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Some highlights from the history of probabilistic

number theory

Wolfgang Schwarz

Abstract.

In this survey lecture it is intended to sketch some parts [chosen
according to the author’s interests] of the [early] history of Probabilis-
tic Number Theory, beginning with Paul Turáns proof (1934) of the
Hardy–Ramanujan result on the “normal order” of the additive func-
tion ω(n), the Erdo

′′
s–Wintner Theorem, and the Erdo

′′
s–Kac The-

orem. Next, mean–value theorems for arithmetical functions, and the
Kubilius model and its application to limit laws for additive functions
will be described in short.

Subsuming applications of the theory of almost–periodic functions
under the concept of “Probabilistic Number Theory”, the problem
of “uniformly–almost–even functions with prescribed values” will be
sketched, and the Knopfmacher – Schwarz – Spilker theory of
integration of arithmetical functions will be sketched. Next, K.–H.

Indlekofers elegant theory of integration of functions N → C of will
be described.

Finally, it is tried to scratch the surface of the topic “universality”,
where important contributions came from the university of Vilnius.

About fifteen years ago the author got interested in the History of
the Frankfurt Mathematical Seminary, and in the history of number
theory. Here it is intended to sketch some highlights from the history of
Probabilistic Number Theory. And this task is not difficult, using, for
example, the monographs of P. D. T. A. Elliott ([37], [38]) and G.

Tenenbaum ([228]), a paper of mine from 1994 on the Development of
Probabilistic Number Theory,1, a paper of J.–L. Mauclaire [180], and
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a paper of K.–H. Indlekofer ([106], from 2002). A survey paper by J.

Kubilius [134], unfortunately in Russian, gives the stage of the theory
of value–distribution for additive and multiplicative functions until 1972
(with more than 200 references). Great progress in this theory was made
possible by the mean–value theorems of E. Wirsing and G. Halász

(see section 4).

§1. Introduction

1.1. Number Theory without Probability Theory

Number Theory is an old mathematical discipline; important con-
tributions to number theory in the 19th century were given by C.–F.

Gauss, A.–M. Legendre, P. L. Tchebycheff, B. Riemann, Le-

jeune G. Dirichlet, J. Hadamard, Ch. de la Vallée–Poussin,
and in the early 20th century by E. Landau, G. H. Hardy, S. Ra-

manujan, J. E. Littlewood, and by many others.2

At present, Number Theory uses many methods from other parts of
mathematics, for example:

• Elementary Calculations (partial summation, comparison with
integrals, inequalities, elementary algebra and combinatorics).

• Generating functions
∞∑
1

f(n)
ns

, where f : N → C. For exam-

ple, the mean–value M(f), if it exists, equals

(1.1) M(f)

⎡
⎣def

= lim
x→∞

1
x

∑
n≤x

f(n)

⎤
⎦ = lim

σ→1+
ζ−1(σ) ·

∞∑
n=1

f(n) · n−σ.

• Sieve Methods (see [78], [79], [92], [201]).
• Complex Analysis (Cauchy’s integral theorem, theorem of res-

idues, theory of entire functions, results on zeros of meromor-
phic functions, Weierstraß factorization, . . . ).

• Asymptotic Analysis (Laplaces method, saddle point method,
Tauberian theorems, . . . ), see [81], [245], [11].

• Estimates of Exponential Sums
∑

N<n≤2N exp(2πi·h(n) � . . .

for real–valued functions h ([240], [243], [93]).

2We leave aside contributions to algebraic number theory, for example by
L. Dirichlet, E. E. Kummer, R. Dedekind, . . . .
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• Special functions (Gamma–function, Beta–function, some in-
tegrals, Theta–functions, . . . ) and Zeta–functions (see, for ex-
ample, [112], [117], [153], [125]).

• Modular functions, modular forms, elliptic curves (see, for ex-
ample, [15]).

• Ideas from Geometry (convex bodies, lattice points, Minkow-

skis Geometry of Numbers), see, for example, [12], [54].3

• Compactification, Topology, topological groups, adéles, idéles.4

• Algebra, Algebraic Geometry (Diophantine Analysis).
• Theory of integration, functional analysis ([204], [205]).
• Fourier analysis (see, for example [187]), almost periodic func-

tions, approximation arguments, ergodic theory (see, for ex-
ample, [64]).

3For a survey of recent results in the theory of lattice points see [113].
4See, for example, [70] and [13] for the use of Tates ideas in algebraic

number theory. [13] also contains Tates Thesis from 1950. – For a more recent
example, see [141].
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Figure 1. A. Ivić, H. Fürstenberg, H. L. Montgomery

• Probability Theory.

In this article, our interest is mainly in the last three items.

Returning to the 19th and early 20th century, great progress was
made possible by using methods from analysis, in particular the theory
of complex functions of one variable. Riemann defined, in �(s) > 1,
“his” zeta–function (ζ(s) was already known to L. Euler)

(1.2) ζ(s)
def
=

∞∑
n=1

1
ns

=
∏
p

(
1 − 1

ps

)−1

, where n−s = e−s·log n,

he gave its analytic continuation, proved the functional equation,5 and
made ([202], 1859) several deep conjectures showing an intimate connec-
tion of prime number theory and analytic properties of ζ(s); the famous
Riemann conjecture, that all non–trivial zeros of ζ(s) are on the line
�(s) = 1

2 , is still unsettled.
Dirichlet ([30], 1837, 1839) showed that there are infinitely many

primes in the progression n ≡ a mod q, if a is coprime with q:

π(x; q, a) := #{p ≤ x, p ≡ a mod q} → ∞, if gcd(a, q) = 1.

The crucial point was to show that the values of Dirichlet L–functions
at s = 1 do not vanish,

L(1, χ) �= 0 for any character χ �= χ0,

5Concerning the history of the functional equation, see [144].
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where χ is a character on the group (Z/qZ)×, and χ0 is the character
constant equal to 1 (”Hauptcharakter“). The Dirichlet L–functions are
given as Dirichlet series

(1.3) L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∏
p

(
1 − χ(p)

ps

)−1

.

J. Hadamard ([73], 1893–1896) was able to sharpen the Weierstrass

factorization theorem considerably, and obtained a product representa-
tion of functions connected with the Riemann zeta function,

(1.4) π− 1
2 s(s − 1) · ζ(s) · Γ

(
1
2
s + 1

)
= aebs

∏
ρ

(
1 − s

ρ

)
e

s
ρ

(
ρ runs over the non–trivial zeros of ζ(s)

)
, and he was able to show that

there are no zeros of the zeta function in some region

(1.5)
{

s ∈ C, s = σ + it, σ ≥ 1 − c1 ·
1

|t| + 2

}
.

This implied the prime number theorem

(1.6) π(x) =
∑
p≤x

1 =
∫ x

2

du

log u
+ O

(
x · e−γ

√
log x
)

with a reasonably good remainder term. Ch. de la Vallée–Poussin

proved the prime number theorem at the same time ([239]).6

G. H. Hardy, in collaboration with S. Ramanujan, later with
J. E. Littlewood, used the “circle method” in order to obtain deep
results on the partition function and the Waring problem. This method
is based on the simple idea that the coefficients of a power series F(z) =∑

anzn are given by a contour integral

an =
1

2πi
·
∮ F(ζ)

ζn+1
dζ.

6The [early] development of prime number theory is carefully presented in
Narkiewiczs monograph [189]. The remainder term in (1.6) was improved by
J. E. Littlewood, . . . , finally by N. M. Korobov and I. M. Vinogradov

[see [112], p. 347, with a correction by H.–E. Richert (see [243], p.226)].
A comparison of the behaviour of the function π(x; q, a) in different residue

classes is the object of the “Comparative Prime Number Theory”, with impor-
tant contributions of P. Turán (see [237]), then also by S. Knapowski, J.

Pintz and others.
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The integral is approximated by highly ingenious ideas; the main terms
of the asymptotic formula aimed at come from contributions near the
singularities of the function (on |z| = 1), and the remaining parts of the
integral can be estimated to be small in comparison with the main term.

E. Landau ([145], 1911) and G. Hardy and S. Ramanujan ([82],
1917; see also [53]) obtained results for the number πr(x) of integers
composed of exactly r prime factors.7 By induction the estimate

πr(x) ≤ c1
x

log x
· (log log x + c2)k−1

(r − 1) !

was obtained, and it follows that the normal order of ω(n) is log log n:

If ψ(n) is any real–valued function tending to ∞ as x → ∞, then
the inequality

(1.7) |ω(n) − log log n| ≤ ψ(n)
√

log log n

is true for “almost all” positive integers n. The same result is true for
the function Ω(n), the total number of prime factors of n.

