
“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

chapter 3

Construction
Techniques

When we build, let us think that we
build forever.

—John Ruskin (1819–1900)

To construct an object, we need some kind of description. If we’re lucky, the
description might include a construction technique. Otherwise, we may need to
use our wits and our experience to construct the object. This chapter focuses
on gaining some construction experience.

The only way to learn a technique is to use it on a wide variety of problems.
We’ll present each technique in the framework of objects that occur in computer
science, and as we go along, we’ll extend our knowledge of these objects. We’ll
begin by introducing the technique of inductive definition for sets. Then we’ll
discuss techniques for describing recursively defined functions and procedures.
Last but not least, we’ll introduce grammars for describing sets of strings.

There are usually two parts to solving a problem. The first is to guess at a
solution and the second is to verify that the guess is correct. The focus of this
chapter is to introduce techniques to help us make good guesses. We’ll usually
check a few cases to satisfy ourselves that our guesses are correct. In the next
chapter we’ll study inductive proof techniques that can be used to actually prove
correctness of claims about objects constructed by the techniques of this chapter.

chapter guide

Section 3.1 introduces the inductive definition technique. We’ll apply the tech-
nique by defining various sets of numbers, strings, lists, binary trees, and
Cartesian products.

Section 3.2 introduces the technique of recursive definition for functions and pro-
cedures. We’ll apply the technique to functions and procedures that process
numbers, strings, lists, and binary trees. We’ll solve the repeated element

127

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

128 Chapter 3 � Construction Techniques

problem and the power set problem, and we’ll construct some functions for
infinite sequences.

Section 3.3 introduces the idea of a grammar as a way to describe a language.
We’ll see that grammars describe the strings of a language in an inductive
fashion, and we’ll see that they provide recursive rules for testing whether a
string belongs to a language.

3.1 Inductively Defined Sets
When we write down an informal statement such as A = {3, 5, 7, 9, . . . }, most
of us will agree that we mean the set A = {2k + 3 | k ∈ N}. Another way to
describe A is to observe that 3 ∈ A, that x ∈ A implies x + 2 ∈ A, and that the
only way an element gets in A is by the previous two steps. This description has
three ingredients, which we’ll state informally as follows:

1. There is a starting element (3 in this case).

2. There is a construction operation to build new elements from existing ele-
ments (addition by 2 in this case).

3. There is a statement that no other elements are in the set.

Definition of Inductive Definition
This process is an example of an inductive definition of a set. The set of objects
defined is called an inductive set. An inductive set consists of objects that are
constructed, in some way, from objects that are already in the set. So nothing
can be constructed unless there is at least one object in the set to start the
process. Inductive sets are important in computer science because the objects
can be used to represent information and the construction rules can often be
programmed. We give the following formal definition.

An inductive definition of a set S consists of three steps: (3.1)

Basis: Specify one or more elements of S.

Induction: Give one or more rules to construct new elements of S from ex-
isting elements of S.

Closure: State that S consists exactly of the elements obtained by the
basis and induction steps. This step is usually assumed rather
than stated explicitly.

The closure step is a very important part of the definition. Without it, there
could be lots of sets satisfying the first two steps of an inductive definition. For
example, the two sets N and {3, 5, 7, . . . } both contain the number 3, and if x

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 129

is in either set, then so is x + 2. It’s the closure statement that tells us that the
only set defined by the basis and induction steps is {3, 5, 7, . . . }. So the closure
statement tells us that we’re defining exactly one set, namely, the smallest set
satisfying the basis and induction steps. We’ll always omit the specific mention
of closure in our inductive definitions.

The constructors of an inductive set are the basis elements and the rules for
constructing new elements. For example, the inductive set {3, 5, 7, 9, . . . } has
two constructors, the number 3 and the operation of adding 2 to a number.

For the rest of this section we’ll use the technique of inductive definition to
construct sets of objects that are often used in computer science.

3.1.1 Numbers

The set of natural numbers N = {0, 1, 2, . . . } is an inductive set. Its basis element
is 0, and we can construct a new element from an existing one by adding the
number 1. So we can write an inductive definition for N in the following way.

Basis: 0 ∈ N.

Induction: If n ∈ N, then n + 1 ∈ N.

The constructors of N are the integer 0 and the operation that adds 1 to an
element of N. The operation of adding 1 to n is called the successor function,
which we write as

succ(n) = n + 1.

Using the successor function, we can rewrite the induction step in the above
definition of N in the alternative form

If n ∈ N, then succ(n) ∈ N.

So we can say that N is an inductive set with two constructors, 0 and succ.

example 3.1 Some Familiar Odd Numbers

We’ll give an inductive definition of A = {1, 3, 7, 15, 31, . . . }. Of course, the
basis case should place 1 in A. If x ∈ A, then we can construct another element
of A with the expression 2x + 1. So the constructors of A are the number 1 and
the operation of multiplying by 2 and adding 1. An inductive definition of A can
be written as follows:

Basis: 1 ∈ A.

Induction: If x ∈ A, then 2x + 1 ∈ A.

end example

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

130 Chapter 3 � Construction Techniques

example 3.2 Some Even and Odd Numbers

Is the following set inductive?

A = {2, 3, 4, 7, 8, 11, 15, 16, . . . }.

It might be easier if we think of A as the union of the two sets

B = {2, 4, 8, 16, . . . } and C = {3, 7, 11, 15, . . . }.

Both these sets are inductive. The constructors of B are the number 2 and the
operation of multiplying by 2. The constructors of C are the number 3 and the
operation of adding by 4. We can combine these definitions to give an inductive
definition of A.

Basis: 2, 3 ∈ A.

Induction: If x ∈ A and x is odd, then x + 4 ∈ A.

If x ∈ A and x is even, then 2x ∈ A.

This example shows that there can be more than one basis element, more than
one induction rule, and tests can be included.

end example

example 3.3 Communicating with a Robot

Suppose we want to communicate the idea of the natural numbers to a robot that
knows about functions, has a loose notion of sets, and can follow an inductive
definition. Symbols like 0, 1, . . . , and + make no sense to the robot. How can
we convey the idea of N? We’ll tell the robot that N is the name of the set we
want to construct.

Suppose we start by telling the robot to put the symbol 0 in N. For the
induction case we need to tell the robot about the successor function. We tell
the robot that s : N → N is a function, and whenever an element x ∈ N, then
put the element s(x) ∈ N. After a pause, the robot says, “N = {0} because I’m
letting s be the function defined by s(0) = 0.”

Since we don’t want s(0) = 0, we have to tell the robot that s(0) ? 0. Then
the robot says, “N = {0, s(0)} because s(s(0)) = 0.” So we tell the robot that
s(s(0)) �= 0. Since this could go on forever, let’s tell the robot that s(x) does not
equal any previously defined element. Do we have it? Yes. The robot responds
with “N = {0, s(0), s(s(0)), s(s(s(0))), . . . }.” So we can give the robot the
following definition:

Basis: 0 ∈ N.

Induction: If x ∈ N, then put s(x) ∈ N, where s(x) �= 0 and s(x) is not equal
to any previously defined element of N.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 131

This definition of the natural numbers—along with a closure statement—is due
to the mathematician and logician Giuseppe Peano (1858–1932).

end example

example 3.4 Communicating with Another Robot

Suppose we want to define the natural numbers for a robot that knows about
sets and can follow an inductive definition. How can we convey the idea of N to
the robot? Since we can use only the notation of sets, let’s use ∅ to stand for
the number 0.

What about the number 1? Can we somehow convey the idea of 1 using
the empty set? Let’s let {∅} stand for 1. What about 2? We can’t use {∅,
∅}, because {∅, ∅} = {∅}. Let’s let {∅, {∅}} stand for 2 because it has two
distinct elements. Notice the little pattern we have going: If s is the set standing
for a number, then s ∪ {s} stands for the successor of the number.

Starting with ∅ as the basis element, we have an inductive definition. Letting
Nat be the set that we are defining for the robot, we have the following inductive
definition.

Basis: ∅ ∈ Nat.
Induction: If s ∈ Nat, then s ∪ {s} ∈ Nat.

For example, since 2 is represented by the set {∅, {∅}}, the number 3 is repre-
sented by the set

{∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅} , {∅, {∅}}} .

This is not fun. After a while we might try to introduce some of our own notation
to the robot. For example, we’ll introduce the decimal numerals in the following
way.

0 = ∅,

1 = 0 ∪ {0} ,
2 = 1 ∪ {1} ,

...

Now we can think about the natural numbers in the following way.

1 = 0 ∪ {0}∅ ∪ {0} = {0} ,
2 = 1 ∪ {1} = {0} ∪ {1} = {0, 1} ,

...

Therefore, each number is the set of numbers that precede it.
end example

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

132 Chapter 3 � Construction Techniques

3.1.2 Strings

We often define strings of things inductively without even thinking about it. For
example, in high school algebra we might say that an algebraic expression is
either a number or a variable, and if A and B are algebraic expressions, then so
are (A), A + B, A – B, AB, and A ÷ B. So the set of algebraic expressions is a
set of strings. For example, if x and y are variables, then the following strings
are algebraic expressions.

x, y, 25, 25x, x + y, (4x + 5y), (x + y)(2yx), 3x ÷ 4.

If we like, we can make our definition more formal by specifying the basis and
induction parts. For example, if we let E denote the set of algebraic expressions
as we have described them, then we have the following inductive definition for
E.

Basis: If x is a variable or a number, then x ∈ E.

Induction: If A, B ∈ E, then (A), A + B, A – B, AB, A ÷ B ∈ E.

Let’s recall that for an alphabet A, the set of all strings over A is denoted
by A*. This set has the following inductive definition.

All Strings over A (3.2)

Basis: Λ ∈ A*.

Induction: If s ∈ A* and a ∈ A, then as ∈ A*.

We should note that when we place two strings next to each other in juxta-
position to form a new string, we are concatenating the two strings. So, from
a computational point of view, concatenation is the operation we are using to
construct new strings.

Recall that any set of strings is called a language. If A is an alphabet, then
any language over A is one of the subsets of A*. Many languages can be defined
inductively. Here are some examples.

example 3.5 Three Languages

We’ll give an inductive definition for each of three languages.

1. S = {a, ab, abb, abbb, . . . } = {abn | n ∈ N}.

Informally, we can say that the strings of S consist of the letter a followed by
zero or more b’s. But we can also say that the letter a is in S, and if x is a string
in S, then so is xb. This gives us an inductive definition for S.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 133

Basis: a ∈ S.

Induction: If x ∈ S, then xb ∈ S.

2. S = {Λ , ab, aabb, aaabbb, . . . } = {anbn | n ∈ N}.

Informally, we can say that the strings of S consist of any number of a’s followed
by the same number of b’s. But we can also say that the empty string Λ is in S,
and if x is a string in S, then so is axb. This gives us an inductive definition for
S.

Basis: Λ ∈ S.

Induction: If x ∈ S, then axb ∈ S.

3. S = {Λ , ab, abab, ababab, . . . } = {(ab)n | n ∈ N}.

Informally, we can say that the strings of S consist of any number of ab pairs.
But we can also say that the empty string Λ is in S, and if x is a string in S,
then so is abx. This gives us an inductive definition for S.

Basis: Λ ∈ S.

Induction: If x ∈ S, then abx ∈ S.

end example

example 3.6 Decimal Numerals

Let’s give an inductive definition for the set of decimal numerals. Recall that a
decimal numeral is a nonempty string of decimal digits. For example, 2340 and
002965 are decimal numerals. If we let D denote the set of decimal numerals, we
can describe D by saying that any decimal digit is in D, and if x is in D and d is
a decimal digit, then dx is in D. This gives us the following inductive definition
for D :

Basis: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} ⊂ D.

Induction: If x ∈ D and d is a decimal digit, then dx ∈ D.

end example

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

134 Chapter 3 � Construction Techniques

3.1.3 Lists

Recall that a list is an ordered sequence of elements. Let’s try to find an inductive
definition for the set of lists with elements from a set A. In Chapter 1 we denoted
the set of all lists over A by lists(A), and we’ll continue to do so. We also
mentioned that from a computational point of view the only parts of a nonempty
list that can be accessed randomly are its head and its tail. Head and tail are
sometimes called destructors, since they are used to destroy a list (take it apart).
For example, the list 〈x, y, z 〉 has x as its head and 〈y, z 〉 as its tail, which we
write as

head(〈x, y, z 〉) = x and tail(〈x, y, z 〉) = 〈y, z 〉 .

We also introduced the operation “cons” to construct lists, where if h is
an element and t is a list, the new list whose head is h and whose tail is t is
represented by the expression

cons(h, t).

So cons is a constructor of lists. For example, we have

cons(x, 〈y, z〉) = 〈x, y, z〉
cons(x, 〈 〉) = 〈x〉.

The operations cons, head, and tail work nicely together. For example, we
can write

〈x, y, z 〉 = cons(x, 〈y, z 〉) = cons(head(〈x, y, z 〉), tail(〈x, y, z 〉)).

So if L is any nonempty list, then we have the equation

L = cons(head(L), tail(L)).

Now we have the proper tools, so let’s get down to business and write an
inductive definition for lists(A). Informally, we can say that lists(A) is the set
of all ordered sequences of elements taken from the set A. But we can also say
that 〈 〉 is in lists(A), and if L is in lists(A), then so is cons(a, L) for any a in A.
This gives us an inductive definition for lists(A), which we can state formally as
follows.

All Lists over A (3.3)

Basis: 〈 〉 ∈ lists(A).

Induction: If x ∈ A and L ∈ lists(A), then cons(x, L) ∈ lists(A).

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 135

example 3.7 List Membership

Let A = {a, b}. We’ll use (3.3) to show how some lists become members of
lists(A). The basis case puts 〈 〉 ∈ lists(A). Since a ∈ A and 〈 〉 ∈ lists(A), the
induction step gives

〈a〉 = cons(a, 〈 〉) ∈ lists(A).

