and 1 and the number 4 such that

(1/2) (n log n) ≤ log n! ≤ (1)(n log n) for all n > 4.

This tells us that log n! = Θ(n log n).
end example

An important approximation to n! is Stirling’s formula—named for the
mathematician James Stirling (1692–1770)—which is written as

n! = Θ
(√

2πn
(n

e

)n)
. (5.37)

Let’s see how we can use big theta to discuss the approximate performance
of algorithms. For example, the worst-case performance of the binary search
algorithm is Θ(log n) because the actual value is 1 + �log2 n�. Both the aver-
age and worst-case performances of a linear sequential search are Θ(n) because
the average number of comparisons is (n + 1)/2 and the worst case number of
comparisons is n.

For sorting algorithms that sort by comparison, the worst-case lower bound
is �log2 n!� = Θ(n log n). Many sorting algorithms, like the simple sort algo-
rithm in Example 6 of Section 5.2, have worst-case performance of Θ(n2). The
“dumbSort” algorithm, which constructs a permutation of the given list and then
checks to see whether it is sorted, may have to construct all possible permuta-
tions before it gets the right one. Thus dumbSort has worst-case performance
of Θ(n!). An algorithm called “heapsort” will sort any list of n items using at
most 2n log2 n comparisons. So heapsort is a Θ(n log n) algorithm in the worst
case.

5.5.2 Little Oh

Now let’s discuss the meaning of the statement “f has a lower growth rate
than g.”

A function f has a lower growth rate than g (or f has lower order than g) if

lim
n→∞

f (n)
g (n)

= 0. (5.38)

In this case we write f (n) = o (g(n)) and say that f is little oh of g.”

For example, the quotient approaches 0 as n goes to infinity. Therefore,
n = o(n2), and we can say that n has lower order than n2. For another example,
if a and b are positive numbers such that a < b, then an = o(bn). To see
this, notice that the quotient approaches 0 as n approaches infinity because
0 < a/b < 1.
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For those readers familiar with derivatives, the evaluation of limits can often
be accomplished by using L’Hôpital’s rule.

Theorem (5.39)
If lim

n→∞
f(n) = lim

n→∞
g(n) = ∞ or lim

n→∞
f(n) = lim

n→∞
g(n) = 0 and f and g are

differentiable beyond some point, then

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)

.

example 5.32 Different Orders

We’ll show that log n = o(n). Since both n and log n approach infinity as n
approaches infinity, we can apply (5.39) to (log n)/n. Since we can write log n =
(log e)(loge n), it follows that the derivative of log n is (log e)(1/n). Therefore,
we obtain the following equations:

lim
n→∞

log n
n

= lim
n→∞

(log e) (1/n)
1

= 0.

So log n has lower order than n, and we can write log n = o(n).
end example

Let’s list a hierarchy of some familiar functions according to their growth
rates, where f (n) ≺ g(n) means that f (n) = o(g(n)):

1 ≺ log n ≺ n ≺ n log n ≺ n2 ≺ n3 ≺ 2n ≺ 33 ≺ n! ≺ nn. (5.40)

This hierarchy can help us compare different algorithms. For example, we would
certainly choose an algorithm with running time Θ(log n) over an algorithm with
running time Θ(n).

5.5.3 Big Oh and Big Omega

Now let’s look at a notation that gives meaning to the statement “the growth
rate of f is bounded above by the growth rate of g.” The standard notation to
describe this situation is

f(n) = O(g(n)), (5.41)

which we read as f (n) is big oh of g(n). The precise meaning of the notation
f (n) = O(g(n)) is given by the following definition.
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The Meaning of Big Oh (5.42)
The notation f (n) = O(g(n)) means that there are positive numbers c and
m such that

|f (n)| ≤ c |g (n)| for all n ≥ m.

example 5.33 Comparing Polynomials

We’ll show that n2 = O(n3) and 5n3 + 2n2 = O(n3). Since n2 ≤ 1n3 for all
n ≥ 1, it follows that n2 = O(n3). Since 5n3 + 2n2 ≤ 7n3 for all n ≥ 1, it
follows that 5n3 + 2n2 = O(n3).

end example

Now let’s go the other way. We want a notation that gives meaning to the
statement “the growth rate of f is bounded below by the growth rate of g.” The
standard notation to describe this situation is

f(n) = Ω(g(n)), (5.43)

which we can read as f (n) is big omega of g(n). The precise meaning of the
notation f (n) = Ω (g(n)) is given by the following definition.

The Meaning of Big Omega (5.44)
The notation f (n) = Ω (g(n)) means that there are positive numbers c and
m such that

|f (n)| ≥ c |g (n)| for all n ≥ m.

example 5.34 Comparing Polynomials

We’ll show that n3 = Ω (n2) and 3n2 + 2n = Ω (n2). Since n3 ≥ 1n2 for all n
≥ 1, it follows that n3 = Ω (n2). Since 3n2 + 2n ≥ 1n2 for all n ≥ 1, it follows
that 3n2 + 2n = Ω (n2).

end example

Let’s see how we can use the terms that we’ve defined so far to discuss
algorithms. For example, suppose we have constructed an algorithm A to solve
some problem P. Suppose further that we’ve analyzed A and found that it takes
5n2 operations in the worst case for an input of size n. This allows us to make a
few general statements. First, we can say that the worst-case performance of A
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is Θ(n2). Second, we can say that an optimal algorithm for P, if one exists, must
have a worst-case performance of O(n2). In other words, an optimal algorithm
for P must do no worse than our algorithm A.