“Almost all integers n have property P” means that for any ε > 0
there are at most ε · x integers n ≤ x for which property P does not
hold. Speaking of “almost all” integers is a new idea in number theory,
and it is related to similar concepts in the theory of integration or in the
theory of probability.8

1.2. Beginnings of Probability Theory

Probability theory was not well developped at the time before 1900
or 1910, as may be seen from the Introduction of Krengels article [126],

7The problems become difficult and interesting, if one asks for results which
are uniform with respect to r in some range. See A. Hildebrandt [87]. Here
it is important to apply analytic methods to the function

F (z, s) =
∞∑

n=1

zω(n)

ns
.

See also [206], [218]. — By the way, H.–E. Richert ([200] gave asymptotic
formulae for the number of integers with exactly r prime factors in residue
classes n ≡ a mod q, with good error terms.

8
J.–L. Mauclaire [184] mentions that the idea of using Probability Theory

in Number Theory shows up already in papers by E. Cesàro [14] before 1889.
— Later, formula (1.7) was greatly improved, see section 3, subsection 3.2.
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p. 458. The sixth problem of D. Hilbert (1900) (in English from F.

E. Browder, [9]) states:

Investigations of the foundations of geometry suggest the problem: To treat
in the same manner, by means of axioms, those physical sciences in which
mathematics plays an important part; first of all, the theory of probability
and mechanics.

As to the axioms of the theory of probability, it seems to me desirable that
their logical investigation should be accompanied by a rigorous and satis-
factory development of the method of mean values in mathematical physics
. . . .

There were some starts to deal with this question by Bohlmann

(1908) and Ugo Broggi (1907), some ideas came from E. Borel,
S. N. Bernstein, Lomnicki (1923) and Steinhaus (1923) (see [126],
p.459ff, see also [208]). Also, Richard von Mises’ paper Grundla-
gen der Wahrscheinlichkeitsrechnung, 1919, Math. Zeitschr., should be
mentioned (see [126], p.461ff).

Hilberts desideratum concerning prob-
ability theory was finally [satisfactorily] ful-
filled by A. N. Kolmogorov in 1933 when
his famous monograph “Grundbegriffe der
Wahrscheinlichkeitsrechnung” [124] appeared
in print. The concepts of probability, prob-
ability space and events were defined rigor-
ously. Paul Turán (see the photo to the left;
the author is deeply indepted to P. Turán

for his helpfulness. A photograph of Turáns
grave is given on the next page) had not seen
Kolmogorovs book in 1934, he even did
not know Tchebycheff’s inequality (see [38] II,
p.18). Nevertheless, Turán [235] gave a new,
important, “probabilistic” proof of the result

of Hardy & Ramanujan concerning ω(n). He showed that∑
n≤x

(ω(n) − log log x)2 = O (x · log log x) ,

and this easily implies the result (1.7) of Hardy & Ramanujan.9

Turáns proof uses elementary calculations from number theory; his

9The relationship to Tchebycheffs inequality is obvious: If ξ is a random
variable with expectation E(ξ) =

∫
Ω

ξ(w)dP (w) and standard deviation D(ξ) =
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formula is probabilistic in nature, it may be interpreted as an estimate
of the variance, the square of ω(n) minus its expectation value.

§2. The Turán–Kubilius Inequality

2.1. The Results of Turán and Kubilius

Turáns method of proof is applicable not
only to ω(n), but also to strongly additive
functions w : N → C [these satisfy w(n) =∑

p|n w(p)], which are uniformly bounded at
the primes ([236]). J. Kubilius [129] (see
the photograph on the left) realized that
Turáns inequality can be extended to a
much larger class of [strongly] additive func-
tions and so he obtained a considerably more
general result. For a given strongly additive
function w : N → C there exists a [positive,
universal] constant C1 with the property

(2.1)
1
x
·
∑
n≤x

|w(n) − A(x)|2 ≤ C1 · D2(x).

Here, the “expectation” A(x) and the “variance” D(x) are defined as

A(x) =
∑
p≤x

w(p)
p

,(2.2)

D2(x) =
∑
p≤x

|w(p)|2
p

.

Some work has been done to give an as-
ymptotic evaluation of the constant C1 in (2.1),
uniformly for all additive functions. This work
is described in Kubilius’ paper [138].

√
E((ξ − E(ξ))2), then

P
(
|ξ − E(ξ)| > λ · D(ξ)

)
≤ 1

λ2
.
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Higher analogues of the Turán–Kubilius inequality are due to El-

liott [39]. Given β ≥ 2, there is a positive constant c2 , so that uni-
formly for x ≥ 2 and all additive functions

(2.3)

1
x

∑
n≤x

|w(n) − A(x)|β ≤
{

c2D
β(x), if 0 ≤ β ≤ 2,

c2D
β(x) + c2 ·

∑
pk≤x

p−k
∣∣w(pk)

∣∣β , if 2 ≤ β.

2.2. Dualization, New Interpretation, Generalizations

A dual inequality10 is: For a sequence wn of complex numbers the
inequality

(2.4)
1
x
·
∑

pk≤x

pk

∣∣∣∣∣∣
∑

n≤x,pk‖n

wn − p−k
∑
n≤x

wn

∣∣∣∣∣∣
2

≤ c1 ·
∑
n≤x

|wn|2

is true. In Elliotts monograph [47],
p.18ff, a dual of the high–power–analogue
of the Turán–Kubilius inequality (2.3)
is given. In his conference report
[46], P. D. T. A. Elliott (see the
photo to the left) described the posi-
tion of the Turán–Kubilius inequality
in the framework of Elementary Func-
tional Analysis (see also Elliott’s sur-
vey article [41], and [47]). Elliotts
result (2.3) was generalized, for exam-
ple, by K.-H. Indlekofer ([101]). If
φ : R+ → R+ tends to ∞ and satisfies

φ(x + y) ≤ 1
2c (φ(x) + φ(y)) ,

for some c > 0, and for all x, y, then

1
x

∑
n≤x

φ (|w(n) − A(x)|) � φ(x) +
∑

pk≤x,|w(pk)|≥B(x)

φ
(∣∣w(pk)

∣∣) · p−k.

10The method of dualization (from linear algebra) is explained, for example,
in Elliott’s book [37], pp. 150ff, and the whole monograph [47] is concerned
with duality.
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A localized form of the Turán–Kubilius inequality is due to P. D.

T. A. Elliott [42].

The Turán–Kubilius inequality may be looked for in arithmetical
semigroups A, too.11 It is given in Mauclaire ([182]), for example,
and the method of Elliott (see [37]) leads to a proof of an Erdös–
Wintner theorem in arithmetical semigroups. J.-L. Mauclaire [179]
showed, that a condition

∑
a∈A,N(a)≤x

1 = L · x + o(x) is sufficient for

the validity of the Turán–Kubilius inequality. In contrast, in [182]
he stated that any arithmetical semi–group G is contained in another
arithmetical semi–group G, for which the Turán–Kubilius inequality
is not valid.

For more results on the Turán–Kubilius inequality in semigroups
see the dissertation of Reifenrath ([195], [162], and the Paderborn
dissertations [244] and [157] of S. Wehmeier and of Y.–W. Lee.

§3. The Theorems of Erdös–Wintner and Erdös–Kac

3.1. The Erdös–Wintner Theorem

An important problem, solved more than sixty
years ago, is the question of the existence of
a limit law for real–valued additive functions
w : N → R ; asymptotically, a limit law de-
scribes the distribution of the values of the
function w, more exactly, it gives (asymptoti-
cally, as n → ∞) the number of integers n ≤ x
for which w(n) < z. Consider, more generally,
for subsets E ⊂ R, the expressions

μn(E) =
1
n
· # {m ∈ N : m ≤ n, w(m) ∈ E} ,

in particular the [finite] “distribution functions”

(3.1) νn(t) = μn(] −∞, t]) =
1
n
· #
{

m ∈ N : m ≤ n, w(m) ≤ t
}

.

Then one asks for conditions ensuring the convergence of the sequence
of distribution functions νn(t) to some limit distribution K(t), νn(t) =⇒

11For arithmetical semigroups see [121] and [123].
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Figure 2. P. Erdös (with A. Schinzel), P. Erdös

K(t), as n → ∞ (“=⇒” means convergence at all points of continuity
of the limit distribution).