In the same way we get 〈b〉 ∈ lists(A). Now since a ∈ A and 〈a〉 ∈ lists(A), the
induction step puts 〈a, a〉 ∈ lists(A). Similarly, we get 〈b, a〉 , 〈a, b〉 , and 〈b, b〉
as elements of lists(A), and so on.

end example

A Notational Convenience
It’s convenient when working with lists to use an infix notation for cons to
simplify the notation for list expressions. We’ll use the double colon symbol ::,
so that the infix form of cons(x, L) is x :: L.

x :: L.

For example, the list 〈a, b, c〉 can be constructed using cons as

cons(a, cons(b, cons(c, 〈 〉))) = cons(a, cons(b, 〈c〉))
= cons(a, 〈b, c〉)
= 〈a, b, c〉.

Using the infix form, we construct 〈a, b, c〉 as follows:

a :: (b :: (c :: 〈 〉)) = a :: (b :: 〈c〉) = a :: 〈b, c〉 = 〈a, b, c〉 .

The infix form of cons allows us to omit parentheses by agreeing that :: is right
associative. In other words, a :: b :: L = a :: (b :: L). Thus we can represent
the list 〈a, b, c〉 by writing

a :: b :: c :: 〈 〉 instead of a :: (b :: (c :: 〈 〉)).
Many programming problems involve processing data represented by lists.

The operations cons, head, and tail provide basic tools for writing programs to
create and manipulate lists. So they are necessary for programmers. Now let’s
look at a few examples.

example 3.8 Lists of Binary Digits

Suppose we need to define the set S of all nonempty lists over the set {0, 1} with
the property that adjacent elements in each list are distinct. We can get an idea
about S by listing a few elements:

S = {〈0〉 , 〈1〉 , 〈1, 0〉 , 〈0, 1〉 , 〈0, 1, 0〉 , 〈1, 0, 1〉 , . . . }.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

136 Chapter 3 � Construction Techniques

Let’s try 〈0〉 and 〈1〉 as basis elements of S. Then we can construct a new list
from a list L ∈ S by testing whether head(L) is 0 or 1. If head(L) = 0, then we
place 1 at the left of L. Otherwise, we place 0 at the left of L. So we can write
the following inductive definition for S.

Basis: 〈0〉 , 〈1〉 ∈ S.

Induction: If L ∈ S and head(L) = 0, then cons(1, L) ∈ S.
If L ∈ S and head(L) = 1, then cons(0, L) ∈ S.

The infix form of this induction rules looks like

If L ∈ S and head(L) = 0, then 1 :: L ∈ S.
If L ∈ S and head(L) = 1, then 0 ::L ∈ S.

end example

example 3.9 Lists of Letters

Suppose we need to define the set S of all lists over {a, b} that begin with the
single letter a followed by zero or more occurrences of b. We can describe S
informally by writing a few of its elements:

S = {〈a〉 , 〈a, b〉 , 〈a, b, b〉 , 〈a, b, b, b〉 , . . . }.

It seems appropriate to make 〈a〉 the basis element of S. Then we can construct
a new list from any list L ∈ S by attaching the letter b on the right end of L. But
cons places new elements at the left end of a list. We can overcome the problem
in the following way:

If x ∈ S, then cons(a, cons(b, tail(L)) ∈ S.

In infix form the statement reads as follows:

If x ∈ S, then a :: b :: tail(L) ∈ S.

For example, if L = 〈a〉 , then we construct the list

a :: b :: tail(〈a〉) = a :: b :: 〈 〉 = a :: 〈b〉 = 〈a, b〉 .

So we have the following inductive definition of S :

Basis: 〈a〉 ∈ S.

Induction: If L ∈ S, then a :: b :: tail(L) ∈ S.

end example

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 137

example 3.10 All Possible Lists

Can we find an inductive definition for the set of all possible lists over {a, b},
including lists that can contain other lists? Suppose we start with lists having a
small number of symbols, including the symbols 〈and 〉. Then, for each n = 2, we
can write down the lists made up of n symbols (not including commas). Figure
3.1 shows these listings for the first few values of n.

If we start with the empty list 〈 〉, then with a and b we can construct three
more lists as follows:

a :: 〈 〉 = 〈a〉 ,
b :: 〈 〉 = 〈b〉 ,

〈 〉 :: 〈 〉 = 〈〈 〉〉 .

Now if we take these three lists together with 〈 〉, then with a and b we can
construct many more lists. For example,

a :: 〈a〉 = 〈a, a〉 ,
〈a〉 :: 〈 〉 = 〈〈a〉〉 ,

〈〈 〉〉 :: 〈b〉 = 〈〈〈 〉〉 , b〉 ,
〈b〉 :: 〈〈 〉〉 = 〈b, 〈 〉〉 .

Using this idea, we’ll make an inductive definition for the set S of all possible
lists over A.

Basis: 〈 〉 ∈ S. (3.4)

Induction: If x ∈ A ∪ S and L ∈ S, then x :: L ∈ S.

end example

2 3 4 5 6

〈〈 〉〉 〈〈a 〉〉

〈〈b 〉〉

〈〈 〉, a 〉

〈〈 〉, b 〉

〈a, 〈 〉〉

〈b, 〈 〉〉

〈a, a 〉

〈a, a, a 〉

〈a, b 〉

〈b, a 〉

〈b, b 〉

〈 〉 〈a 〉

〈b 〉

. .
 .

〈〈〈 〉〉〉

〈〈 〉, 〈 〉〉

〈a, a, 〈 〉〉

〈a, 〈 〉, a 〉

〈〈 〉, a, a 〉

〈a, b, 〈 〉〉

〈a, b, a, b 〉

. .
 .

Figure 3.1 A listing of lists by size.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

138 Chapter 3 � Construction Techniques

3.1.4 Binary Trees

Recall that a binary tree is either empty or it has a left and right subtree, each of
which is a binary tree. This is an informal inductive description of the of binary
trees. To give a formal definition and to work with binary trees, we need some
operations to pick off parts of a tree and to construct new trees.

In Chapter 1 we represented binary trees by lists, where the empty binary
tree is denoted by 〈 〉 and a nonempty binary tree is denoted by the list 〈L, x, R〉,
where x is the root, L is the left subtree, and R is the right subtree. This gives
us the ingredients for a more formal inductive definition of the set of all binary
trees.

For convenience we’ll let tree(L, x, R) denote the binary tree with root x,
left subtree L, and right subtree R. If we still want to represent binary trees as
tuples, then of course we can write

tree(L, x, R) = 〈L, x, R〉 .

Now suppose A is any set. Then we can describe the set B of all binary
trees whose nodes come from A by saying that 〈 〉 is in B, and if L and R are in
B, then so is tree(L, a, R) for any a in A. This gives us an inductive definition,
which we can state formally as follows.

All Binary Trees over A (3.5)

Basis: 〈 〉 ∈ B.

Induction: If x ∈ A and L, R ∈ B, then tree(L, x, R) ∈ B.

We also have destructor operations for binary trees. We’ll let left, root, and
right denote the operations that return the left subtree, the root, and the right
subtree, respectively, of a nonempty tree. For example, if

T = tree(L, x, R), then left(T) = L, root(T) = x, and right(T) = R.

So for any nonempty binary tree T we have

T = tree(left(T), root(T), right(T).

example 3.11 Binary Trees of Twins

Let A = {0, 1}. Suppose we need to work with the set Twins of all binary
trees T over A that have the following property: The left and right subtrees of
each node in T are identical in structure and node content. For example, Twins
contains the empty tree and any single-node tree. Twins also contains the two
trees shown in Figure 3.2.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 139

0 0

0

0

1 1 1 1 1 1

Figure 3.2 Twins as subtrees.

We can give an inductive definition of Twins by simply making sure that
each new tree has the same left and right subtrees. Here’s the definition:

Basis: 〈 〉 ∈ Twins.

Induction: If x ∈ A and T ∈ Twins, then tree(T, x, T) ∈ Twins.

end example

example 3.12 Binary Trees of Opposites

Let A = {0, 1}, and suppose that Opps is the set of all nonempty binary trees T
over A with the following property: The left and right subtrees of each node of
T have identical structures, but the 0’s and 1’s are interchanged. For example,
the single node trees are in Opps, as well as the two trees shown in Figure 3.3.

Since our set does not include the empty tree, the two singleton trees with
nodes 1 and 0 should be the basis trees in Opps. The inductive definition of
Opps can be given as follows:

Basis: tree(〈 〉, 0, 〈 〉), tree(〈 〉, 1, 〈 〉) ∈ Opps.

Induction: Let x ∈ A and T ∈ Opps.
If root(T) = 0, then

tree(T, x, tree(right(T), 1, left(T))) ∈ Opps.
Otherwise,

tree(T, x, tree(right(T), 0, left(T))) ∈ Opps.

Does this definition work? Try out some examples. See whether the definition
builds the four possible three-node trees.

end example

0 0

1

1

1 0 0 1 1 0

Figure 3.3 Opposites as subtrees.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

140 Chapter 3 � Construction Techniques

3.1.5 Cartesian Products of Sets

Let’s consider the problem of finding inductive definitions for subsets of the
Cartesian product of two sets. For example, the set N × N can be defined
inductively by starting with the pair (0, 0) as the basis element. Then, for any
pair (x, y) in the set, we can construct the following three pairs.

(x + 1, y + 1), (x, y + 1), and (x + 1, y).

The graph in Figure 3.4 shows an arbitrary point (x, y) together with the
three new points. It seems clear that this definition will define all elements of
N × N, although some points will be defined more than once. For example, the
point (1, 1) is constructed from the basis element (0, 0), but it is also constructed
from the point (0, 1) and from the point (1, 0).

example 3.13 Cartesian Product

A Cartesian product can be defined inductively if at least one of the sets in that
product can be defined inductively. For example, if A is any set, then we have
the following inductive definition of N × A:

Basis: (0, a) ∈ N × A for all a ∈ A.

Induction: If (x, y) ∈ N × A, then (x + 1, y) ∈ N × A.

end example

example 3.14 Part of a Plane

Let S = {(x, y)| x, y ∈ N and x = y}. From the point of view of a plane, S is
the set of points in the first quadrant with integer coordinates on or above the
main diagonal. We can define S inductively as follows:

Basis: (0, 0) ∈ S.

Induction: If (x, y) ∈ S, then (x , y + 1), (x + 1, y + 1) ∈ S.

y + 1

x + 1x

y

Figure 3.4 Four integer points.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 141

For example, we can use (0, 0) to construct (0, 1) and (1, 1). From (0, 1) we
construct (0, 2) and (1, 2). From (1, 1) we construct (1, 2) and (2, 2). So some
pairs get defined more than once.

end example

example 3.15 Describing an Area

Suppose we need to describe some area as a set of points. From a computational
point of view, the area will be represented by discrete points, like pixels on a
computer screen. So we can think of the area as a set of ordered pairs (x, y)
forming a subset of N × N.

To keep things simple we’ll describe the the area A under the curve of a
function f between two points a and b on the x -axis. Figure 3.5 shows a general
picture of the area A.

So the area A can be described as the following set of points.

A = {(x, y) |x , y ∈ N, a ≤ x ≤ b, and 0 ≤ y ≤ f (x)}.

There are several ways we might proceed to give an inductive definition of A.
For example, we can start with the point (a, 0) on the x -axis. From (a, 0) we
can construct the column of points above it and the point (a + 1, 0), from which
the next column of points can be constructed. Here’s the definition.

Basis: (a, 0) ∈ A.

Induction: If (x, 0) ∈ A and x < b, then (x + 1, 0) ∈ A.
If (x, y) ∈ A and y < f (x), then (x, y + 1) ∈ A.

For example, the column of points (a, 0), (a, 1), (a, 2), . . . , (a, f (a)) is con-
structed by starting with the basis point (a, 0) and by repeatedly using the
second if-then statement. The first if-then statement constructs the points on
the x -axis that are then used to construct the other columns of points. Notice
with this definition that each pair is constructed exactly once.

end example

f (x)

f

A

x
ba

Figure 3.5 Area under a curve.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

142 Chapter 3 � Construction Techniques

Exercises

Numbers

1. For each of the following inductive definitions, start with the basis element
and construct ten elements in the set.

a. Basis: 3 ∈ S.

Induction: If x ∈ S, then 2x− 1 ∈ S.
b. Basis: 1 ∈ S.

Induction: If x ∈ S, then 2x, 2x+ 1 ∈ S.

2. Find an inductive definition for each set S.

a. {1, 3, 5, 7, . . . }.
b. {0, 2, 4, 6, 8, . . . }.
c. {–3, –1, 1, 3, 5, . . . }.
d. {..., – 7, –4, –1, 2, 5, 8, . . . }.
e. {1, 4, 9, 16, 25, . . . }.
f. {1, 3, 7, 15, 31, 63, . . . }.

3. Find an inductive definition for each set S.

a. {4, 7, 10, 13, . . . } ∪ {3, 6, 9, 12, . . . }.
b. {3, 4, 5, 8, 9, 12, 16, 17, . . . }. Hint: Write the set as a union.

4. Find an inductive definition for each set S.

a. {x ∈ N | floor(x/2) is even}.
b. {x ∈ N | floor(x/2) is odd}.
c. {x ∈ N | x mod 5 = 2}.
d. {x ∈ N | 2x mod 7 = 3}.

5. The following inductive definition was given in Example 4, the second robot
example.

Basis: ∅ ∈ Nat.

Induction: If s ∈ Nat, then s ∪ {s} ∈ Nat.

In Example 4 we identified natural numbers with the elements of Nat by
setting 0 = ∅ and n = n ∪ {n} for n �= 0. Show that 4 = {0, 1, 2, 3}.