Continuing with our example, suppose some good soul has computed a worst-
case theoretical lower bound of Θ(n log n) operations for any algorithm that
solves P. Then we can say that an optimal algorithm, if one exists, must have
a worst-case performance of Ω (n log n). In other words, an optimal algorithm
for P can do no better than the given lower bound of Θ(n log n).

Before we leave our discussion of approximate optimality, let’s look at some
other ways to use the symbols. The four symbols Θ, o, O, and Ω can also be
used to represent terms within an expression. For example, the equation

h(n) = 4n3 + O(n2)

means that h(n) equals 4n3 plus a term of order at most n2. When used as part
of an expression, big oh is the most popular of the four symbols because it gives
a nice way to concentrate on those terms that contribute the most muscle.

We should also note that the four symbols Θ, o, O, and Ω can be formally
defined to represent sets of functions. In other words, for a function g we define
the following four sets:

Θ(g) is the set of functions with the same order as g ;

o(g) is the set of functions with lower order than g ;

O(g) is the set of functions of order bounded above by that of g ;

Ω(g) is the set of functions of order bounded below by that of g.

When set representations are used, we can use an expression like f (n) ∈ Θ(g(n))
to mean that f has the same order as g. The set representations also give some
nice relationships. For example, we have the following relationships, where the
subset relation is proper.

O (g (n)) ⊃ Θ (g (n)) ∪ o (g (n)) ,
Θ (g (n)) = O (g (n)) ∩ Ω (g (n)) .

Exercises

Calculations

1. Find a place to insert the function log log n in the sequence (5.40).

2. For each each of the following functions f, find an appropriate place in the
sequence (5.40).

a. f (n) = log 1 + log 2 + log 3 + · · · + log n.
b. f (n) = log 1 + log 2 + log 4 + · · · + log 2n .
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3. For each of the following values of n, calculate the following three numbers:
the exact value of n!, Stirling’s approximation (5.37) for the value of n!, and
the difference between the two values.

a. n = 5. b. n = 10.

Proofs and Challenges

4. Find an example of an increasing function f such that f (n) = Θ(1).

5. Prove that the binary relation on functions defined by f (n) = Θ(g(n)) is an
equivalence relation.

6. For any constant k > 0, prove each of the following statements.

a. log (kn) = Θ (logn) .
b. log (k + n) = Θ (logn) .

7. Prove the following sequence of orders: n ≺ n log n ≺ n2.

8. For any constant k, show that nk has lower order than 2n .

9. Prove the following sequence of orders: 2n ≺ n! ≺ nn .

10. Let f (n) = O(h(n)) and g(n) = O(h(n)). Prove each of the following
statements.
a. af (n) = O(h(n)) for any real number a.
b. f (n) + g(n) = O(h(n)).

11. Show that each of the following subset relations is proper.

a. O(g(n)) ⊃ Θ(g(n)) ∪ o(g(n)).
b. o(g(n)) ⊂ O(g(n)) – Θ(g(n)).

Hint: For example, let g(n) = n and let f (n) = if n is odd then 1 else n.
Then show that f (n) ∈ O(g(n)) – Θ(g(n)) ∪ o(g(n)) for part (a) and show
that f (n) ∈ (O(g(n)) – Θ(g(n))) – o(g(n)) for part (b).

5.6 Chapter Summary
This chapter introduces some basic tools and techniques that are used to analyze
algorithms. Analysis by worst-case running time is discussed. A lower bound is
a value that can’t be beat by any algorithm in a particular class. An algorithm
is optimal if its performance matches the lower bound.

Counting problems often give rise to finite sums that need closed form so-
lutions. Properties of sums together with summation notation provide us with
techniques to find closed forms for many finite sums.

Two useful things to count are permutations, in which order is important,
and combinations, in which order is not important. Pascal’s triangle contains
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formulas for combinations, which are the same as binomial coefficients. There
are formulas to count permutations and combinations of bags; these allow re-
peated elements. Discrete probability—with finite sample spaces—gives us the
tools to define the average-case performance of an algorithm.

Counting problems often give rise to recurrences. Some simple recurrences
can be solved by either substitution or cancellation to obtain a finite sum, which
can be then transformed into a closed form. The use of generating functions
provides a powerful technique for solving recurrences.

Often it makes sense to find approximations for functions that describe the
number of operations performed by an algorithm. The rates of growth of two
functions can be compared in various ways—big theta, little oh, big oh, and big
omega.

Notes

In this chapter we’ve just scratched the surface of techniques for manipulating
expressions that crop up in counting things while analyzing algorithms. The
book by Knuth [1968] contains the first account of a collection of techniques for
the analysis of algorithms. The book by Graham, Knuth, and Patashnik [1989]
contains a host of techniques, formulas, anecdotes, and further references to the
literature. The book also introduces an alternative notation for working with
sums, which often makes it easier to manipulate them without having to change
the expressions for the upper and lower limits of summation. The notation is
called Iverson’s convention, and it is also described in the article by Knuth [1992].
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