One answer is provided by the famous Erdo
′′
s–Wintner theorem,

modelled in analogy with the Kolmogorov three–series theorem of
probability theory:12 An additive real–valued function w has a limit
distribution if and only if the three series

(3.2)
∑

p, |w(p)|≤1

w(p)
p

,
∑

p, |w(p)|>1

1
p
, and

∑
p, |w(p)|≤1

w2(p)
p

are convergent.

Historically, P. Erdös showed in 1938 that the convergence of the
three series in (3.2) implies the existence of a limit distribution; a new
proof for this result is due to A. Rényi [196]. Previously, H. Daven-

port (1933) and I. J. Schoenberg ([209], 1936) proved similar results
for the multiplicative functions n → σ(n)

n and n → ϕ(n)
n . The other

implication (the existence of a distribution function implies the conver-
gence of the three series) was proved by P. Erdo

′′
s and A. Wintner

[60].

The proof of the Erdös–Wintner theorem can be achieved by an
application of the “Continuity Theorem for Characteristic Functions”
(see, for example, [163], pp. 47ff): Let {Fn(x)} be a sequence of distribu-
tion functions, and denote by {fn(t)} the sequence of the corresponding
characteristic functions

(3.3) fn(t) =
∫ ∞

−∞
eitx dFn(x).

12See A. Rényi [198], p. 420.
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Then the sequence {Fn(x)} converges weakly to a distribution function
F (x) if and only if the sequence {fn(t)} converges for every t to a func-
tion f(t), which is continuous at t = 0.

Characteristic functions of arithmetical functions on the range [1, N ]
are finite sums, and so the problem of convergence of characteristic func-
tions is a question about the existence of mean–values (see later, sub-
section 4.1) for the multiplicative functions n → exp(2πitw(n)). De-

lange’s theorem, to be treated later (see 4.1), relates the existence of
mean–values with the convergence of the series

∑
p

1
p · (1−e2πiαw(p)), and

this helps in proving the convergence of the series (3.2).

The characterization of real–valued additive functions w with limit
distributions with finite mean and variance is a result of P. D. T. A.

Elliott [33].

Limit distributions of additive functions “modulo 1” were treated
by P. D. T. A. Elliott [32]. Denote by {β} the fractional part β − [β] of
β ∈ R, and ‖β‖ is the distance to the nearest integer. If w is additive, then

1
n

# {m ≤ n; {w(j)} ≤ x} =⇒ F (x)

in 0 ≤ x ≤ 1, as n → ∞, if and only if for every positive integer m at
least one of the following conditions holds:
(1)

∑
p

1
p ‖mw(p) − t

2π‖2 is divergent.

(2) m · w(2r) ∈ 1
2N for every integer r > 0

(3) Both series
∑

p
1
p ‖mw(p)‖2,

∑
p

1
p ‖mw(p)‖ · sgn(1

2 − {mw(p)})
are convergent.

3.2. Around the Erdös–Kac Theorem

3.2.1. The Erdös–Kac Theorem. The Erdo′′s–Kac theorem was proved
in 1939 ([55], [56]).13

For a real–valued strongly additive function w : N → R define A(x)
and B(x) by (2.2). Then P. Erdös and M. Kac proved in 1939:

13A fore–runner is Erdo
′′
s’ paper [49], where he proved that the number of

integers n ≤ x, for which ω(n) > log log n, is 1
2

x + o(x), using Bruns sieve and
an asymptotic estimate of the number of integers n ≤ x for which ω(n) = k in
some [small] range of k.
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Let w be a strongly additive function satisfying |w(p)| ≤ 1 for all
primes p. Assume that B(x) → ∞ as x → ∞. Then

(3.4)
1
x

#
{

n ≤ x; w(n) − A(x) ≤ zB(x)
}

=⇒ 1√
2π

∫ z

−∞
e−

1
2 u2

du.

In particular, for ω(n) =
∑
p|n

1,

1
x

#
{
n ≤ x;

ω(n) − log log x√
log log x

≤ z
}

=⇒ 1√
2π

∫ z

−∞
e−

1
2u2

du.

These results also can be used (M. Kac [114]) to obtain value–distribu-
tion results for the multiplicative function τ(n) =

∑
d|n 1,

1
x
· #
{
n ≤ x; τ(n) ≤ 2log log x+z

√
log log x

}
=⇒ 1√

2π

∫ z

−∞
e−

1
2 u2

du.

J. Kubilius defined a reasonably large “class H” of additive functions,
to which equation (3.4) can be extended. The additive function w is in
“class H”, if there exists a function r :]0,∞[ → ]0,∞[ such that

(3.5)
log r(x)
log x

→ 0,
B(r(x))
B(x)

→ 1, and B(x) → ∞, as x → ∞.

J. Kubilius extended the Erdo
′′
s–Kac result as follows:

Let w : N → R be a strongly additive function of class H. Then the
frequencies

(3.6)
1
x

#
{

n ≤ x; w(n) − A(x) ≤ zB(x)
}

converge weakly to a limit distribution as x → ∞ if and only if there
is a distribution function K(u), so that almost surely in u

(3.7)
1

B2(x)

∑
p≤x

w(p)≤uB(x)

w2(p)
p

→ K(u) , as x → ∞.

The characteristic function Φ(t) of the limit law will be given by

(3.8) log Φ(t) =
∫ ∞

−∞

eitu − 1 − itu

u2
dK(u),

and the limit law has mean zero and variance 1.
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If w ∈ H , and

(3.9)
1

B2(x)

∑
p≤x

|w(p)|>ε B(x)

1
p

w2(p) → 0

for every ε > 0, then the frequencies in (3.7) converge to the Gaussian
law (as in (3.4)).

3.2.2. The Elliott–Levin–Timofeev Theorem. More generally, given
two normalizing functions α(x), β(x), one can ask if there exists a dis-
tribution function F (z) with the property

(3.10) νx{n ≤ x, w(n) ≤ zβ(x) + α(x)} =⇒ F (z),

as x → ∞. An answer is given by the Elliott–Levin–Timofeev The-
orem (see [38], II, Chapter 16): Assume that w is a real–valued additive
function, and α, β are real–valued [measurable] functions, satisfying

(3.11) β(x) → ∞ as x → ∞, sup
1≤t≤2

∣∣∣∣β(xt)
β(x)

− 1
∣∣∣∣→ 0 as x → ∞.

Then (3.10) holds if and only if there exists a constant A > 0 such that

(3.12) P

⎧⎨
⎩
∑
p≤x

Xp ≤ zβ(x) + α(x) − λ log x

⎫⎬
⎭ =⇒ F (z)

for some distribution function F (z), where Xp are independent random
variables defined by Xp = f(p)−A log p with probability 1

p , and = 0 with
probability 1 − 1

p .

3.2.3. Moments. In 1955, H. Halberstam [77] calculated moments
for additive, real–valued functions w elementarily,

(3.13) lim
n→∞

∑
m≤n

(w(m) − A(n))k

nD(n)k/2
=

1√
2π

·
∫ ∞

−∞
xke−

1
2x2

dx,

and he deduced the Erdös–Kac theorem from equation (3.13). A fur-
ther extension of this “method of moments” is due to H. Delange [25],
who also gave a new [analytic] proof for Halberstams result (3.13).

3.2.4. Remainder Terms. Asking for good remainder terms in ((3.4)),
A. Rényi and P. Turán [199] proved, in the special case where w = ω,
equation ((3.4)) with a best–possible remainder term O

(
1√

log log n

)
, and
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so a conjecture of W. J. LeVeque ([158]) was established for the special
additive function w = ω.

Asymptotic expansions for the frequencies νn

{
ω(m)−log log n√

log log n
< x
}

with remainder term were given, for example, by J. Kubilius ([131])
and H. Delange ([27]):14

νn

{
ω(m) − log log n√

log log n
< x

}
= G(x) · eQn(x) ·

{
1 + O

(
|x| + 1√
log log n

)}
.

More information on the rate of convergence to the Normal Law can
be found in Elliotts monograph [38], Chapter 20.

3.2.5. Composed Functions. Erdös and Pomerance [57] proved
an Erdös–Kac theorem for the composed function n → Ω(ϕ(n)):

lim
x→∞

1
x

#
{

n ≤ x; Ω(ϕ(n)) − 1
2
(log log x)2 ≤ 1√

3
· z (log log x)

3
2

}
= G(z).

A similar result ist true for ω(ϕ(n)).

3.2.6. Brownian Motion. A connection between additive arithmetic
functions and Brownian motion is given, for example, in Kubilius’ paper
[136], and in the survey article [167] of Manstavičius.