Strings

6. Find an inductive definition for each set S of strings.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.1 � Inductively Defined Sets 143

a. {anbcn | n ∈ N}.
b. {a2n | n ∈ N}.
c. {a2n+1 | n ∈ N}.
d. {ambn | m, n ∈ N}.
e. {ambcn | n ∈ N}.
f. {ambn | m, n ∈ N, where m > 0}.
g. {ambn | m, n ∈ N, where n > 0}.
h. {ambn | m, n ∈ N, where m > 0 and n > 0}.
i. {ambn | m, n ∈ N, where m > 0 or n > 0}.
j. {a2n | n ∈ N} ∪ {b2n+1 | n ∈ N}.
k. {s ∈ {a, b}* | s has the same number of a’s and b’s}.

7. Find an inductive definition for each set S of strings.

a. Even palindromes over the set {a, b}.
b. Odd palindromes over the set {a, b}.
c. All palindormes over the set {a, b}.
d. The binary numerals.

8. Let the letters a, b, and c be constants; let the letters x, y, and z be variables;
and let the letters f and g be functions of arity one. We can define the set of
terms over these symbols by saying that any constant or variable is a term
and if t is a term, then so are f (t) and g(t). Find an inductive definition for
the set T of terms.

Lists

9. For each of the following inductive definitions, start with the basis element
and construct five elements in the set.

a. Basis: 〈a〉 ∈ S.

Induction: If x ∈ S, then b :: x ∈ S.
b. Basis: 〈1〉 ∈ S.

Induction: If x ∈ S, then 2 · head(x) :: x ∈ S.

10. Find an inductive definition for each set S of lists. Use the cons constructor.

a. {〈a〉, 〈a, a〉, 〈a, a, a〉, . . . }.
b. {〈1〉, 〈2, 1〉, 〈3, 2, 1〉, . . . }.
c. {〈a, b〉, 〈b, a〉, 〈a, a, b〉, 〈b, b, a〉, 〈a, a, a, b〉, 〈b, b, b, a〉, . . . }.
d. {L | L has even length over {a}}.
e. {L | L has even length over {0, 1, 2}}.
f. {L | L has even length over a set A}.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

144 Chapter 3 � Construction Techniques

g. {L | L has odd length over {a}}.
h. {L | L has odd length over {0, 1, 2}}.
i. {L | L has odd length over a set A}.

11. Find an inductive definition for each set S of lists. You may use the “consR”
operation, where consR(L, x) is the list constructed from the list L by adding
a new element x on the right end. Similarly, you may use the “headR” and
“tailR” operations, which are like head and tail but look at things from the
right side of a list.

a. {〈a〉, 〈a, b〉, 〈a, b, b〉, . . . }.
b. {〈1〉, 〈1, 2〉, 〈1, 2, 3〉, . . . }.
c. { L ∈ lists({a, b}) | L has the same number of a’s and b’s}.

12. Find an inductive definition for the set S of all lists over A = {a, b} that
alternate a’s and b’s. For example, the lists 〈 〉, 〈a〉, 〈b〉, 〈a, b, a〉, and 〈b,
a〉 are in S. But 〈a, a〉 is not in S.

Binary Trees

13. Given the following inductive definition for a set S of binary trees. Start
with the basis element and draw pictures of four binary trees in the set.
Don’t draw the empty subtrees.

Basis: tree(〈 〉, a, 〈 〉) ∈ S.
Induction: If T ∈ S, then tree(tree(〈 〉, a, 〈 〉), a, T) ∈ S.

14. Find an inductive definition for the set B of binary trees that represent
arithmetic expressions that are either numbers in N or expressions that use
operations + or –.

15. Find an inductive definition for the set B of nonempty binary trees over {a}
in which each non-leaf node has two subtrees, one of which is a leaf and the
other of which is either a leaf or a member of B.

Cartesian Products

16. Given the following inductive definition for a subset B of N × N.

Basis: (0, 0) ∈ B.
Induction: If (x, y) ∈ B, then (x + 1, y), (x + 1, y + 1) ∈ B.

a. Describe the set B as a set of the form {(x, y) | some property holds}.
b. Describe those elements in B that get defined in more than one way.

17. Find an inductive definition for each subset S of N × N.

a. S = {(x, y) | y = x or y = x + 1}.
b. S = {(x, y) | x is even and y ≤ x/2}.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 145

18. Find an inductive definition for each product set S.

a. S = lists(A) × lists(A) for some set A.
b. S = A× lists(A).
c. S = N × lists(N).
d. S = N × N × N

Proofs and Challenges

19. Let A be a set. Suppose O is the set of binary trees over A that contain an
odd number of nodes. Similarly, let E be the set of binary trees over A that
contain an even number of nodes. Find inductive definitions for O and E.
Hint: You can use O when defining E, and you can use E when defining O.

20. Use Example 15 as a guide to construct an inductive definition for the set
of points in N × N that describe the area A between two curves f and g
defined as follows for two natural numbers a and b:

A = {(x, y) |x , y ∈ N, a ≤ x ≤ b, and g

21. Prove that a set defined by (3.1) is countable if the basis elements in Step
1 are countable, the outside elements used in Step 2 are countable, and the
rules specified in Step 2 are finite.

3.2 Recursive Functions and Procedures
Since we’re going to be constructing functions and procedures in this section,
we’d better agree on the idea of a procedure. From a computer science point
of view a procedure is a program that performs one or more actions. So there
is no requirement to return a specific value. For example, the execution of a
statement like print(x, y) will cause the values of x and y to be printed. In
this case, two actions are performed, and no values are returned. A procedure
may also return one or more values through its argument list. For example, a
statement like allocate(m, a, s) might perform the action of allocating a block of
m memory cells and return the values a and s, where a is the beginning address
of the block and the s tells whether the allocation was succesful.

Definition of Recursively Defined
A function or a procedure is said to be recursively defined if it is defined in
terms of itself. In other words, a function f is recursively defined if at least one
value f (x) is defined in terms of another value f (y), where x �= y. Similarly, a
procedure P is recursively defined if the actions of P for some argument x are
defined in terms of the actions of P for another argument y, where x �= y.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

146 Chapter 3 � Construction Techniques

Many useful recursively defined functions have domains that are inductively
defined sets. Similarly, many recursively defined procedures process elements
from inductively defined sets. For these cases there are very useful construction
techniques. Let’s describe the two techniques.

Constructing a Recursively Defined Function (3.6)
If S is an inductively defined set, then we can construct a function f with
domain S as follows:

1. For each basis element x ∈ S, specify a value for f (x).

2. Give rules that, for any inductively defined element x ∈ S, will define
f (x) in terms of previously defined values of f.

Any function constructed by (3.6) is recursively defined because it is de-
fined in terms of itself by the induction part of the definition. In a similar way
we can construct a recursively defined procedure to process the elements of an
inductively defined set.

Constructing a Recursively Defined Procedure (3.7)
If S is an inductively defined set, we can construct a procedure P to process
the elements of S as follows:

1. For each basis element x ∈ S, specify a set of actions for P(x).

2. Give rules that, for any inductively defined element x ∈ S, will define the
actions of P(x) in terms of previously defined actions of P.

In the following paragraphs we’ll see how (3.6) and (3.7) can be used to con-
struct recursively defined functions and procedures over a variety of inductively
defined sets. Most of our examples will be functions. But we’ll define a few
procedures too.

3.2.1 Numbers

Let’s see how some number functions can be defined recursively. To illustrate
the idea, suppose we want to calculate the sum of the first n natural numbers
for any n ∈ N. Letting f (n) denote the desired sum, we can write the informal
definition

f (n) = 0 + 1 + 2 + · · · + n.

We can observe, for example, that f (0) = 0, f (1) = 1, f (2) = 3, and so on. After
a while we might notice that f (3) = f (2) + 3 = 6 and f (4) = f (3) + 4 = 10.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 147

In other words, when n > 0, the definition can be transformed in the following
way:

f (n) = 0 + 1 + 2 + · · · + n
= (0 + 1 + 2 + · · · + (n− 1)) + n
= f (n− 1) + n.

This gives us the recursive part of a definition of f for any n > 0. For the basis
case we have f (0) = 0. So we can write the following recursive definition for f.

f (0) = 0,
f (n) = (n− 1) + n for n > 0.

There are two alternative forms that can be used to write a recursive defini-
tion. One form expresses the definition as an if-then-else equation. For example,
f can be described in the following way.

f (n) = if n = 0 then 0 else f (n – 1) + n.

Another form expresses the definition as equations whose left sides determine
which equation to use in the evaluation of an expression rather than a conditional
like n > 0. Such a form is called a pattern-matching definition because the
equation chosen to evaluate f (x) is determined uniquely by which left side f (x)
matches. For example, f can be described in the following way.

f (0) = 1,
f (n+ 1) = f (n) + n+ 1.

For example, f (3) matches f (n + 1) with n = 2, so we would choose the second
equation to evaluate f (3) = f (2) + 3, and so on.

A recursively defined function can be evaluated by a technique called un-
folding the definition. For example, we’ll evaluate the expression f (4).

f (4) = f (3) + 4
= f (2) + 3 + 4
= f (1) + 2 + 3 + 4
= f (0) + 1 + 2 + 3 + 4
= 0 + 1 + 2 + 3 + 4
= 10.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

148 Chapter 3 � Construction Techniques

example 3.16 Using the Floor Function

Let f : N → N be defined in terms of the floor function as follows:

f (0) = 0,
f(n = f (floor (n/2)) + n for n > 0.

Notice in this case that f (n) is not defined in terms of f (n – 1) but rather in
terms of f (floor(n/2)). For example, f (16) = f (8) + 16. The first few values are
f (0) = 0, f (1) = 1, f (2) = 3, f (3) = 4, and f (4) = 7. We’ll calculate f (25).

f (25) = f (12) + 25
= f (6) + 12 + 25
= f (3) + 6 + 12 + 25
= f (1) + 3 + 6 + 12 + 25
= f (0) + 1 + 3 + 6 + 12 + 25
= 0 + 1 + 3 + 6 + 12 + 25
= 47.

end example

example 3.17 Adding Odd Numbers

Let f : N → N denote the function to add up the first n odd natural numbers.
So f has the following informal definition.

f (n) = 1 + 3 + ··· + (2n + 1).

For example, the definition tells us that f (0) = 1. For n > 0 we can make the
following transformation of f (n) into an expression in terms of f (n – 1):

f (n) = 1 + 3 + · · · + (2n+ 1)
= (1 + 3 + · · · + (2n− 1)) + (2n+ 1)
= (1 + 3 + · · · + 2 (n− 1) + 1) + (2n+ 1)
= f (n− 1) + 2n+ 1.

So we can make the following recursive definition of f :

f (0) = 1,
f (n) = f (n− 1) + 2n+ 1 if n > 0.

Alternatively, we can write the recursive part of the definition as

f (n + 1) = f (n) + 2n + 3.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 149

We can also write the defintion in the following if-then-else form.

f (n) = if n = 0 then 1 else f (n – 1) + 2n + 1.

Here is the evaluation of f (3) using the if-then-else definition:

f (3) = f (2) + 2 (3) + 1
= f (1) + 2 (2) + 1 + 2 (3) + 1
= f (0) + 2 (1) + 1 + 2 (2) + 1 + 2 (3) + 1
= 1 + 2 (1) + 1 + 2 (2) + 1 + 2 (3) + 1
= 1 + 3 + 5 + 7
= 16.

end example

example 3.18 The Rabbit Problem

The Fibonacci numbers are the numbers in the sequence

0, 1, 1, 2, 3, 5, 8, 13, . . .

where each number after the first two is computed by adding the preceding
two numbers. These numbers are named after the mathematician Leonardo
Fibonacci, who in 1202 introduced them in his book Liber Abaci, in which he
proposed and solved the following problem: Starting with a pair of rabbits, how
many pairs of rabbits can be produced from that pair in a year if it is assumed
that every month each pair produces a new pair that becomes productive after
one month?

For example, if we don’t count the original pair and assume that the original
pair needs one month to mature and that no rabbits die, then the number of new
pairs produced each month for 12 consecutive months is given by the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.

The sum of these numbers, which is 232, is the number of pairs of rabbits pro-
duced in one year from the original pair.

Fibonacci numbers seem to occur naturally in many unrelated problems. Of
course, they can also be defined recursively. For example, letting fib(n) be the
nth Fibonacci number, we can define fib recursively as follows:

fib (0) = 0,
fib (1) = 1,
fib (n) = fib (n− 1) + fib (n− 2) for n ≥ 2.

The third line could be written in pattern matching form as

fib(n + 2) = fib(n + 1) + fib(n).

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

150 Chapter 3 � Construction Techniques

The definition of fib in if-then-else form looks like

fib (n) = if n = 0 then 0
else if n = 1 then 1
else fib (n− 1) + fib (n− 2) .

end example

Sum and Product Notation
Many definitions and properties that we use without thinking are recursively
defined. For example, given a sequence of numbers (a1, a2, . . . , an) we can
represent the sum of the the sequence with summation notation using the symbol
Σ as follows.

n∑
i=1

ai = a1 + a2 + · · · + an.

This notation has the following recursive definition, which makes the practical
assumption that an empty sum is 0.

n∑
i=1

ai = if n = 0 then 0 else an +
n−1∑
i=1

ai.

Similarly we can represent the product of the sequence with the following
product notation, where the practical assumption is that an empty product is 1.

n∏
i=1

ai = if n = 0 then 1 else an ·
n−1∏
i=1

ai.

In the special case where (a1, a2, . . . , a) = (1, 2, . . . , n) the product defines
popular factorial function, which is denoted by n! and is read “n factorial.” In
other words, we have

n! = (1)(2)· · · (n – 1)(n).

For example, 4! = 4 · 3 · 2 · 1 = 24, and 0! = 1. So we can define n! in the
following recursive form.

n! = if n = 0 then 1 else n · (n− 1)!.

3.2.2 Strings

Let’s see how some string functions can be defined recursively. To illustrate
the idea, suppose we want to calculate the complement of any string over the
alphabet {a, b}. For example, the complement of the string bbab is aaba.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 151

Let f (x) be the complement of x. To find a recursive definition for f we’ll
start by observing that an arbitrary string over {a, b} is either Λ or has the form
ay or by for some string y. So we’ll define the result of f applied to each of these
forms as follows:

f (Λ) = Λ,
f (ax) = bf (x) ,
f (bx) = af (x) .

For example, we’ll evaluate f (bbab):

f (bbab) = af (bab)
= aaf (ab)
= aabf (b)
= aaba.

Here are some more examples.

example 3.19 Prefixes of Strings

Consider the problem of finding the longest common prefix of two strings. A
string p is a prefix of the string x if x can be written in the form x = ps for
some string s. For example, aab is the longest common prefix of the two strings
aabbab and aababb.

For two strings over {a, b}, let f (x, y) be the longest common prefix of x and
y. To find a recursive definition for f we can start by observing that an arbitrary
string over {a, b} is either the empty string Λ or has as or bs for some string s.
In other words, the strings over {a, b} are an inductively defined set. So we can
define f (s, t) by making sure that we take care to define it for all combinations
of s and t. Here is a definition of f in pattern-matching form:

f (Λ, x) = Λ,
f (x,Λ) = Λ,
f (ax, by) = Λ,
f (bx, ay) = Λ,
f (ax, ay) = af (x, y) ,
f (bx, by) = bf (x, y) .

We can put the definition in if-then-else form as follows:

f (s, t) = if s = Λ or t = Λ then Λ
else if s = ax and t = ay then af (x, y)
else if s = bx and t = by then bf (x, y)
else Λ.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

152 Chapter 3 � Construction Techniques

We’ll demonstrate the definition of f by calculating f (aabbab , aababb):

f(aabbab, aababb) = af (abbab, ababb)
= aaf (bbab, babb)
= aabf (bab, abb)
= aabΛ
= aab.

end example

example 3.20 Converting Natural Numbers to Binary

Recall from Section 2.1 that we can represent a natural number x as

x = 2(floor(x/2)) + x mod 2.

This formula can be used to create a binary representation of x because x mod
2 is the rightmost bit of the representation. The next bit is found by computing
floor(x/2) mod 2. The next bit is floor(floor(x/2)/2) mod 2, and so on. For
example, we’ll compute the binary representation of 13.

13 = 2 �13/2� + 13 mod 2 = 2 (6) + 1
6 = 2 �6/2� + 6 mod 2 = 2 (3) + 0
3 = 2 �3/2� + 3 mod 2 = 2 (2) + 1
1 = 2 �1/2� + 1 mod 2 = 2 (0) + 1

We can read off the remainders in reverse order to obtain 1101, which is the
binary representation of 13.

Let’s try to use this idea to write a recursive definition for the function
“binary” to compute the binary representation for a natural number. If x = 0
or x = 1, then x is its own binary representation. If x > 1, then the binary
representation of of x is that of floor(x/2) with the bit x mod 2 attached on the
right end. So our recursive definition of binary can be written as follows, where
“cat” is the string concatenation function.

binary(0) = 0, (3.8)
binary (1) = 1,
binary (x) = cat (binary (�x/2�) , xmod 2) if x > 1.

The definition can be written in if-then-else form as

binary (x) = if x = 0 or x = 1 then 〈x〉
else cat (binary (floor (x/2)) , xmod 2) .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 153

For example, we unfold the definition to calculate binary(13):

binary (13) = cat (binary (6) , 1)
= cat (cat (binary (3) , 0) , 〈1〉)
= cat (cat (cat (binary (1) , 1) , 0) , 〈1〉)
= cat (cat (cat (1, 1) , 0) , 1)
= cat (cat (11, 0) , 1)
= cat (110, 1)
= 1101.

end example

3.2.3 Lists

Let’s see how some functions that use lists can be defined recursively. To illus-
trate the idea, suppose we need to define the function f : N → lists(N) that
computes the following backwards sequence:

f (n) = 〈n, n – 1, . . . , 1, 0〉 .

With a little help from the cons function for lists we can transform the informal
definition of f (n) into a computable expression in terms of f (n – 1):

f (n) = 〈n, n− 1, . . . , 1, 0〉
= cons (n, 〈n− 1, . . . , 1, 0〉)
= cons (n, f (n− 1)) .

Therefore, f can be defined recursively by

f (0) = 〈0〉 .
f (n) = cons (n, f (n− 1)) if n > 0.

This definition can be written in if-then-else form as

f (n) = if n = 0 then 〈0〉 else cons(n, f (n – 1)).

To see how the evaluation works, look at the unfolding that results when we
evaluate f (3):

f (3) = cons (3, f (2))
= cons (3, cons (2, f (1)))
= cons (3, cons (2, cons (1, f (0))))
= cons (3, cons (2, cons (1, 〈0〉)))
= cons (3, cons (2, 〈1, 0〉))
= cons (3, 〈2, 1, 0〉)
= 〈3, 2, 1, 0〉 .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

154 Chapter 3 � Construction Techniques

We haven’t given a recursively defined procedure yet. So let’s give one for
the problem we’ve been discussing. For example, suppose that P(n) prints out
the numbers in the list 〈n, n – 1, . . . , 0〉 . A recursive definition of P can be
written as follows.

P(n): if n = 0 then print(0)
else

print(n);
P(n – 1)

fi.

example 3.21 Length of a List

Let S be a set and let “length” be the function of type lists(S) → N, that returns
the number of elements in a list. We can define length recursively by noticing
that the length of an empty list is zero and the length of a nonempty list is one
plus the length of its tail. A definition follows.

length (〈 〉) = 0,
length (cons (x, t)) = 1 + length (t) .

Recall that the infix form of cons(x, t) is x :: t. So we could just as well write
the second equation as

length(x :: t) = 1 + length(t).

Also, we could write the induction part of the definition with a condition as
follows.

length (L) = 1 + length (tail (L)) if L �= 〈 〉 .

In if-then-else form the definition can be written as follows:

length(L) = if L = 〈 〉 then 0 else 1 + length(tail(L)).

The length function can be evaluated by unfolding its definition. For example,
suppose we use tuples to represent lists. Then

length (〈a, b, c〉) = 1 + length (〈b, c〉)
= 1 + 1 + length (〈c〉)
= 1 + 1 + 1 + length (〈 〉)
= 1 + 1 + 1 + 0
= 3.

end example

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 155

example 3.22 The Distribute Function

Suppose we want to write a recursive definition for the distribute function, which
we’ll denote by “dist.” For example,

dist(a, 〈b, c, d, e〉) = 〈(a, b), (a, c), (a, d), (a, e)〉 .

Since the second argument is a list, we can use induction on that argument to
define dist. For example, notice how we can write the preceding equation:

dist (a, 〈b, c, d, e〉) = 〈(a, b) , (a, c) , (a, d) , (a, e)〉
= (a, b) :: dist (a, 〈c, d, e〉) .

That’s the key to the inductive part of the definition. Since we are inducting
on lists, the basis case is dist(a, 〈 〉), which we define as 〈 〉 . So the recursive
definition can be written as follows:

dist (a, 〈 〉) = 〈 〉 ,
dist (a, b :: T) = (a, b) :: dist (a, T) .

For example, let’s evaluate the expression dist(3, 〈10, 20〉) by unfolding the above
definition:

dist (3, 〈10, 20〉) = (3, 10) :: dist (3, 〈20〉)
= (3, 10) :: (3, 20) :: dist (3, 〈 〉)
= (3, 10) :: (3, 20) :: 〈 〉
= (3, 10) :: 〈(3, 20)〉
= 〈(3, 10) , (3, 20)〉 .

An if-then-else difinition of dist takes the following form:

dist(x, L) = if L = 〈 〉 then 〈 〉
else (x,head(L)) :: dist(x, tail(L)).

end example

example 3.23 The Pairs Function

Recall that the “pairs” function creates a list of pairs of corresponding elements
from two lists. For example,

pairs(〈a, b, c〉, 〈1, 2, 3〉) = 〈(a, 1), (b, 2), (c, 3)〉 .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

156 Chapter 3 � Construction Techniques

The pairs function can be defined recursively by the following equations:

pairs (〈 〉 , 〈 〉) = 〈 〉 ,
pairs (a :: T, b :: T ′) = (a, b) :: pairs (T, T ′) .

For example, we’ll evaluate the expression pairs(〈a, b〉, 〈1, 2〉):

pairs (〈a, b〉 , 〈1, 2〉) = (a, 1) :: pairs (〈b〉 , 〈1〉)
= (a, 1) :: (b, 2) :: pairs (〈 〉 , 〈 〉)
= (a, 1) :: (b, 2) :: 〈 〉
= (a, 1) :: 〈(b, 2)〉
= 〈(a, 1) , (b, 2)〉 .

end example

example 3.24 The ConsRight Function

Suppose we need to give a recursive definition for the sequence function. Re-
call, for example, that seq(4) = 〈0, 1, 2, 3, 4〉. Good old “cons” doesn’t seem
up to the task. For example, if we somehow have computed seq(3), then
cons(4, seq(3)) = 〈4, 0, 1, 2, 3〉. It would be nice if we had a constructor to
place an element on the right of a list, just as cons places an element on the left
of a list. We’ll write a definition for the function “consR” to do just that. For
example, we want

consR(〈a, b, c〉, d) = 〈a, b, c, d〉.

We can get an idea of how to proceed by rewriting the above equation as follows
in terms of the infix form of cons:

consR (〈a, b, c〉 , d) = 〈a, b, c, d〉
= a :: 〈b, c, d〉
= a :: consR (〈b, c〉 , d) .

So the clue is to split the list 〈a, b, c〉 into its head and tail. We can write the
inductive definition of consR using if-then-else form as follows:

consR (L, a) = if L = 〈 〉 then 〈a〉
else head (L) :: consR (tail (L) , a) .

This definition can be written in pattern-matching form as follows:

consR (〈 〉 , a) = a :: 〈 〉 ,
consR (b :: T, a) = b :: consR (T, a) .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 157

For example, we can construct the list 〈x, y〉 with consR as follows:

consR (consR (〈 〉 , x) , y) = consR (x :: 〈 〉 , y)
= x :: consR (〈 〉 , y)
= x :: y :: 〈 〉
= x :: 〈y〉
= 〈x, y〉 .

end example

example 3.25 Concatenation of Lists

An important operation on lists is the concatenation of two lists into a single
list. Let “cat” denote the concatenation function. Its type is lists(A) × lists(A)
→ lists(A). For example,

cat(〈a, b〉, 〈c, d〉) = 〈a, b, c, d〉.

Now cat can be recursively defined as follows:

cat (〈 〉 , L) = L,
cat (a :: T,L) = a :: cat (T,L) .

We’ll unfold the definition for the expression cat(〈a, b〉, 〈c, d〉):

cat (〈a, b〉 , 〈c, d〉) = a :: cat (〈b〉 , 〈c, d〉)
= a :: b :: cat (〈 〉 , 〈c, d〉)
= a :: b :: 〈c, d〉
= a :: 〈b, c, d〉
= 〈a, b, c, d〉 .

We can also write cat as a recursively defined procedure that prints out the
elements of the two lists:

cat(K, L): if K = 〈 〉 then print(L)
else

print(head(K));
cat(tail(K), L)

fi.

end example

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

158 Chapter 3 � Construction Techniques

example 3.26 Sorting a List by Insertion

Let’s define a function to sort a list of numbers by repeatedly inserting a new
number into an already sorted list of numbers. Suppose “insert” is a function
that does this job. Then the sort function itself is easy. For a basis case, notice
that the empty list is already sorted. For the induction case we sort the list x ::
L by inserting x into the list obtained by sorting L. The definition can be written
as follows:

sort (〈 〉) = 〈 〉 ,
sort (x :: L) = insert (x, sort (L)) .

Everything seems to make sense as long as insert does its job. We’ll assume that
whenever the number to be inserted is already in the list, then a new copy will
be placed to the left of the one already there. Now let’s define insert. Again, the
basis case is easy. The empty list is sorted, and to insert x into 〈 〉, we simply
create the singleton list 〈x 〉. Otherwise—if the sorted list is not empty—either
x belongs on the left of the list, or it should actually be inserted somewhere else
in the list. An if-then-else definition can be written as follows:

insert (x, S) = if S = 〈 〉 then 〈x〉
else if x ≤ head (S) then x :: S
else head (S) :: insert (x, tail (S)) .

Notice that insert works only when S is already sorted. For example, we’ll unfold
the definition of insert(3, 〈1, 2, 6, 8〉):

insert (3, 〈1, 2, 6, 8〉) = 1 :: insert (3, 〈2, 6, 8〉)
= 1 :: 2 :: insert (3, 〈6, 8〉)
= 1 :: 2 :: 3 :: 〈6, 8〉
= 〈1, 2, 3, 6, 8〉 .

end example

example 3.27 The Map Function

Let’s see how the map function can be defined recursively. For example, map
has the following recursive definition, in which we use the infix expression a :: L
for cons(a, L):

map (f, 〈 〉) = 〈 〉 ,
map (f, a :: L) = f (a) :: map (f, L) .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 159

For example, we’ll unfold the expression map(f, 〈a, b, c〉).

map (f, 〈a, b, c〉) = f (a) :: map (f, 〈b, c〉)
= f (a) :: f (b) :: map (f, 〈c〉)
= f (a) :: f (b) :: f (c) :: map (f, 〈 〉)
= f (a) :: f (b) :: f (c) :: 〈 〉
= 〈f (a) , f (b) , f (c)〉 .

end example

3.2.4 Binary Trees

Let’s look at some functions that compute properties of binary trees. To start,
suppose we need to know the number of nodes in a binary tree. Since the set of
binary trees over a particular set can be defined inductively, we should be able
to come up with a recursively defined function that suits our needs. Let “nodes”
be the function that returns the number of nodes in a binary tree. Since the
empty tree has no nodes, we have nodes(〈 〉) = 0. If the tree is not empty, then
the number of nodes can be computed by adding 1 to the number of nodes in
the left and right subtrees. The equational definition of nodes can be written as
follows:

nodes (〈 〉) = 0,
nodes (tree (L, a,R)) = 1 + nodes (L) + nodes (R) .