3.2.7. Multiplicative Functions. A result of M. Kac for the mul-
tiplicative [divisor–] function τ was mentioned earlier. More general
limit laws for multiplicative arithmetical functions were proved by A.

Bakštys [4], and by J. Kubilius & Z. Juškys [140]. These authors
proved for multiplicative real–valued functions g, under suitable assump-
tions on g (g belongs to some class M0(c, λ), which will not be defined
here; log2 n = log log n):

1
n · #

{
m ≤ n, g(m) < |x|λ

√
log2 n · logλ n · sgn(x)

}
= φ(x) + O

(
1√

log2 n

)
,

where φ(x) is connected with the Gauss integral.

14νn{Pm(x)}, for some property Pm(x), is defined as

νn{Pm(x)} =
1
n
· #
{

m ≤ n; Pm(x)
}

.
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3.3. Generalizations

The problem of the distribution of the values w(n) of additive func-
tions for n ≤ x was generalized to [thin] subsequences of {1, 2, 3, . . .},
for example to the sequence of shifted primes {p + 1, p prime} or to
the sequence {Q(n), n = 1, 2, 3, . . .} with a monic polynomial Q(x) > 0
with integer coefficients.

3.3.1. Moments for thin sequences. H. Halberstam [77] proved:
if w is a strongly additive function, then (for the definition of AQ, BQ

see (3.14)):∑
n≤x

(w(Q(n)) − AQ(x))q = μq · x · Bq
Q(x) + o(x · Bq

Q(x)),

if maxp≤x |w(p)| = o(BQ(x)). When p runs over primes, then∑
p≤x

(w(Q(p)) − AQ(x))q = μq · π(x) · Bq
Q(x) + o(π(x) · Bq

Q(x)),

if |w(p)| ≤ M and BQ(x)
log log log x → ∞.

The definition of AQ(x) and BQ(x) is similar as in (2.2), but a factor
ρ(p), the number of solutions of the congruence Q(n) ≡ 0 mod p, has to
be inserted. So

(3.14) AQ(x) =
∑
p≤x

w(p)ρ(p)
p

, B2
Q(x) =

∑
p≤x

ρ(p) · w2(p)
p

.

These results lead to a generalized Erdo
′′
s – Kac–theorem,

1
x

# {n ≤ x; w(|Q(n)|) − AQ(x) ≤ zBQ(x)} =⇒ 1√
2π

∫ z

−∞
e−

1
2w2

dw,

as x → ∞, under the assumption μx = max
p≤x

|w(p)|
BQ(x)

→ 0. A corre-

sponding result, where n is restricted to primes, is due to Barban (see
[5]).

In 1988 H. Delange proved the result

lim
x→∞

1
#(Sx)

·
∑

n∈Sx

(
w(n) − A(x)

B(x)

)q

=
1√
2π

∫ ∞

−∞
uq · e− 1

2u2
du,

where the sets Sx are a family of finite sequences, satisfying

#(Sx) → ∞, max
n∈Sx

n � xΔ, Δ ≥ 1,
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and satisfying some condition guaranteeing the possibility of an appli-
cation of the sieve method.

K.-H. Indlekofer & I. Kátai ([107]) calculated,15 for strongly
additive functions, “moments over shifted primes”. They showed

lim
x→∞

π(x)
Bk(x)

·
∑
p≤x

(
f(p + 1) − A(x)

)k

=
∫ ∞

−∞
zk dF (z)

if and only if

lim sup
x→∞

1
Bk(x)

·
∑

p≤x,|f(p)|>B(x)

1
p
· |f(p)|k < ∞.

3.3.2. Polynomials. H. Halberstams result ([77], see § 3.3.1) was
already given. M.B.Barban, R. V. Uzdavinis, P. D. T. A. Elliott

and others gave corresponding results on the frequencies (the definitions
(3.14) are slightly changed)

1
x

#
{
p ≤ x, w(|Q(p)|) − A∗

Q(x) ≤ z · B∗
Q(x)

}

An Erdös–Kac theorem for shifted
primes similar to Kubilius’s result is due to
M. B. Barban et al. (1965). See Elliott’s
book (1980), Vol. II, p. 27. E. Manstavičius

[165] (see the photo on the right), using a result
of A. Bikelis, gave remainder term estimates
in the Erdös–Kac theorem (improving results
of I. N. Orlov [192] considerably). P. D. T.

A. Elliott [43], [45], and K.-H. Indlekofer

[103] proved Erdös–Kac theorems in short in-
tervals: x − y < n ≤ x, y(x) = x1+o(1).

Generalizing a result of A. Hildebrand [88], P. D. T. A. Elliott

gave an Erdös–Kac theorem for pairs of real–valued additive functions.
There exists an η(x), so that

1
[x]

·{n ≤ x; f1(an+b)−f2(An+B)−η(x) ≤ z} → a distribution function

15Earlier results of this kind were given by Barban et al. [6], and B. V.

Levin & A. S. Făınlĕıb [159].
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Figure 3. H. Delange, E. Wirsing

if and only if there exist real αj such that the series

∑
|fj(p)−αj log p|>1

1
p
,

∑
|fj(p)−αj log p|≤1

(fj(p) − αj log p)2

p

are convergent.

§4. Arithmetical Functions

Important for the deduction of the results in § 3 is information on

the existence of mean–values M(f) = lim
x→∞

1
x

∑
n≤x

f(n) of arithmetical

functions f : N → C.

4.1. Mean–Value Theorems for Multiplicative Functions

In number theory, many results on the existence of mean–values and
on asymptotic formulae for special arithmetical functions (ϕ(n), τ(n),
. . . ) were proved, often with emphasis on good or best–possible remain-
der terms; but there were also rather early general results on mean–
values for certain classes of arithmetical functions (for example Axer

[1] and Wintner [247]). The condition
∑

p

|p − 1|
p

< ∞, much stronger

than Delanges condition (4.2), is crucial in Wintners theorem.

By skilfull methods from number theory H. Delange (1961, [26])
was able to prove an elegant result on multiplicative arithmetical func-
tions. This theorem – as well as E. Wirsings theorems on multiplicative



History of probabilistic number theory 385

functions [[248], [249]) — expressed the heuristic idea that knowledge on
the values of multiplicative functions at primes has consequences on the
behaviour of multiplicative functions in general, as may be guessed from
the Euler product of the generating Dirichlet series,

(4.1)
∞∑
1

f(n)
ns

=
∏
p

(
1 +

f(p)
ps

+
f(p2)
p2s

+ . . .

)
.

If f : N → C is multiplicative, |f | ≤ 1, then there is a non–zero
mean–value M(f) = lim

x→∞
1
x ·
∑

n≤x f(n) if and only if the series

(4.2)
∑

p

1 − f(p)
p

is [conditionally] convergent,

and if, for alle primes p,

(4.3)
∞∑

k=0

f(pk)
pk

�= 0.

Condition 4.3 is equivalent with f(2k) �= −1 for some k ≥ 1. A Delange

theorem with remainder terms is due to Postnikov [193], in improved
form to Elistratov [31].

General asymptotic formulae for a large class of non–negative mul-
tiplicative functions are due to Eduard Wirsing.

Theorem of E. Wirsing [248]. If f ≥ 0 is multiplicative, τ > 0,∑
p≤x

f(p) log p =
(
1 + o(1)

)
τ · x, f

(
pk
)
≤ γ1 · γk

2

for any k ≥ 2, where 0 < γ2 < 2, =⇒

(4.4)
∑
n≤x

f(n) =
(
1 + o(1)

)
· x

log x
·
∏
p≤x

(
1 +

f(p)
p

+
f(p2)

p2
+ . . .

)
.

In 1967, Wirsing [249] gave other theorems, weakening the hypothe-
sis on

∑
p f(p) considerably, and allowing for complex–valued functions.

In particular, this result contains the prime number theorem as a spe-
cial case. The deepest theorem in this connection was obtained by an
ingenious variation of classical analytic methods; it is the

Theorem of G. Halász, [74]. If f : N → C is multiplicative, and
if |f | ≤ 1, then:
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If f is real–valued, then ∃ M(f), and for complex–valued f ,

(4.5)
1
x
·
∑
n≤x

f(n) = (c + o(1)) · xia0 · L(log x),

where L is a slowly oscillating function, |L| = 1, and a0 is a real con-
stant, which can be given explicitly.

Elementary proofs of the Halász theorem are due to Daboussi &

Indlekofer [23].