If we want the corresponding if-then-else form of the definition, it looks like

nodes (T) = if T = 〈 〉 then 0
else 1 + nodes (left (T)) + nodes (right (T)) .

For example, we’ll evaluate nodes(T) for T = 〈 〉, a, 〈 〉 〉, b, 〈 〉 〉 :

nodes (T) = 1 + nodes (〈〈 〉 , a, 〈 〉〉) + nodes (〈 〉)
= 1 + 1 + nodes (〈 〉) + nodes (〈 〉) + nodes (〈 〉)
= 1 + 1 + 0 + 0 + 0
= 2.

example 3.28 A Binary Search Tree

Suppose we have a binary search tree whose nodes are numbers, and we want to
add a new number to the tree, under the assumption that the new tree is still a
binary search tree. A function to do the job needs two arguments, a number x
and a binary search tree T. Let the name of the function be “insert.”

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

160 Chapter 3 � Construction Techniques

The basis case is easy. If T = 〈 〉, then return tree(〈 〉, x, 〈 〉). The
induction part is straightforward. If x < root(T), then we need to replace
the subtree left(T) by insert(x, left(T)). Otherwise, we replace right(T) by
insert(x, right(T)). Notice that repeated elements are entered to the right. If we
didn’t want to add repeated elements, then we could simply return T whenever
x = root(T). The if-then-else form of the definition is

insert (x, T) = if T = 〈 〉 then tree (〈 〉 , x, 〈 〉)
else if x < root (T) then

tree (insert (x, left (T)) , root (T) , right (T))
else

tree (left (T) , root (T) , insert (x, right (T))) .

Now suppose we want to build a binary search tree from a given list of numbers
in which the numbers are in no particular order. We can use the insert function
as the main ingredient in a recursive definition. Let “makeTree” be the name of
the function. We’ll use two variables to describe the function, a binary search
tree T and a list of numbers L.

makeTree (T,L) = if L = 〈 〉 then T (3.9)
else makeTree (insert (head (L) , T) , tail (L)) .

To construct a binary search tree with this function, we apply makeTree to the
pair of arguments (〈 〉, L). As an example, the reader should unfold the definition
for the call makeTree(〈 〉, 〈3, 2, 4〉).

The function makeTree can be defined another way. Suppose we consider
the following definition for constructing a binary search tree:

makeTree (T,L) = if L = 〈 〉 then T (3.10)
else insert (head (L) ,makeTree (T, tail (L))) .

You should evaluate the expression makeTree(〈 〉, 〈3, 2, 4〉) by unfolding this
alternative definition. It should help explain the difference between the two
definitions.

end example

Traversing Binary Trees
There are several useful ways to list the nodes of a binary tree. The three most
popular methods of traversing a binary tree are called preorder, inorder, and
postorder. We’ll start with the definition of a preorder traversal.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 161

a

cb

d e

Figure 3.6 A binary tree.

Preorder Traversal
The preorder traversal of a binary tree starts by visiting the root. Then there
is a preorder traversal of the left subtree followed by a preorder traversal of
the right subtree.

For example, the preorder listing of the nodes of the binary tree in Figure
3.6 is 〈a, b, c, d, e〉.

It’s common practice to write the listing without any punctuation symbols as

a b c d e.

example 3.29 A Preorder Procedure

Since binary trees are inductively defined, we can easily write a recursively
defined procedure to output the preorder listing of a binary tree. For exam-
ple, the following recursively defined procedure prints the preorder listing of its
argument T.

Preorder(T): if T �= 〈 〉 then
print(root(T));
Preorder(left(T));
Preorder(right(T))

fi.

end example

example 3.30 A Preorder Function

Now let’s write a function to compute the preorder listing of a binary tree.
Letting “preOrd” be the name of the preorder function, an equational definition
can be written as follows:

preOrd (〈 〉) = 〈 〉 ,
preOrd (tree (L, x,R)) = x :: cat (preOrd (L) ,preOrd (R)) .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

162 Chapter 3 � Construction Techniques

The if-then-else form of preOrd can be written as follows:

preOrd (T) = if T = 〈 〉 then 〈 〉
else root (T) :: cat (preOrd (left (T)) ,preOrd (right (T))) .

We’ll evaluate the expression preOrd(T) for the tree T = 〈 〉, a, 〈 〉 〉, b,
〈 〉 〉 :

preOrd (T) = b :: cat (preOrd (〈〈 〉 , a 〈 〉〉) ,preOrd (〈 〉))
= b :: cat (a :: cat (preOrd (〈 〉) ,preOrd (〈 〉)) ,preOrd (〈 〉))
= b :: cat (a :: 〈 〉 , 〈 〉)
= b :: cat (〈a〉 , 〈 〉)
= b :: 〈a〉
= 〈b, a〉 .

end example

The definitions for the inorder and postorder traversals of a binary tree are
similar to the preorder traversal. The only difference is when the root is visited
during the traversal.

Inorder Traversal
The inorder traversal of a binary tree starts with an inorder traversal of the
left subtree. Then the root is visited. Lastly, there is an inorder traversal of
the right subtree.

For example, the inorder listing of the tree in Figure 3.6 is

b a d c e.

Postorder Traversal
The postorder traversal of a binary tree starts with a postorder traversal of
the left subtree and is followed by a postorder traversal of the right subtree.
Lastly, the root is visited.

The postorder listing of the tree in Figure 3.6 is

b d e c a.

We’ll leave the construction of the inorder and postorder procedures and
functions as exercises.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 163

3.2.5 Two More Problems

We’ll look at two more problems, each of which requires a little extra thinking
on the way to a solution.

The Repeated Element Problem
Suppose we want to remove repeated elements from a list. Depending on how
we proceed, there might be different solutions. For example, we can remove the
repeated elements from the list 〈u, g, u, h, u〉 in three ways, depending on which
occurrence of u we keep: 〈u, g, h〉, 〈g, u, h〉, or 〈g, h, u〉. We’ll solve the problem
by always keeping the leftmost occurrence of each element. Let “remove” be the
function that takes a list L and returns the list remove(L), which has no repeated
elements and contains the leftmost occurrence of each element of L.

To start things off, we can say remove(〈 〉) = 〈 〉. Now if L �= 〈 〉, then L has
the form L = b :: M for some list M. In this case, the head of remove(L) should
be b. The tail of remove(L) can be obtained by removing all occurrences of b
from M and then removing all repeated elements from the resulting list. So we
need a new function to remove all occurrences of an element from a list.

Let removeAll(b, M) denote the list obtained from M by removing all occur-
rences of b. Now we can write an equational definition for the remove function
as follows:

remove (〈 〉) = 〈 〉 ,
remove (b ::M) = b :: remove (removeAll (b,M)) .

We can rewrite the solution in if-then-else form as follows:

remove (L) = if L = 〈 〉 then 〈 〉
else head (L) :: remove (removeAll (head (L) , tail (L))) .

To complete the task, we need to define the “removeAll” function. The basis
case is removeAll(b, 〈 〉) = 〈 〉. If M �= 〈 〉, then the value of removeAll(b, M)
depends on head(M). If head(M) = b, then throw it away and return the value
of removeAll(b, tail(M)). But if head(M) �= b, then it’s a keeper. So we should
return the value head(M) :: removeAll(b, tail(M)). We can write the definition
in if-then-else form as follows:

removeAll (b,M) = if M = 〈 〉 then 〈 〉
else if head (M) = b then

removeAll (b, tail (M))
else

head (M) :: removeAll (b, tail (M)) .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

164 Chapter 3 � Construction Techniques

We’ll evaluate the expression removeAll(b, 〈a, b, c, b〉):

removeAll (b, 〈a, b, c, b〉) = a :: removeAll (b, 〈b, c, b〉)
= a :: removeAll (b, 〈c, b〉)
= a :: c :: removeAll (b, 〈b〉)
= a :: c :: removeAll (b, 〈 〉)
= a :: c :: 〈 〉
= a :: 〈c〉
= 〈a, c〉 .

Try to write out each unfolding step in the evaluation of the expression
remove(〈b, a, b〉). Be sure to start writing at the left-hand edge of your paper.

The Power Set Problem
Suppose we want to construct the power set of a finite set. One solution uses the
fact that power({x} ∪ T) is the union of power(T) and the set obtained from
power(T) by adding x to each of its elements. Let’s see whether we can discover
a solution technique by considering a small example. Let S = {a, b, c}. Then
we can write power(S) as follows:

power (S) = {{} , {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}}
= {{} , {b} , {c} , {b, c}} ∪ {{a} , {a, b} , {a, c} , {a, b, c}} .

We’ve written power(S) = A ∪ B, where B is obtained from A by adding the
underlined element a to each set in A. If we represent S as the list 〈a, b, c〉, then
we can restate the definition for power(S) as the concatenation of the following
two lists:

〈 〉, 〈b〉, 〈c〉, 〈b, c〉 〉 and 〈〈a〉, 〈a, b〉, 〈a, c〉, 〈a, b, c〉 〉.

The first of these lists is power(〈b, c〉). The second list can be obtained from
power(〈b, c〉) by working backward to the answer as follows:

〈〈a〉 , 〈a, b〉 , 〈a, c〉 , 〈a, b, c〉〉 = 〈a :: 〈 〉 , a :: 〈b〉 , a :: 〈c〉 , a :: 〈b, c〉〉
= map (::, 〈〈a, 〈 〉〉 , 〈a, 〈b〉〉 , 〈a, 〈c〉〉 , 〈a, 〈b, c〉〉〉)
= map (::,dist (a,power (〈b, c〉))) .

This example is the key to the induction part of the definition. Using the
fact that power(〈 〉) = 〈 〉 〉 as the basis case, we can write down the following
definition for power:

power (〈 〉) = 〈〈 〉〉 ,
power (a :: L) = cat (power (L) ,map (::,dist (a,power (L)))) .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 165

The if-then-else form of the definition can be written as follows:

power (L) = if L = 〈 〉 then 〈〈 〉〉 else
cat (power (tail (L)) ,map (::,dist (head (L) ,power (tail (L))))) .

We’ll evaluate the expression power(〈a, b〉). The first step yields the equation

power(〈a, b〉) = cat(power(〈b〉), map(::, dist(a, power(〈b〉)))).

Now we’ll evaluate power(〈b〉) and substitute it in the preceding equation:

power (〈b〉) = cat (power (〈 〉) ,map (::,dist (b,power (〈 〉))))
= cat (〈〈 〉〉 ,map (::,dist (b, 〈〈 〉〉)))
= cat (〈〈 〉〉 , 〈b :: 〈 〉〉)
= cat (〈〈 〉〉 , 〈〈b〉〉)
= 〈〈 〉 , 〈b〉〉 .

Now we can continue with the evaluation of power(〈a, b〉):

power (〈a, b〉) = cat (power (〈b〉) ,map (::,dist (a,power (〈b〉))))
= cat (〈〈 〉 , 〈b〉〉 ,map (::,dist (a, 〈〈 〉 , 〈b〉〉)))
= cat (〈〈 〉 , 〈b〉〉 ,map (::, 〈〈a, 〈 〉〉 , 〈a, 〈b〉〉〉))
= cat (〈〈 〉 , 〈b〉〉 , 〈a :: 〈 〉 , a :: 〈b〉〉)
= cat (〈〈 〉 , 〈b〉〉 , 〈〈a〉 , 〈a, b〉〉)
= 〈〈 〉 , 〈b〉 , 〈a〉 , 〈a, b〉〉 .

3.2.6 Infinite Sequences

Let’s see how some infinite sequences can be defined recursively. To illustrate
the idea, suppose the function “ints” returns the following infinite sequence for
any integer x :

ints(x) = 〈x, x + 1, x + 2, . . . 〉.

We’ll assume that that the list operations of cons, head, and tail work for infinite
sequences. For example, the following relationships hold.

ints (x) = x :: ints (x+ 1) ,
head (ints (x)) = x,
tail (ints (x)) = ints (x+ 1) .

Even though the definition of ints does not conform to (3.6), it is still recursively
defined because it is defined in terms of itself. If we executed the definition, an

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

166 Chapter 3 � Construction Techniques

infinite loop would construct the infinite sequence. For example, ints(0) would
construct the infinite sequence of natural numbers as follows:

ints (0) = 0 :: ints (1)
= 0 :: 1 :: ints (2)
= 0 :: 1 :: 2 :: ints (3)
=

In practice, an infinite sequence is used as an argument and is is evaluated only
when some of its values are needed. Once the needed values are computed, the
evaluation stops. This is an example of a technique called lazy evaluation. For
example, the following function returns the nth element of an infinite sequence s.

get(n, s) = if n = 1 then head(s) else get(n – 1, tail(s)).

example 3.31 Picking Elements

We’ll get the third element from the infinite sequence ints(6) by unfolding the
expression get(3, ints(6)):

get (3, ints (6)) = get (2, tail (ints (6)))
= get (1, tail (tail (ints (6))))
= head (tail (tail (ints (6))))
= head (tail (tail (6 :: ints (7))))
= head (tail (ints (7)))
= head (tail (7 :: ints (8)))
= head (ints (8))
= head (8 :: ints (9))
= 8.

end example

example 3.32 Summing

Suppose we need a function to sum the first n elements in an infinite sequence
s of integers. The following definition does the trick:

sum(n, s) = if n = 0 then 0 else head(s) + sum(n – 1, tail(s)).

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 167

We’ll compute the sum of the first three numbers in ints(4):

sum (3, ints (4)) = 4 + sum (2, ints (5))
= 4 + 5 + sum (1, ints (6))
= 4 + 5 + 6 + sum (0, ints (7))
= 4 + 5 + 6 + 0
= 15.

end example

example 3.33 The Sieve of Eratosthenes

Suppose we want to study prime numbers. For example, we might want to find
the 500th prime, we might want to find the difference between the 500th and
501st primes, and so on. One way to proceed might be to define functions to
extract information from the following infinite sequence of all prime numbers.

Primes = 〈2, 3, 5, 7, 11, 13, 17, . . . 〉.

We’ll construct this infinite sequence by the method of Eratosthenes (called the
sieve of Eratosthenes). The method starts with the infinite sequence ints(2):

ints(2) = 〈2, 3, 4, 5, 6, 7, 8, 9, 10, . . . 〉.

The next step removes all multiples of 2 (except 2) to obtain the infinite sequence

〈2, 3, 5, 7, 9, 11, 13, 15, . . . 〉.

The next step removes all multiples of 3 (except 3) are removed to obtain the
infinite sequence

〈2, 3, 5, 7, 11, 13, 17, . . . 〉.

The process continues in this way.
We can construct the desired infinite sequence of primes once we have the

function to remove multiples of a number from an infinite sequence. If we let
remove(n, s) denote the infinite sequence obtained from s by removing all multi-
ples of n, then we can define the sieve process as follows for an infinite sequence
s of numbers:

sieve(s) = head(s) :: sieve(remove(head(s), tail(s))).

But we need to define the remove function. Notice that for natural numbers m
and n with n > 0 that we have the following equivalences:

m is a multiple of n iff n divides m iff m mod n = 0.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

168 Chapter 3 � Construction Techniques

This allows us to write the following definition for the remove function:

remove (n, s) = if head (s) mod n = 0 then remove (n, tail (s))
else head (s) :: remove (n, tail (s)) .

Then our desired sequence of primes is represented by the expression

Primes = sieve(ints(2)).

In the exercises we’ll evaluate some functions dealing with primes.
end example

Exercises

Evaluating Recursively Defined Functions

1. Given the following definition for the nth Fibonacci number:

fib (0) = 0,
fib (1) = 1,
fib (n) = fib (n− 1) + fib (n− 2) if n > 1.

Write down each step in the evaluation of fib(4).

2. Given the following definition for the length of a list:

length(L) = if L = 〈 〉 then 0 else 1 + length(tail(L)).

Write down each step in the evaluation of length(〈r, s, t, u〉).

3. For each of the two definitions of “makeTree” given by (3.9) and (3.10), write
down all steps to evaluate makeTree(〈 〉, 〈3, 2, 4〉).

Numbers

4. Construct a recursive definition for each of the following functions, where all
variables are natural numbers.

a. f (n) = 0 + 2 + 4+ · · · + 2n.
b. f (n) = floor(0/2) + floor(1/2) + · · · + floor(n/2).
c. f (n) = gcd(1, n) + gcd(2, n) + · · · + gcd(n, n) for n > 0.
d. f (n) = (0 mod 2) + (1 mod 3) + · · · + (n mod (n + 2)).
e. f (n, k) = 0 + k + 2k + · · · + nk.
f. f (n, k) = k + (k + 1) + (k + 2) + · · · + (k + n).

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 169

Strings

5. Construct a recursive definition for each of the following string functions for
strings over the alphabet {a, b}.
a. f (x) returns the reverse of x.
b. f (x) = xy, where y is the reverse of x.
c. f (x, y) tests whether x is a prefix of y.
d. f (x, y) tests whether x = y.
e. f (x) tests whether x is a palindrome.

Lists

6. Construct a recursive definition for each of the following functions that in-
volve lists. Use the infix form of cons in the recursive part of each definition.
In other words, write h :: t in place of cons(h, t).

a. f (n) = 〈2n, 2(n – 1), . . . , 2, 0〉.
b. max(L) is the maximum value in nonempty list L of numbers.
c. f(x, 〈a0, . . ., an〉) = a0 + a1x+ a2x2 + · · · + anx

n.

d. f (L) = the list of elements x in list L that have property P.
e. f (a, 〈x 1, . . . , xn〉) = 〈x 1 + a, . . . , xn + a〉.
f. f (a, 〈(x 1, y1), . . . , (xn , yn)〉) = 〈(x 1 + a, y1), . . . , (xn + a, yn)〉.
g. f (n) = 〈(0, n), (1, n – 1), . . . , (n – 1, 1), (n, 0)〉. Hint : Use part (f).
h. f (g, 〈x 1, x 2, . . . , xn〉) = 〈(x 1, g(x 1)), (x 2, g(x 2)), . . . , (xn , g(xn))〉.
i. f (g, h, 〈x 1, . . . , xn〉) = 〈(g(x 1), h(x 1)), . . . , (g(xn), h(xn))〉.

Using Cat or ConsR

7. Construct a recursive definition for each of the following functions that in-
volve lists. Use the cat operation or consR operation in the recursive part
of each definition. (Notice that for any list L and element x we have cat(L,
〈x 〉) = consR(L, x).)

a. f (n) = 〈0, 1, . . . , n 〉.
b. f (n) = 〈0, 2, 4, . . . , 2n〉.
c. f (n) = 〈1, 3, 5, . . . , 2n + 1〉.
d. f (n, k) = 〈n, n + 1, n + 2, . . . , n + k〉.
e. f (n, k) = 〈0, k, 2k, 3k, . . . , nk〉.
f. f (g, n) = 〈(0, g(0)), (1, g(1)), . . . , (n , g(n))〉.
g. f (n, m) = 〈n, n + 1, n + 2, . . . , m – 1, m〉, where n ≤ m.

8. Let insert be a function that extends any binary function so that it evalutates
a list of two or more arguments. For example,

insert(+, 〈1, 4, 2, 9〉) = 1 + (4 + (2 + 9)) = 16.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

170 Chapter 3 � Construction Techniques

Write a recursive definition for insert(f, L), where f is any binary function
and L is a list of two or more arguments.

9. Write a recursive definition for the function eq to check two lists for equality.

10. Write recursive definitions for the following list functions.

a. The function “last” that returns the last element of a nonempty list.
For example, last(〈a, b, c〉) = c.

b. The function “front” that returns the list obtained by removing the last
element of a nonempty list. For example, front(〈a, b, c〉) = 〈a, b, c〉.

11. Write down a recursive definition for the function “pal” that tests a list of
letters to see whether their concatenations form a palindrome. For example,
pal(〈r, a, d, a,r〉) = true since radar is a palindrome. Hint: Use the functions
of Exercise 10.

12. Solve the repeated element problem with the restriction that we want to keep
the rightmost occurrence of each repeated element. Hint: Use the functions
of Exercise 10.

Binary Trees

13. Given the algebraic expression a + (b·(d + e)), draw a picture of the binary
tree representation of the expression. Then write down the preorder, inorder,
and postorder listings of the tree. Are any of the listings familiar to you?

14. Write down recursive definitions for each of the following procedures to print
the nodes of a binary tree.

a. In: Prints the nodes of a binary tree from an inorder traversal.
b. Post: Prints the nodes of a binary tree from a postorder traversal.

15. Write down recursive definitions for each of the following functions. Include
both the equational and if-then-else forms for each definition.

a. leaves: Returns the number of leaf nodes in a binary tree.
b. inOrd: Returns the inorder listing of nodes in a binary tree.
c. postOrd: Returns the postorder listing of nodes in a binary tree.

16. Construct a recursive definition for each of the following functions that in-
volve trees. Represent binary trees as lists where 〈 〉 is the empty tree and
any nonempty binary tree has the form 〈L, r, R〉, where r is the root and L
and R are its left and right subtrees.

a. f (T) = sum of values of the nodes of T.
b. f (T) = depth of a binary tree T. Let the empty tree have depth –1.
c. f (T) = list of nodes x in binary tree T that have property p.
d. f (T) = maximum value of nodes in the nonempty binary tree T.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.2 � Recursive Functions and Procedures 171

Trees and Algebraic Expressions

17. Recall from Section 1.4 that any algebraic expression can be represented as
a tree and the tree can be represented as a list whose head is the root and
whose tail is the list of operands in the form of trees. For example, the
algebraic expression a∗b + f (c, d, e), can be represented by the list

〈+, 〈∗, 〈a〉, 〈b〉〉, 〈 f, 〈c〉, 〈d〉, 〈e〉〉〉.

a. Draw the picture of the tree for the given algebraic expression.
b. Construct a recursive definition for the function post that takes an

algebraic expression written in the form of a list and returns a list of
nodes in algebraic expression tree in postfix notation. For example,

post(〈+, 〈∗, 〈a〉, 〈b〉〉, 〈f, 〈c〉, 〈d〉, 〈e〉〉〉) = 〈a, b, ∗, c, d, e, f, +〉.

Relations as Lists of Tuples

18. Construct a recursive definition for each of the following functions that in-
volve lists of tuples. If x is an n-tuple, then x k represents the kth component
of x.
a. f (k, L) is the list of kth components x k of tuples x in the list L.
b. sel(k, a, L) is the list of tuples x in the list L such that x k = a.

Sets Represented as Lists

19. Write a recursive definition for each of the following functions, in which the
input arguments are sets represented as lists. Use the primitive operations
of cons, head, and tail to build your functions (along with functions already
defined):

a. isMember. For example, isMember(a, 〈b, a, c〉) is true.
b. isSubset. For example, isSubset(〈a, b〉 , 〈b, c, a〉) is true.
c. areEqual. For example, areEqual(〈a, b〉 , 〈b, a〉) is true.
d. union. For example, union(〈a, b〉 , 〈c, a〉) = 〈a, b, c〉.
e. intersect. For example, intersect(〈a, b〉 , 〈c, a〉) = 〈a〉.
f. difference. For example, difference(〈a, b, c〉 , 〈b, d〉) = 〈a, c〉.

Challenges

20. Conway’s challenge sequence is defined recursively as follows:

Basis: f (1) = f (2) = 1.
Recursion: f (n) = f (f (n – 1)) + f (n – f (n – 1)) for n > 2.

Calculate the first 17 elements f (1), f (2), . . . , f (17). The article by Mallows
[1991] contains an account of this sequence.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

172 Chapter 3 � Construction Techniques

21. Let fib(k) denote the kth Fibonacci number, and let

sum(k) = 1 + 2 + ... + k.

Write a recursive definition for the function f : N → N defined by f (n) =
sum(fib(n)). Hint: Write down several examples, such as f (0), f (1), f (2),
f (3), f (4), Then try to find a way to write f (4) in terms of f (3). This
might help you discover a pattern.

22. Write a function in if-then-else form to produce the Cartesian product set
of two finite sets. You may assume that the sets are represented as lists.

23. We can approximate the square root of a number by using the Newton-
Raphson method, which gives an infinite sequence of approximations to the
square root of x by starting with an initial guess g. We can define the
sequence with the following function:

sqrt(x, g) = g :: sqrt(x, (0.5)(g + (x/g))).

Find the first three numbers in each of the following infinite sequences, and
compare the values with the square root obtained by a calculator.

a. sqrt(4, 1). b. sqrt(4, 2). c. sqrt(4, 3).
d. sqrt(2, 1). e. sqrt(9, 1). f. sqrt(9, 5).

24. Find a definition for each of the following infinite sequence functions.

a. Square: Squares each element in a sequence of numbers.
b. Diff: Finds the difference of the nth and mth numbers of a sequence.
c. Prod: Finds the product of the first n numbers of a sequence.
d. Add: Adds corresponding elements of two numeric sequences.
e. Skip(x, k) = 〈x, x+ k, x+ 2k, x+ 3k, . . . 〉.
f. Map: Applies a function to each element of a sequence.
g. ListOf: Finds the list of the first n elements of a sequence.

25. Evaluate each of the following expressions by unfolding the definitions for
Primes and remove from Example 18.

a. head(Primes)
b. tail(Primes) until reaching the value sieve(remove (2, ints (3))).
c. remove(2, ints (0)) until reaching the value 1 :: 2 :: remove(2, ints (4)).

26. Suppose we define the function f : N → N by

f (x) = if x > 10 then x – 10 else f (f (x + 11)).

This function is recursively defined even though it is not defined by (3.6).
Give a simple definition of the function.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 173

3.3 Grammars
Informally, a grammar is a set of rules used to define the structure of the strings
in a language. Grammars are important in computer science not only for defining
programming languages, but also for defining data sets for programs. Typical
applications try to build algorithms that test whether or not an arbitrary string
belongs to some language. In this section we’ll see that grammars provide a
convenient and useful way to describe languages in a fashion similar to an induc-
tive definition, which we discussed in Section 3.1. We’ll also see that grammars
provide a technique to test whether a string belongs to a language in a fashion
similar to the calculation of a recursively defined function, which we described
in Section 3.2. So let’s get to it.

3.3.1 Recalling English Grammar

We can think of an English sentence as a string characters if we agree to let the
alphabet consist of the usual letters together with the blank character, period,
comma, and so on. To parse a sentence means break it up into parts that conform
to a given grammar.

For example, if an English sentence consists of a subject followed by a pred-
icate, then the sentence

“The big dog chased the cat”

would be broken up into two parts, a subject and a predicate, as follows:

subject = The big dog,
predicate = chased the cat.

To denote the fact that a sentence consists of a subject followed by a predi-
cate we’ll write the following grammar rule:

sentence → subject predicate.

If we agree that a subject can be an article followed by either a noun or an
adjective followed by a noun, then we can break up “The big dog” into smaller
parts. The corresponding grammar rule can be written as follows:

subject → article adjective noun.