4.1.1. The Elliott–Daboussi–Theorem. The
condition |f | ≤ 1 from Delanges theorem was
removed by Elliott [35], and the result was ex-
tended later by Elliott [40], and by H. Daboussi

[16], [17]. The condition |f | ≤ 1 is replaced by
a condition on the size of the values f(pk) in the
mean (see (iii) below.

Elliott–Daboussi’s Theorem. If f : N → C is multiplicative,
if q > 1, and if (see (4.9)) ‖f‖q < ∞, then a non–zero mean–value
M(f) �= 0 exists if and only if

(i) Delange’s series
∑

p

f(p) − 1
p

is convergent,

(ii)
∑

p

|f(p)−1|< 5
4

|f(p) − 1|2
p

< ∞,
∑

p

|f(p)−1|> 5
4

|f(p)|q
p

< ∞,

(iii)
∑

p

∑
k≥2

|f(pk)|q
pk

< ∞, and

(iv)
∑
k≥1

f(pk)
pk

�= 0 for any prime p.

4.1.2. Mean–value theorems in multiplicative arithmetical semigroups.
The mean–value theorems mentioned (due to Delange, Wirsing, Ha-

lász) were generalized to multiplicative arithmetical semigroups, start-
ing with the work of J. Knopfmacher [121]. Some results are surveyed
in the paper [162] by L. Lucht & K. Reifenrath. More details may
be found in Reifenraths dissertation [195]. There are many results,
concerning mean–values of additive and of multiplicative functions in
semigroups, in the Paderborn dissertation [244] of S. Wehmeier.
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4.1.3. Mean–value theorems in additive arithmetical semigroups. The
mean–value theorems mentioned, in particular Halász’ theorem, were
generalized to additive arithmetical semigroups; the deepest results are
due to W. B. Zhang. We cannot give his results here; the interested
reader is referred to Zhangs papers in Math. Z. 229 (1998), 195–233,
Illinois J. 42 (1988), 189–229, Math. Z. 235 (2000), 747–816, and to
[250], [252] and [253]. In [252] there is also a generalization of the Elliott–
Daboussi theorem (see later, p.386) to additive arithmetical semigroups.
Mean–value theorems for q–additive and q–multiplicative functions are
given in Yi–Wei Lee–Steinkämpers dissertation [157].

4.2. Using the Turán–Kubilius Inequality

In 1965, A. Rényi gave a simple proof for the existence of M(f),
if the Delange series (4.2) is convergent. His idea of proof is to use an
approximation of log f by truncated additive functions, and the Turán–

Kubilius Inequality allows a sufficiently good estimate of the difference.

4.2.1. The Relationship Theorem. A useful tool for reducing the
proof to the simplest cases is the “relationship theorem” (E. Hepp-

ner & W. Schwarz (1978) [84]; weaker theorems of this kind were
given previously by H. Delange and L. Lucht).

Assume that the multiplicative functions f and g are “related”, i.e.

∑
p

|f(p) − g(p)|
p

< ∞,

and that f, g ∈ G, where

G def
=

⎧⎨
⎩F multiplicative,

∑
p

|F (p)|2
p2

< ∞,
∑

p

∑
k≥2

|F (pk)|
pk

< ∞

⎫⎬
⎭ ,

and that all the factors of the generating Dirichlet series (4.1)

∞∑
1

f(n)
ns

=
∏
p

ϕf (p, s), ϕf (p, s) = 1 +
f(p)
ps

+
f(p2)
p2s

+ . . . ,

do not vanish in �(s) ≥ 1. Then there is a [small] multiplicative function
h, satisfying

g = f ∗ h, and
∞∑
1

1
n
|h(n)| < ∞.

Corollary. If M(f) exists, then M(g) exists, too.
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The proof uses a Wiener type lemma for Dirichlet series, which was
proved by E. Hewitt & R. Williamson in 1957.16

The [absolutely convergent] Dirichlet series
∞∑
1

an

ns
, where

∞∑
1

|an| <

∞, has an [absolutely convergent] inverse

∞∑
1

bn

ns
=

( ∞∑
1

an

ns

)−1

, satisfying
∞∑
1

|bn| < ∞,

if and only if there is some lower bound δ > 0 for

∣∣∣∣∣
∞∑
1

an

ns

∣∣∣∣∣ in the half–

plane �(s) ≥ 0.

4.2.2. Sketch of Rényi’s Proof. By relationship arguments one may
assume that the values f(p) have real part ≥ 3

4 and that f is strongly
multiplicative. Then, approximate the multiplicative function f by a
“truncated” strongly multiplicative function f∗

K , f∗
K(n) =

∏
p|n

p≤K

f(p). The

mean–value M(f∗
K) is easily calculated. And it can be expected that

M(f∗
K) is near M(f), if K is large. This is made precise by the estimate

ΔN =
1
N

∑
n≤N

|f(n) − f∗
K(n)| ≤ 1

N

∑
n≤N

|f∗
K(n)| ·

∣∣∣∣∣∣
∏

p|n, p>K

f(p) − 1

∣∣∣∣∣∣ .

Using the Turán–Kubilius inequality for the strongly additive function
w(n) =

∑
p|n, p>K

log f(p), one obtains

∣∣∣∣∣∣
∏

p|n, p>K

f(p) − 1

∣∣∣∣∣∣ =
∣∣∣ew(n) − 1

∣∣∣ ≤ |w(n)| ·
(
1 + |ew(n)|

)
.

By Cauchys inequality and the convergence of the Delange series (4.2),
the estimate ΔN → 0 (as N → ∞) is obtained.

16For an elementary proof see [213]. For a relationship theorem for functions
of several variables see E. Heppner [83]. For important generalizations see [161].



History of probabilistic number theory 389

4.2.3. Spaces of Arithmetical Functions. Using Rényis method and
the relationship theorem, Delanges theorem can be extended to larger
classes of multiplicative (and additive) functions (see [216], [104]).

Denote the set of linear combinations of (the “even”, and so periodic)
Ramanujan sums

(4.6) cr(n) =
∑

d|gcd(r,n)

dμ
( r

d

)
=

∑
1≤a≤r, (a,r)=1

exp(2πi · a

r
· n)

resp. exponential functions n → exp(2πiαn), α rational, resp. α irra-
tional, by B, resp. D, resp. A. The closures of these C –vector–spaces
with respect to the (“uniform” or supremum) norm

(4.7) ‖f‖u = sup
n∈N

|f(n)|

are the spaces

(4.8) Bu, resp. Du, resp. Au

of uniformly–even, uniformly–limit–periodic, and uniformly–almost pe-
riodic functions. These vector–spaces are in fact Banach algebras.

The closures of B, D, A, with respect to the semi–norm

(4.9) ‖f‖q =

⎛
⎝lim sup

x→∞

1
x
·
∑
n≤x

|f(n)|q
⎞
⎠

1
q

, q ≥ 1,

are denoted by

(4.10) Bq, resp. Dq, resp. Aq,

the spaces of q–almost–even, q–limit–periodic, and q–almost–periodic
functions.

4.2.4. Properties of these Spaces. These spaces have convenient prop-
erties useful for approximation arguments.

(1) B ⊂ Bu ⊂ Bq ⊂ Dq ⊂ Aq ⊂ A1, q ≥ 1.
(2) Functions in A1 do have a mean–value, Fourier coefficients

f̂(α) and Ramanujan coefficients ar(f),

f̂(α) def= M(f · e−α), ar(f) def=
1

ϕ(r)
· M(f · cr).
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B

D

A

Bu

Du

Au

Bq

Dq

Aq, (q ≥ 1)
B1

D1

A1

��

����

��
��

��
��

��

��

��

��

‖f‖u = sup
n=1,2,...

|f(n)|,

Bu = ‖.‖u –closure of B,

Du, Au analogously.

‖f‖q = lim sup
x→∞

1
x
·

·

⎛
⎝∑

n≤x

|f(n)|q
⎞
⎠

1
q

,

q ≥ 1.

Spaces of Arithmetical Functions

(3) Bu · Bq ⊂ Bq, Bq · Bq′ ⊂ B1, if
1
q

+
1
q′

= 1.

(4) f ∈ Bq =⇒ �(f), �(f), |f | ∈ Bq.
(5) f, g ∈ Bq real–valued =⇒ max(f, g) ∈ Bq, min(f, g) ∈ Bq.
(6) f ∈ B1, ‖f‖q < ∞ =⇒ f ∈ Br, if 1 ≤ r < q.
(7) f ≥ 0, α, β ≥ 1 =⇒

{
fα ∈ Aβ ⇐⇒ f ∈ Aα·β} . (H. Daboussi)

(8) Additive resp. multiplicative shifts map Aq into itself.