Similarly, if we agree that a predicate is a verb followed by an object, then we
can break up “chased the cat” into smaller parts. The corresponding grammar
rule can be written as follows:

predicate → verb object.

This is the kind of activity that can be used to detect whether or not a sentence
is grammatically correct.

A parsed sentence is often represented as a tree, called the parse tree or
derivation tree. The parse tree for “The big dog chased the cat” is pictured in
Figure 3.7.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

174 Chapter 3 � Construction Techniques

sentence

subject predicate

article verb

article

object

article noun

the cat

adjective noun

The big dog

Figure 3.7 Parse tree.

3.3.2 Structure of Grammars

Now that we’ve recalled a bit of English grammar, let’s describe the general
structure of grammars for arbitrary languages. If L is a language over an alphabet
A, then a grammar for L consists of a set of grammar rules of the form

α → β,

where α and β denote strings of symbols taken from A and from a set of grammar
symbols disjoint from A.

The grammar rule α → β is often called a production, and it can be read in
several different ways as

replace α by β,
α produces β,
α rewrites to β,
α reduces to β.

Every grammar has a special grammar symbol called a start symbol, and there
must be at least one production with left side consisting of only the start symbol.
For example, if S is the start symbol for a grammar, then there must be at least
one production of the form

S → β .

A Beginning Example
Let’s give an example of a grammar for a language and then discuss the process
of deriving strings from the productions. Let A = {a, b, c}. Then a grammar

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 175

for the language A* can be described by the following four productions:

S → Λ (3.11)
S → aS

S → bS

S → cS.

How do we know that this grammar describes the language A*? We must
be able to describe each string of the language in terms of the grammar rules.
For example, let’s see how we can use the productions (3.11) to show that the
string aacb is in A*. We’ll begin with the start symbol S. Next we’ll replace S
by the right side of production S → aS. We chose production S → aS because
aacb matches the right hand side of S → aS by letting S = acb. The process
of replacing S by aS is called a derivation, and we say, “S derives aS.” We’ll
denote this derivation by writing

S ⇒ aS.

The symbol ⇒ means “derives in one step.” The right-hand side of this derivation
contains the symbol S. So we again replace S by aS using the production S →
aS a second time. This results in the derivation

S ⇒ aS ⇒ aaS.

The right-hand side of this derivation contains S. In this case we’ll replace S by
the right side of S → cS. This gives the derivation

S ⇒ aS ⇒ aaS ⇒ aacS.

Continuing, we replace S by the right side of S → bS. This gives the derivation

S ⇒ aS ⇒ aaS ⇒ aacS ⇒ aacbS.

Since we want this derivation to produce the string aacb, we now replace S by
the right side of S → Λ . This gives the desired derivation of the string aacb:

S ⇒ aS ⇒ aaS ⇒ aacS ⇒ aacbS ⇒ aacbΛ = aacb.

Each step in a derivation corresponds to attaching a new subtree to the parse
tree whose root is the start symbol. For example, the parse trees corresponding
to the first three steps of our example are shown in Figure 3.8. The completed
derivation and parse tree are shown in Figure 3.9.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

176 Chapter 3 � Construction Techniques

S

Sa

S

Sa

Sa

S

Sa

Sa

Sc

S ⇒ aS S ⇒ aS ⇒ aaS S ⇒ aS ⇒ aaS ⇒ aacS

Figure 3.8 Partial derivations and parse trees.

S

Sa

Sa

Sc

S

Λ

b

S ⇒ aS ⇒ aaS ⇒ aacS ⇒ aacbS ⇒ aacbS ⇒ aacbΛ = aacb

Figure 3.9 Derivation and parse tree.

Definition of a Grammar
Now that we’ve introduced the idea of a grammar, let’s take a minute to describe
the four main ingredients of any grammar.

The Four Parts of a Grammar (3.12)

1. An alphabet N of grammar symbols called nonterminals.

2. An alphabet T of symbols called terminals. The terminals are distinct
from the nonterminals.

3. A specific nonterminal S, called the start symbol.

4. A finite set of productions of the form α → β, where α and β are strings
over the alphabet N ∪ T with the restriction that α is not the empty
string. There is at least one production with only the start symbol S
on its left side. Each nonterminal must appear on the left side of some
production.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 177

Assumption: In this chapter, all grammar productions will have a single
nonterminal on the left side. In Chapter 14 we’ll see examples of gram-
mars that allow productions to have strings of more than one symbol on
the left side.

When two or more productions have the same left side, we can simplify the
notation by writing one production with alternate right sides separated by the
vertical line |. For example, the four productions (3.11) can be written in the
following shorthand form:

S → Λ | aS | bS | cS,

and we say, “S can be replaced by either Λ , or aS, or bS, or cS.”
We can represent a grammar G as a 4-tuple G = (N, T, S, P), where P is

the set of productions. For example, if P is the set of productions (3.11), then
the grammar can be represented by the 4-tuple

({S}, {a, b, c}, S, P).

The 4-tuple notation is useful for discussing general properties of grammars.
But for a particular grammar it’s common practice to write down only the pro-
ductions of the grammar, where the nonterminals are uppercase letters and the
first production listed contains the start symbol on its left side. For example,
suppose we’re given the following grammar:

S → AB

A→ Λ | aA
B → Λ | bB.

We can deduce that the nonterminals are S, A, and B, the start symbol is S, and
the terminals are a and b.

3.3.3 Derivations

To discuss grammars further, we need to formalize things a bit. Suppose we’re
given some grammar. A string made up of terminals and/or nonterminals is
called a sentential form. Now we can formalize the idea of a derivation.

Definition of Derivation (3.13)
If x and y are sentential forms and α → β is a production, then the replace-
ment of α by β in xα y is called a derivation, and we denote it by writing

xα y⇒ xβy.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

178 Chapter 3 � Construction Techniques

The following three symbols with their associated meanings are used quite
often in discussing derivations:

⇒ derives in one step,
⇒+ derives in one or more steps,
⇒∗ derives in zero or more steps.

For example, suppose we have the following grammar:

S → AB

A→ Λ | aA
B → Λ | bB.

Let’s consider the string aab. The statement S ⇒+ aab means that there exists
a derivation of aab that takes one or more steps. For example, we have

S ⇒ AB ⇒ aAB ⇒ aaAB ⇒ aaB ⇒ aabB ⇒ aab.

In some grammars it may be possible to find several different derivations
of the same string. Two kinds of derivations are worthy of note. A derivation
is called a leftmost derivation if at each step the leftmost nonterminal of the
sentential form is reduced by some production. Similarly, a derivation is called a
rightmost derivation if at each step the rightmost nonterminal of the sentential
form is reduced by some production. For example, the preceding derivation of
aab is a leftmost derivation. Here’s a rightmost derivation of aab:

S ⇒ AB ⇒ AbB ⇒ Ab ⇒ aAb ⇒ aaAb ⇒ aab.

The Language of a Grammar
Sometimes it can be quite difficult, or impossible, to write down a grammar for
a given language. So we had better nail down the idea of the language that is
associated with a grammar. If G is a grammar, then the language of G is the
set of terminal strings derived from the start symbol of G. The language of G is
denoted by

L(G).

We can also describe L(G) more formally.

The Language of a Grammar (3.14)
If G is a grammar with start symbol S and set of terminals T, then the
language of G is the set

L(G) = {s | s ∈ T* and S ⇒ + s}.

When we’re trying to write a grammar for a language, we should at least
check to see whether the language is finite or infinite. If the language is finite,

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 179

then a grammar can consist of all productions of the form S → w for each string
w in the language. For example, the language {a, ab} can be described by the
grammar S → a | ab.

If the language is infinite, then some production or sequence of productions
must be used repeatedly to construct the derivations. To see this, notice that
there is no bound on the length of strings in an infinite language. Therefore,
there is no bound on the number of derivation steps used to derive the strings.
If the grammar has n productions, then any derivation consisting of n + 1 steps
must use some production twice (by the pigeonhole principle).

For example, the infinite language {anb | n = 0} can be described by the
grammar

S → b | aS.

To derive the string anb, we would use the production S → aS repeatedly—n
times to be exact—and then stop the derivation by using the production S → b.
The situation is similar to the way we make inductive definitions for sets. For
example, the production S → aS allows us to make the informal statement “If
S derives w, then it also derives aw.”

Recursive Productions
A production is called recursive if its left side occurs on its right side. For
example, the production S → aS is recursive. A production A → α is indirectly
recursive if A derives a sentential form that contains A. For example, suppose
we have the following grammar:

S → b|aA
A→ c|bS.

The productions S → aA and A → bS are both indirectly recursive because of
the following derivations:

S ⇒ aA⇒ abS,

A⇒ bS ⇒ baA.

A grammar is recursive if it contains either a recursive production or an indirectly
recursive production. So we can make the following more precise statement about
grammars for infinite languages:

A grammar for an infinite language must be recursive.

Now let’s look at the opposite problem of describing the language of a gram-
mar. We know—by definition—that the language of a grammar is the set of all
strings derived from the grammar. But we can also make another interesting
observation about any language defined by a grammar:

Any language defined by a grammar is an inductively defined set.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

180 Chapter 3 � Construction Techniques

Let’s see why this is the case for any grammar G. The following inductive
definition does the job, where S denotes the start symbol of G. To simplify the
description, we’ll say that a derivation is recursive if some nonterminal occurs
twice due to a recursive production or due to a series of indirectly recursive
productions.

Inductive Definition of L(G) (3.15)

1. For all strings w that can be derived from S without using a recursive
derivation, put w in L(G).

2. If w ∈ L(G) and there is a derivation of S ⇒ + w that contains a non-
terminal from a recursive or indirectly recursive production, then use the
production to modify the derivation to obtain a new derivation S ⇒+ x,
and put x in L(G).

Proof: Let G be a grammar and let M be the inductive set defined by (3.15).
We need to show that M = L(G). It’s clear that M ⊂ L(G) because all strings
in M are derived from the start symbol of G. Assume, by way of contradiction,
that M �= L(G). In other words, we have L(G) – M �= ∅. Since S derives all the
elements of L(G) – M, there must be some string w ∈ L(G) – M that has the
shortest leftmost derivation among elements of L(G) – M. We can assume that
this derivation is recursive. Otherwise, the basis case of (3.15) would force us
to put w ∈ M, contrary to our assumption that w ∈ L(G) – M. So the leftmost
derivation of w must have the following form, where s and t are terminal strings
and α , β , and γ are sentential forms that don’t include B :

S ⇒ + sBγ ⇒ + stBβ γ ⇒ stα β γ ⇒ * w.

We can replace sBγ ⇒ + stBβ γ in this derivation with sBγ ⇒ sα γ to
obtain the following derivation of a string u of terminals:

S ⇒ + sBγ ⇒ sα γ ⇒ * u.

This derivation is shorter than the derivation of w. So we must conclude that u ∈
M. Now we can apply the induction part of (3.15) to this latter derivation of u to
obtain the derivation of w. This tells us that w ∈ M, contrary to our assumption
that w /∈ M. The only thing left for us to conclude is that our assumption that
M �= L(G) was wrong. Therefore, M = L(G). QED.

Let’s do a simple example to illustrate the use of (3.15).

example 3.34 From Grammar to Inductive Definition

Suppose we’re given the following grammar G :

S → Λ | aB
B → b | bB.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 181

We’ll give an inductive definition for L(G). There are two derivations that don’t
contain recursive productions: S ⇒ Λ and S ⇒ aB ⇒ ab. This gives us the
basis part of the definition for L(G).

Basis: Λ , ab ∈ L(G).

Now let’s find the induction part of the definition. The only recursive production
of G is B → bB. So any element of L(G) whose derivation contains an occurrence
of B must have the general form S ⇒ aB ⇒ + ay for some string y. So we can
use the production B → bB to add one more step to the derivation as follows:

S ⇒ aB ⇒ abB ⇒ + aby.

This gives us the induction step in the definition of L(G).

Induction: If ay ∈ L(G), then put aby in L(G).

For example, the basis case tells us that ab ∈ L(G) and the derivation S ⇒ aB
⇒ ab contains an occurrence of B. So we add one more step to the derivation
using the production B → bB to obtain the derivation

S ⇒ aB ⇒ abB ⇒ abb.

So ab ∈ L(G) implies that abb ∈ L(G), which in turn implies ab3 ∈ L(G), and
so on. Thus we can conjecture with some confidence that L(G) is the language
{Λ} ∪ {abn | n ∈ N}.

end example

3.3.4 Constructing Grammars

Now let’s get down to business and construct some grammars. We’ll start with a
few simple examples, and then we’ll give some techniques for combining simple
grammars. We should note that a language might have more than one gram-
mar. So we shouldn’t be surprised when two people come up with two different
grammars for the same language.

example 3.35 Three Simple Grammars

We’ll write a grammar for each of three simple languages. In each case we’ll
include a sample derivation of a string in the language. Test each grammar by
constructing a few more derivations for strings.

1. {Λ , a, aa, . . . , an , . . . } = {an | n (unknown char)∈ N}.
Notice that any string in this language is either Λ or of the form ax for some
string x in the language. The following grammar will derive any of these
strings:

S → Λ | aS.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

182 Chapter 3 � Construction Techniques

For example, we’ll derive the string aaa:

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaa.

2. {Λ , ab, aabb, . . . , anbn , . . . } = {anbn | n (unknown char)∈ N}.
Notice that any string in this language is either Λ or of the form axb for
some string x in the language. The following grammar will derive any of
these strings:

S → Λ | aSb.

For example, we’ll derive the string aaabbb:

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb.

3. {Λ , ab, abab, . . . , (ab)n , . . . } = {(ab)n | n (unknown char)∈ N}.

Notice that any string in this language is either Λ or of the form abx for
some string x in the language. The following grammar will derive any of
these strings.

S → Λ | abS.