4.2.5. Indlekofer’s Spaces. K.–H. Indlekofer defined spaces (see
[104], [105], [106])

Lq =
{

f : N → C, ‖f‖q < ∞
}
, 1 ≤ q < ∞,(4.11)

L∗ =
{

f : N → C, f uniformly summable
}

.

Here, f is called “uniformly summable”, if large values of |f | are rare,
more precisely

(4.12) f is uniformly summable, if lim
K→∞

sup
N≥1

1
N

.
∑
n≤N

|f(n)|>K

|f(n)| = 0.
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L∗ is the ‖.‖1–closure of �∞, the space of bounded arithmetical functions,
and for q > 1 the inclusions

Lq ⊂ L∗ ⊂ L1

hold. Then Indlekofer [94] generalized the Delange–Elliott–Dab-

oussi result for multiplicative functions to

Theorem. Let q ≥ 1, and f : N → C is multiplicative. Then:

(1) If f ∈ L∗ ∩ Lq, and if M(f) exists and is �= 0, then the series

∑
p

f(p) − 1
p

,
∑

p, |f(p)|≤ 3
2

|f(p) − 1|2
p

,(4.13)

∑
p, |f(p)−1|≥ 1

2

|f(p)|λ
p

,
∑

p

∑
k≥2

1
pk

· |f(pk)|λ

do converge for all λ, 1 ≤ λ ≤ q, and

(4.14)
∞∑

k=0

f(pk)
pk

�= 0 for every prime p.

(2) If the four series (4.13) converge, then f ∈ L∗ ∩ Lq, and the
mean–values M(fλ) exist for any λ, 1 ≤ λ ≤ q. If (4.14) holds
in addition, then M(f) �= 0.

Indlekofer also extended the result of G. Halász. If f : N → C

belongs to L∗, and if the series

∑
p, | |f(p)|−1|≤ 1

2

1
p
·
(
1 −�f(p)(|f(p)|pit)−1

)
diverges for any real t,

then f possesses a mean–value M(f) = 0.

For real–valued additive functions w there is a limit distribution F
(and

∫∞
−∞ |u|qdF (y) < ∞) if and only if w ∈ Lq and the mean–value

exists ([98]).

4.2.6. Characterization of some classes of arithmetical functions in
Bq.

1) Multiplicative functions in Bq with mean–value M(f) �= 0 are
characterized exactly by the conditions of the Elliott – Daboussi

theorem (H. Daboussi, W. Schwarz & J. Spilker, K.–H. Indle-

kofer).
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1a) A characterization of multiplicative funktions in Dq having at
least one non–vanishing Fourier coefficient is possible by similar condi-
tions. (Daboussi, Schwarz & Spilker). Under suitable conditions,
multiplicative functions f don’t have Fourier–coefficients f̂(α) �= 0 for
irrational α., according to a result of H. Daboussi; this was generalized
by Indlekofer & Kátai [108], and further in [111] to

If f is a uniformly summable function with a void Fourier–
Bohr spectrum (so lim supx→∞

1
x

∣∣∣∑n≤x f(n)e(−nα)
∣∣∣ = 0 for α ∈

R), and if g is a q–multiplicative functions satisfying |g(n)| = 1,
then

1
x

∑
n≤x

f(n)g(n) → 0, as x → ∞.

2) Additive funktions in Bq are characterized by similar conditions
on the convergence of certain infinite series over primes (A. Hilde-

brandt & J. Spilker [90], K.–H. Indlekofer). We quote the the-
orem of A. Hildebrand and J. Spilker (1980), which was proved
independently by P. D. T. A. Elliott too, and which was improved
by K.-H. Indlekofer.

Figure 4. A. Hildebrandt, K.-H. Indlekofer, G. Tenenbaum

Assume that f : N → C is additive, and q ≥ 1. Then the following
conditions are equivalent:

(1) f ∈ Bq.
(2) M(f) exists, ‖f‖q < ∞.
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(3) The following series are convergent:

∑
p,|f(p)|≤1

f(p)
p

,
∑

p,|f(p)|≤1

|f(p)|2
p

,
∑

p, k≥1,|f(pk)|>1

|f(pk)|q
pk

.

If one of these conditions is satisfied, then the Ramanujan expansion
F =

∑
r arcr, ar = 1

ϕ(r) · M(f · cr) of f is pointwise convergent. This

expansion is absolutely convergent, if
∑

p,|f(p)|≤1
f(p)

p is absolutely con-
vergent.

3) Another class of functions, investigated for example by J. Co-

quet, H. Delange, M. Peter, J. Spilker and others, is the class of
q–additive or q–multiplicative functions, and there are similar results.

The most complete results on this topic are
due to Yi–Wei Lee–Steinkämper [157] in her
dissertation (Paderborn 2005), supervised by K.–

H. Indlekofer.

For example, for a q–multiplicative function f the
following assertions are equivalent:

(i) f is uniformly summable and ‖f‖1 > 0.

(ii) For any α > 0 f ∈ Lα and ‖f‖α > 0.

(iii) For any α > 0 the series
∑
r≥0

1
q

q−1∑
a=1

(
|f(aqr)|α − 1

)2

is

convergent, and there are real constants cj(α) and a
sequence {Ri} �= ∞, so that

∑
r<R

1
q

q−1∑
a=1

(
|f(aqr)|α−1

)2

≤ c1(α),
∑

r<Ri

1
q

q−1∑
a=1

(
|f(aqr)|α−1

)2

≥ c2(α).

In Lees dissertation there are also results on q–additive functions,
on the Turán–Kubilius inequality for these, and a result on the limit–
distribution of such functions.

4.3. Gelfand’s Theory and Almost–Even Functions with
Prescribed Values

4.3.1. Interpolation Problem, Gelfand’s Theory. The spaces Bu and
Du are small. Nevertheless, the next result, which is due to J.–Chr.

Schlage–Puchta, J. Spilker, & W. Schwarz (see [207], extending
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[186]), shows, that there are “many” functions in Bu. The interpolation
problem is, to give conditions such that for given integers 0 < a1 <
a2 < . . . and given bounded complex numbers b1, b2, . . . , there exists a
function f ∈ Bu satisfying f(an) = bn, for all n ∈ N.

For the sake of completeness we state elementary facts from Gel-

fands Theory (see [204], p. 268ff). For a commutative Banach–algebra
X (with unit element e and norm ‖ · ‖ ) denote by

ΔX = {h : X → C, h is an algebra–homomorphism }

the set of algebra–homomorphisms on X . Any h ∈ ΔX is continuous,
and any maximal ideal in ΔX is the kernel of some h ∈ ΔX . The
Gelfand–transform x̂ of x ∈ X is

x̂ : ΔX → C, x̂(h)
def
= h(x),

and so ˆ is a map ˆ : X → X̂ = {x̂ : ΔX → C, x ∈ X}. Under
the weakest topology, which makes every ĥ continuous, ΔX becomes
a compact topological Hausdorff space. If X is a semi–simple17 B∗–
algebra,18 then the Gelfand–transform ˆ is an isometric isomorphism of
X onto C(ΔX ), the algebra of complex–valued continuous functions on
ΔX with the sup–norm.

4.3.2. The Maximal Ideal Space of Bu. All the homomorphisms h
from the “maximal ideal space” ΔB of Bu are given as follows ([127],
[186]): For any vector K =

(
ep

)
p∈P

, where ep is an integer from [0,∞[
or equal to ∞, and any function f ∈ Bu, define a “function value”

f(K) = lim
r→∞

f

⎛
⎝∏

p≤r

pmin{r,ep}

⎞
⎠ .

For f ∈ Bu, this limit does exist.19 Define

hK : ΔB → C by hK(f) = f(K).

17The radical of X (the intersection of all maximal ideals) equals (0).
18there is an involution ∗ : X → X satisfying ‖x · x∗‖ = ‖x‖2.
19If K has only finitely many entries ep �= 0, and if none of these is equal to

∞, then f(K) = f
(∏

p

pep

)
.
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Then the maximal ideal space Bu of B is20 the set of all hK, where
K =

(
ep

)
p∈P

. If n =
∏

p pνp(n) is an integer, then the evaluation–
homomorphismus hn : f → f(n) equals hKn , where Kn = {νp(n), p ∈
P}. A subbasis of the topology on ΔB is given by the vectors

(∗, . . . , ∗, ep, ∗, ∗, . . . ), where ep is fixed and finite, or ep ≥ some constant,
and ∗ are arbitrary integers from [0,∞].

The solution of the Interpolation Problem is given by the

Theorem. Let a strictly increasing sequence {an}n∈N of positive inte-
gers and a bounded sequence {bn}n∈N of complex numbers be given with
the following property:

If {nk}k∈N is any strictly increasing sequence of positive integers
such that for any r ∈ N the sequence {gcd (ank

, r !)}k∈N is eventu-
ally constant, then lim

k→∞
bnk

exists, and, in the case that, with some

integer m [not depending on r], lim
k→∞

gcd (ank
, r !) = gcd(am, r !)

for every r, its value is bm.

Then there is a function f ∈ Bu with values f(an) = bn for all n ∈ N.

4.3.3. Sketch of the Proof. Define E ⊂ ΔB as the [discrete] set of
evaluation homomorphisms E = {han , n = 1, 2, . . .}; denote its set of
accumulation points by H. The union K = E ∪ H ⊂ ΔB is closed,
therefore compact. Define F : K → C, for points han ∈ E by F (han) =
bn, and for points η = hK ∈ H as follows: choose a sequence

{
hank

}
k

converging to η, and define F (hK) = limk→∞ bnk
. This limit exists, F is

well–defined and continuous on K. Therefore, by the Tietze extension
theorem there is a continuous function F ∗ : ΔB → C, extending F . By
Gelfands theory, F ∗ is the image of some function f ∈ Bu, F ∗ = f̂ ,
and due to

f (an) = han(f) = f̂ (han) = F ∗ (han) = F (han) = bn

the function f solves the interpolation problem f(an) = bn.

A similar result (with a similar proof) is true for the space Du.

20ΔB may be described as the topological product
∏
p

{1, p1, p2, . . . , p∞},

where {1, p1, p2, . . . , p∞} is the one–point–compactification of the discrete space
{1, p1, p2, . . . }.
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§5. Kubilius Model

For the application of methods of probability theory, for example
the Berry–Esseen Theorem,

Let X1, . . . , Xn be independent random variables (with distribution
functions Fν) with mean zero, variance Dν and third moment

Lν =
∫ ∞

−∞
z3dFν(z), ν = 1, 2, . . . , n;

then, uniformly for real z,

P

(
1
σ

n∑
nu=1

Xν ≤ z

)
=

1√
2π

∫ z

−∞
e−

1
2w2

dw + O
(

1
σ3

n∑
ν=1

Lν

)
,

with an absolute O–constant, and where σ2 = D1 + · · · + Dn,

to strongly additive functions f , f(n) =
∑

p|n f(p), one might try to use
random variables Xp on some suitable space (Ω,A, P ), where

Xp = f(p) with probability
1
p
,

Xp = 0 with probability 1 − 1
p
.

Unfortunately, this approach does not work, because the “events” one
naturally would like to choose for dealing with additive functions, the
zero–residue–classes [the set E(pk) of integers n ≤ x divisible by a prime
power pk], are only “nearly” independent. Kubilius (see [132]) con-
structed finite probabilistic models to mimic the behaviour of truncated
additive functions by appropriately defined independent random vari-
ables. A possible construction is described in Elliotts monograph
[37], Chapt. 3.

Assume that 2 ≤ r ≤ x. Define, for any prime p dividing
∏
p≤r

p, the

residue class

E(p) = {n ≤ x, n ≡ 0 mod p}, and E(p) = S \ E(p),

where S = {n ∈ N, n ≤ x}, and, for k
∣∣∣ ∏

p≤r

p, write

Ek =
⋂
p|k

E(p)
⋂

p
∣∣∣ ((∏p≤r p)

/
k
)E(p).
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Let F be the least σ–algebra containing all the E(p), and define a [finitely
additive] measure ν on F :

ν(A) =
m∑
1

1
[x]

· #
(
Ekj

)
, for A =

m⋃
1

Ekj ,

to obtain a finite probability space (S,F , ν).

Now some ideas from number theory are involved. Selbergs sieve–
method gives

# (Ek) = (1 + O (L)) · x

k
·

∏
p
∣∣∣ ((∏p≤r p)

/
k
)
(

1 − 1
p

)
,

as long as k ≤ x
1
2 , where

L = exp
(
−1

8
log x

log r
log
(

log x

log r

))
+ x− 1

15 .

Define a second measure μ on F by

μ(Ek) =
1
k

∏
p
∣∣∣ ((∏p≤r p)

/
k
)
(

1 − 1
p

)
.

Then μ and ν are “close”,

νEk = (1 + O (L))μEk, νA = μA + O (L) , uniformly in F .

For the “truncated” additive function g(n) =
∑

p|n, p≤r

f(p) we obtain

1
x

#{n ≤ x; g(n) ≤ u} = P

⎛
⎝∑

p≤r

Xp ≤ u

⎞
⎠+ O (L) .

To deduce a result for the original function f , it is necessary to give a
good estimate for the frequencies

1
x

#{n ≤ x; |f(n) − A(x) − (fr(n) − A(r))| > ε B(x)},

which is done by the Turán–Kubilius inequality and the fact that
f ∈ H (the class H was defined via formula (3.5)).
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§6. Integration

This section deals very sketchily with the problem of “integrating”
arithmetical functions21 and to use these theories in order to obtain
results on arithmetical functions.

Since “naturally” defined subsets of N (like arithmetic progressions)
do not form a σ–algebra (in the sense of measure theory), one has to
proceed in another way; the general idea for these investigations is to
associate to an arithmetical function f some other function f∗ defined
on some suitably chosen compact topological space (or semi–group).

The first effective theory of integration for arithmetical functions is
due to E. V. Novoselov 1962–1964, see [191]. A good description of
this method can be found in Mauclaires paper [180]. The techniques
of E. V. Novoselov are strong enough to give a proof of Delange’s
result (see §4.1).

6.1. J. Knopfmacher, W. Schwarz, J. Spilker

A rather simple theory of integration for arithmetical functions was
developed in papers of Schwarz & Spilker, in 1971 and 1976 ([211],
[212], [216]). Unfortunately this theory is definitely weaker than Novo-

selovs theory. Define countable sets {1, p, p2, . . . } with discrete topol-
ogy, and form the Alexandroff–one–point–compactification Np by

adding one point p∞. Define a measure μp, μp(pk) = p−k ·
(
1 − 1

p

)
,

μp(p∞) = 0, on Np. Then the product measure μ =
∏

p μp on the
compact space N∗ =

∏
p Np is the same as the measure coming from

the mean–value–functional f → M(f) [for f ∈ Bu] via the F. Riesz

representation theorem (see, e.g. [204]), and

Bu � C(N∗),

the algebra of continuous functions on N∗. Thus, mean–values may be
represented as integrals,

M(f) =
∫

N∗
fdμ.

In 1976, J. Knopfmacher ([122]) showed, that the quotient space
Bq/nullspace is � Lq(N∗, μ). And, he showed that the whole theory
can be extended to arithmetical semigroups.

21There is an interesting survey paper of J.-L. Mauclaire, Integration
and Number Theory [180], concerning the subject of the first two subsections.
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A simplification of the approach described above is sketched in Mau-

claires paper [180].

6.2. J.–L. Mauclaire

It is difficult to sketch the contents of J.-

L. Mauclaire’s highly interesting “Intégra-
tion et Théorie des Nombres” in short. Mau-

claire uses the Bohr-compactification ¯̂
Z of

the character group Ẑ of the additive group
Z of integers, and so good knowledge from
analysis is necessary to read this book. In
this monograph, the Daboussi–Elliott the-
orem is proved (Chapt. III), and the Erdo

′′
s–

Wintner theorem, too.

In Mauclaires survey paper [180] the
main ideas of his approach are well readably
described. See also [183].

6.3. K.–H. Indlekofer’s Integration Theory

Indlekofers theory of integration of arith-
metical functions is given in [105] and [106]. We
follow this presentation.

Let A be an algebra22 of subsets of N with a
finitely additive set function δ : A → [0,∞[ de-
fined for all A ∈ A.23

For example, one can use

δ(A) = lim
n→∞

∞∑
k=1

γnk1A(k),

where Γ = (γnk)n,k is a Toeplitz matrix:

(i) sup
n

∞∑
k=1

γnk < ∞,

(ii) γnk → 0, if n → ∞, k fixed,

22
N ∈ A, A ∪ B and B \ A are in A, if A,B ∈ A.

23A big advantage of Indlekofers approach is that [deep] results obtained
by other methods can be built into the construction.
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(iii)
∞∑

k=1

γnk → 1, as n → ∞.24

Then, for simple functions

s ∈ E(A) =

{
s; s =

m∑
1

αj 1Aj , αj ∈ C, Aj ∈ A
}

,

the definition ∫
βN

s dδ = lim
n→∞

∞∑
1

γnks(k)

leads to the Lebesgue space

L1(βN, σ(A), δ) =
{
f : βN → C, ‖f‖ < ∞

}
,

with the [semi]–norm

‖f‖ =
∫

βN

|f | dδ.