For example, we’ll derive the string ababab:

S ⇒ abS ⇒ ababS ⇒ abababS ⇒ ababab.

end example

Combining Grammars
Sometimes a language can be written in terms of simpler languages, and a gram-
mar can be constructed for the language in terms of the grammars for the simpler
languages. We’ll concentrate here on the operations of union, product, and clo-
sure.

Combining Grammars (3.16)
Suppose M and N are languages whose grammars have disjoint sets of non-
terminals. (Rename them if necessary.) Suppose also that the start symbols
for the grammars of M and N are A and B, respectively. Then we have the
following new languages and grammars:
Union Rule: The language M ∪ N starts with the two productions

S → A | B.

Continued

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 183

Product Rule: The language M · N starts with the production

S → AB.

Closure Rule: The language M * starts with the production

S → AS | Λ .

example 3.36 Using the Union Rule

Let’s write a grammar for the following language:

L = {Λ , a, b, aa, bb, . . . , an , bn , . . . }.

After some thinking we notice that L can be written as a union L = M ∪ N,
where M = {an | n ∈ N} and N = {bn | n ∈ N}. Thus we can write the following
grammar for L.

S → A|B union rule,
A→ Λ|aA grammar for M ,
B → Λ|bB grammar for N.

end example

example 3.37 Using the Product Rule

We’ll write a grammar for the following language:

L = {ambn | m, n ∈ N}.

After a little thinking we notice that L can be written as a product L = MN,
where M = {am | m ∈ N} and N = {bn | n ∈ N}. Thus we can write the
following grammar for L.

S → A|B product rule,
A→ Λ|aA grammar for M ,
B → Λ|bB grammar for N.

end example

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

184 Chapter 3 � Construction Techniques

example 3.38 Using the Closure Rule

We’ll construct a grammar for the language L of all strings with zero or more
occurrences of aa or bb. In other words, L = {aa, bb}*. If we let M = {aa, bb},
then L = M *. Thus we can write the following grammar for L.

S → AS|Λ closure rule,
A→ aa|bb grammar for M.

We can simplify this grammar by substituting for A to obtain the following
grammar:

S → aaS | bbS | Λ .

end example

example 3.39 Decimal Numerals

We can find a grammar for the language of decimal numerals by observing that
a decimal numeral is either a digit or a digit followed by a decimal numeral. The
following grammar rules reflect this idea:

S → D |DS
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

We can say that S is replaced by either D or DS, and D can be replaced by any
decimal digit. A derivation of the numeral 7801 can be written as follows:

S ⇒ DS ⇒ 7S ⇒ 7DS ⇒ 7DDS ⇒ 78DS ⇒ 780S ⇒ 780D ⇒ 7801.

This derivation is not unique. For example, another derivation of 7801 can we
written as follows:

S ⇒ DS ⇒ DDS ⇒ D8S ⇒ D8DS ⇒ D80S ⇒ D80D ⇒ D801 ⇒ 7801.

end example

example 3.40 Even Decimal Numerals

We can find a grammar for the language of decimal numerals for the even natural
numbers by observing that each numeral must have an even digit on its right

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 185

side. In other words, either it’s an even digit or it’s a decimal numeral followed
by an even digit. The following grammar will do the job:

S → E |NE
N → D |DN
E → 0 | 2 | 4 | 6 | 8
D → 0|1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

For example, the even numeral 136 has the derivation

S ⇒ NE ⇒ N 6 ⇒ DN 6 ⇒ DD6 ⇒ D36 ⇒ 136.

end example

example 3.41 Identifiers

Most programming languages have identifiers for names of things. Suppose we
want to describe a grammar for the set of identifiers that start with a letter
of the alphabet followed by zero or more letters or digits. Let Id be the start
symbol. Then the grammar can be described by the following productions:

Id → L |LA
A→ LA |DA |Λ
L→ a | b | . . . | z
D → 0 | 1 | . . . | 9.

We’ll give a derivation of the string a2b to show that it is an identifier.

Id ⇒ LA ⇒ aA ⇒ aDA ⇒ a2A ⇒ a2LA ⇒ a2bA ⇒ a2b.

end example

example 3.42 Some Rational Numerals

Let’s find a grammar for those rational numbers that have a finite decimal rep-
resentation. In other words, we want to describe a grammar for the language of
strings having the form m.n or –m.n, where m and n are decimal numerals. For
example, 0.0 represents the number 0. Let S be the start symbol. We can start
the grammar with the two productions

S → N.N | –N.N .

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

186 Chapter 3 � Construction Techniques

To finish the job, we need to write some productions that allow N to derive a
decimal numeral. Try out the following productions:

N → D |DN
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

end example

example 3.43 Palindromes

We can write a grammar for the set of all palindromes over an alphabet A. Recall
that a palindrome is a string that is the same when written in reverse order. For
example, let A = {a, b, c}. Let P be the start symbol. Then the language of
palindromes over the alphabet A has the grammar

P → aPa | bPb | cPc | a | b | c | Λ .

For example, the palindrome abcba can be derived as follows:

P ⇒ aPa ⇒ abPba ⇒ abcba.

end example

3.3.5 Meaning and Ambiguity

Most of the time we attach meanings to the strings in our lives. For example,
the string 3+4 means 7 to most people. The string 3–4–2 may have two distinct
meanings to two different people. One person may think that

3–4–2 = (3–4)–2 = –3,

while another person might think that

3–4–2 = 3–(4–2) = 1.

If we have a grammar, then we can define the meaning of any string in the
grammar’s language to be the parse tree produced by a derivation. We can often
write a grammar so that each string in the grammar’s language has exactly one
meaning (i.e., one parse tree). When this is not the case, we have an ambiguous
grammar. Here’s the formal definition.

Definition of Ambiguous Grammar
A grammar is said to be ambiguous if its language contains some string that
has two different parse trees. This is equivalent to saying that some string
has two distinct leftmost derivations or that some string has two distinct
rightmost derivations.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 187

E

E E

Ea E

b a

—

—

E

E

a

E

E E

a b

—

—

Figure 3.10 Parse trees for an ambiguous string.

To illustrate the ideas, we’ll look at some grammars for simple arithmetic
expressions. For example, suppose we define a set of arithmetic expressions by
the grammar

E → a | b | E–E.

The language of this grammar contains strings like a, b, b–a, a–b–a, and
b–b–a–b. This grammar is ambiguous because it has a string, namely, a–b–a,
that has two distinct parse trees as shown in Figure 3.10.

Since having two distinct parse trees means the same thing as having two
distinct leftmost derivations, it’s no problem to find the following two distinct
leftmost derivations of a–b–a.

E ⇒ E − E ⇒ a− E ⇒ a− E − E ⇒ a− b− E ⇒ a− b− a.
E ⇒ E − E ⇒ E − E − E ⇒ a− E − E ⇒ a− b− E ⇒ a− b− a.

The two trees in Figure 3.10 reflect the two ways we could choose to evaluate
a–b–a. The first tree indicates the meaning

a–b–a = a–(b–a),

while the second tree indicates

a–b–a = (a–b)–a.

How can we make sure there is only one parse tree for every string in the lan-
guage? We can try to find a different grammar for the same set of strings. For
example, suppose we want a–b–a to mean (a–b)–a. In other words, we want
the first minus sign to be evaluated before the second minus sign. We can give
the first minus sign higher precedence than the second by introducing a new
nonterminal as shown in the following grammar:

E → E − T |T
T → a | b.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

188 Chapter 3 � Construction Techniques

E

T

a

E

E T

a b

—

—

Figure 3.11 Unique parse tree.

Notice that T can be replaced in a derivation only by either a or b. Therefore,
every derivation of a–b–a produces the unique parse tree in Figure 3.11.

Exercises

Derivations

1. Given the following grammar.

S → D |DS
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9.

a. Find the the production used in each step of the following derivation.

S ⇒ DS ⇒ 7S ⇒ 7DS ⇒ 7DDS ⇒ 78DS ⇒ 780S ⇒ 780D ⇒ 7801.

b. Find a leftmost derivation of the string 7801.
c. Find a rightmost derivation of the string 7801.

2. Given the following grammar.

S → S [S] | Λ .

For each of the following strings, construct a leftmost derivation, a rightmost
derivation, and a parse tree.

a. []. b. [[]]. c. [] []. d. [[] [[]]].

Constructing Grammars

3. Find a grammar for each of the following languages.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.3 � Grammars 189

a. {bb, bbbb, bbbbbb, . . . } =
{

(bb)n+1 |n ∈ N

}
.

b. {a, ba, bba, bbba, . . . } = {bna |n ∈ N} .
c. {Λ, ab, abab, ababab, . . . } = {(ab)n |n ∈ N} .
d. {bb, bab, baab, baaab, . . . } = {banb |n ∈ N} .
e.

{
ab, abab, . . . , (ab)n+1

, . . .
}

=
{

(ab)n+1 |n ∈ N

}
.

f. {ab, aabb, . . . , anbn, . . . } =
{
an+1bn+1 |n ∈ N

}
.

g.
{
b, bbb, . . . , b2n+1, . . .

}
=

{
b2n+1 |n ∈ N

}
.

h. {b, abc, aabcc, . . . , anbcn, . . . } = {anbcn |n ∈ N} .
i. {ac, abc, abbc, . . . , abnc, . . . } = {abnc |n ∈ N}.
j.

{
Λ, aa, aaaa, . . . , a2n, . . .

}
=

{
a2n |n ∈ N

}
.

4. Find a grammar for each language.

a. {ambn | m, n ∈ N}.
b. {ambcn | n ∈ N}.
c. {ambn | m, n ∈ N, where m > 0}.
d. {ambn | m, n ∈ N, where n > 0}.
e. {ambn | m, n ∈ N, where m > 0 and n > 0}.

5. Find a grammar for each language.

a. The even palindromes over {a, b, c}.
b. The odd palindromes over {a, b, c}.
c. {a2n | n ∈ N} ∪ {b2n +1| n ∈ N}.
d. {anbcn | n ∈ N} ∪ {bman | m, n ∈ N}
e. {ambn | m, n ∈ N, where m > 0 or n > 0}.

Mathematical Expressions

6. Find a grammar for each of the following languages.

a. The set of binary numerals that represent odd natural numbers.
b. The set of binary numerals that represent even natural numbers.
c. The set of decimal numerals that represent odd natural numbers.

7. Find a grammar for each of the following languages.

a. The set of arithmetic expressions that are constructed from decimal
numerals, +, and parentheses. Examples: 17, 2+3, (3+(4+5)), and
5+9+20.

b. The set of arithmetic expressions that are constructed from decimal
numerals, – (subtraction), and parentheses, with the property that each
expression has only one meaning. For example, 9–34–10 is not allowed.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

190 Chapter 3 � Construction Techniques

8. Let the letters a, b, and c be constants; let the letters x, y, and z be variables;
and let the letters f and g be functions of arity 1. We can define the set of
terms over these symbols by saying that any constant or variable is a term
and if t is a term, then so are f (t) and g(t).

a. Find a grammar for the set of terms.
b. Find a derivation for the expresssion f (g(f (x))).

9. Let the letters a, b, and c be constants; let the letters x, y, and z be variables;
and let the letters f and g be functions of arity 1 and 2, respectively. We
can define the set of terms over these symbols by saying that any constant
or variable is a term and if s and t are terms, then so are f (t) and g(s, t).

a. Find a grammar for the set of terms.
b. Find a derivation for the expresssion f (g(x, f (b))).

10. Find a grammar to capture the precedence ∗ over + in the absence of paren-
theses. For example, the meaning of a + b ∗ c should be a + (b ∗ c).

Ambiguity

11. Show that each of the following grammars is ambiguous. In other words,
find a string that has two different parse trees (equivalently, two different
leftmost derivations or two different rightmost derivations).

a. S → a | SbS.
b. S → abB | A B and A → Λ | Aa and B → Λ | bB.
c. S → aS | Sa | a.
d. S → aS | Sa | b.
e. S → S [S]S | Λ.
f. S → Ab | A and A → b |bA.

Challenges

12. Find a grammar for the language of all strings over {a, b} that have the
same number of a’s and b’s.

13. For each grammar, try to find an equivalent grammar that is not ambiguous.

a. S → a | SbS.
b. S → abB | A B and A → Λ | Aa and B → Λ | bB.
c. S → a | aS | Sa.
d. S → b | aS | Sa.
e. S → S [S]S | Λ.
f. S → Ab | A and A → b |bA.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

3.4 � Chapter Summary 191

14. For each grammar, find an equivalent grammar that has no occurrence of Λ
on the right side of any rule.

a. S → AB b. S → AcAB
A → Aa | a A → aA | Λ
B → Bb | Λ. B → bB | b.

15. For each grammar G, use (3.15) to find an inductive definition for L(G).

a. S → Λ|aaS.
b. S → a|aBc and b→ b|bB.

3.4 Chapter Summary
This chapter covered some basic construction techniques that apply to many
objects of importance to computer science.

Inductively defined sets are characterized by a basis case, an induction case,
and a closure case that is always assumed without comment. The constructors of
an inductively defined set are the elements listed in the basis case and the rules
specified in the induction case. Many sets of objects used in computer science
can be defined inductively—numbers, strings, lists, binary trees, and Cartesian
products of sets.

A recursively defined function is defined in terms of itself. Most recursively
defined functions have domains that are inductively defined sets. These func-
tions are normally defined by a basis case and a recursive case. The situation
is similar for recursively defined procedures. Some infinite sequence functions
can be defined recursively. Recursively defined functions and procedures yield
powerful programs that are simply stated.

Grammars provide useful ways to describe languages. Grammar productions
are used to derive the strings of a language. Any grammar for an infinite language
must contain at least one production that is recursive or indirectly recursive.
Grammars for different languages can be combined to form new grammars for
unions, products, and closures of the languages. Some grammars are ambiguous.

“HEIN
2001/
page

✐

✐

✐

✐

✐

✐

✐

✐