Figure 5. L. Murata, K.–H. Indlekofer

There is a norm–preserving vector space isomorphism

L∗1(A) (mod null–functions) → L1(δ) (mod null–functions),

where
L∗1 = ‖.‖1–closure of E(A),

and, as in (4.9), ‖f‖q =
(
lim supx→∞

1
x

∑
n≤x |f(n)|q

) 1
q

.

24Examples of Toeplitz–matrices are provided by γnk = 1
n
, if k ≤ n,

otherwise γnk = 0 — this leads to asymptotic density, or by γnk = 1
k
· 1

log n
, if

k ≤ n, otherwise γnk = 0 — this leads to logarithmic density.
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Figure 6. H. Fürstenberg; E. Manstavičius, A. Laurinčikas

Examples. Starting with the algebra A2 generated by the zero
residue classes {n ∈ N, n ≡ 0 mod q}, for q ∈ N, with asymptotic density,
one obtains the theory of Knopfmacher, Schwarz & Spilker.

Starting with the algebra A1 generated by all residue classes {n ∈
N, n ≡ a mod q}, for a, q ∈ N, with asymptotic density, one obtains the
integration theory of E. V. Novoselov.

Using a deep ergodic result of Fürstenberg
25 on the shift operator

S(n) = n + 1 (and with asymptotic density δ on N): If δ(B) > 0, then
for any k > 1 there exists an integer n �= 0 so that

δ
(
B ∩ S

n
B ∩ · · · ∩ S

(k−1)n
B
)

> 0,

then, using the algebra A generated by the translations {SnB, n =
0, 1, 2, . . .}, Indlekofers theory gives:

If B ⊂ N has asymptotic density δ(B) > 0, then B contains arbi-
trarily long arithmetic progressions (van der Waerden, K. F. Roth

[203], Szemerédi [227]).

§7. Functional Limit Theorems, Universality

7.1. Functional Limit Theorems

There is a far–reaching generalization of the ideas leading to the
Erdo′′s–Kac and Erdo′′s–Wintner theorem. Important contributions to
this topic are due to E. Manstavičius. We refer to the survey paper

25[63]; the result is closely connected with Szemerédis famous result on
arithmetical progressions. For a well readable presentation see [64].
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[167].26 This paper starts from the invariance principle established by P.
Erdo′′s and M. Kac in the fourties and from more general functional limit
theorems for partial sum processes for independent random variables.
Furthermore, the development of a parallel theory dealing with those
dependent random variables which appear in probabilistic number theory
is described.27 This survey paper, dedicated to the memory of Paul

Erdo
′′
s (with an extensive bibliography of 89 items) deals with

— partial sum processes for independent random variables,

— additive functions and functionals on them,

— additive functions and Brownian motion (see also [136]),

— models of other processes with independent increments,

— additive functions on sparse sequences,

— multiplicative functions,

— divisors and stochastic processes.

As one example we give one [technical] result due to Manstavičius.

Let h : N → R be additive, β(n) → ∞, and let X be a stable pro-
cess with an explicitly given characteristic function (containing the
parameters a1, a2, α). In order that Gn =⇒ X it is necessary and
sufficient that for any u > 0

∑
p≤n

h(p)<−uβ(n)

1
p
→ a1 · u−α,

∑
p≤n

h(p)>uβ(n)

1
p
→ a2 · u−α,

and that
lim
ε→0

lim sup
n→∞

∑
p≤n

|h(p)|<εβ(n)

1
p

h(p) = 0.

Here
Gn =

1
β(n)

∑
p|m, p≤z(t)

h(p) − α(n, z(t)),

and (in t ∈ [0, 1])

z(t) = max{u; B2(n, u) ≤ tB2(n, n)},

26From the review by Filip Saidak in Math. Reviews we quote: “This
excellent, long overdue survey paper, concerning the theory of general functional
limit theorems for partial sum processes, fills the gap left by all the existing
textbooks and expository papers on the subject”.

27From the abstract of [167].
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B2(n, u) =
∑
p≤u

(
h(p)
β(n)

)∗ 2 1
p
, α(n, u) =

∑
p≤u

(
h(p)
β(n)

)∗ 1
p
.

The star ∗ ist defined by u∗ = u, if |u| < 1, and u∗ = sgn(u)[= ±1]
otherwise.

7.2. Number Theory in the Symmetric Group

Starting point of this topic is a paper of E. Landau ([143]), repro-
duced in the ”Handbuch von der Lehre der Verteilung der Primzahlen“
(1909) on the maximal order f(n) of elements of the symmetric group
Sn with n! elements, so

f(n) = max
σ∈Sn

ord(σ) = max
r,a1,...,ar∈N

a1+···+ar=n

lcm[a1, . . . , ar] = max∑
pβ≤n

(∏
p

pβ

)
.

E. Landau showed

log f(n) ∼
√

n · log n , as n → ∞.

The function f(n) was carefully studied in papers by J. L. Nicolas

(Bull. Soc. Math. France 97 (1969), 129–191; Acta Arithm. 14 (1968)
315–332); see also [173] and [174]); for example,

log f(n) =
√

li−1(n) + O
(
ne−γ

√
log n
)

.

The first limit theorem seems to be due to V. L. Gončarov [71]. De-
note by g(σ) the number of cycle–lengths in the canonical decomposition
of σ ∈ Sn, then

lim
n→∞

1
n !

· #
{
σ ∈ Sn; g(σ) ≤ log n + t

√
log n

}
=

1√
2π

∫ t

−∞
exp
(
−1

2
u2

)
du.

The subject was studied by Erdo
′′
s & Turán (see the series of papers

[59]); for example,

lim
n→∞

1
n !

· #
{

σ ∈ Sn log ord(σ) ≤ 1
2

log2 n + t log
3
2 n

}

=

√
3
2π

∫ t

−∞
exp
(
−3

2
u2

)
du.
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In more recent time, E. Manstavičius started the study of properties
of the symmetric group again.

We cannot explain Manstavičius’ papers here in short, we refer to
[169], [170], and in particular to his paper [171] in these proceedings.

7.3. Universality

This section deals with the value–distribution of zeta–functions, and
ideas from measure theory and probability theory are important for
investigations on “universality”. The first results are due to H. Bohr

(see, for example, [8]). Prototype of the results aimed for is S. M.

Voronins result [241] (see also [117]):

Let 0 < r < 1
2 , and let s → g(s) be a non–vanishing, in |z| ≤ r

continuous, in |z| < r holomorphic function. For any ε > 0 there

are real values τ such that sup
|s|≤r

∣∣∣∣ζ
(

s +
3
4

+ iτ

)
− g(s)

∣∣∣∣ < ε.

After Voronins paper there were several authors dealing with “uni-
versality”, for example B. Bagchi, R. Garunkštis, A. Good, R.

Kačinskaite, A. Laurinčikas, K. Matsumoto, A. Reich, R. Šle-

ževičienė, J. Steuding.

Figure 7. R. Garunkštis, J. Steuding, R. Slečeviciene; K.
Matsumoto

Probability comes into the topic through a method of Bagchi, con-
siderably extended by Laurinčikas [152], see also [148].28 From Steu-

dings habilitation thesis we give an example of a limit theorem for a

28Certainly, the revived interest in “universality” owes much to A. Lau-

rinčikas, who inspired several young mathematicians to work on this subject.



History of probabilistic number theory 405

subclass S̃ of the Selberg class S; this class S consists of Dirichlet–

series
∞∑
1

an · n−s, having an Eulerproduct
∏

p(. . . ) and a functional

equation of the kind of the functional equation of ζ(s) (with Gamma–
factors), and satisfying an � nε. The subclass S̃ ⊂ S is restricted

by the demand for the existence of lim
x→∞

1
π(x)

∑
p≤x

|a(p)|2 and by some

restriction on the shape of the factors (. . . ) in the Eulerproduct.

To any Dirichlet series L ∈ S̃ attach a probability measure PT by

PT (A) =
1
T

· Lebesgue–measure of {τ ∈ [0, T ], L(σ + iτ) ∈ A} ,

for Borel–sets A in the space H(D) of functions holomorphic in the strip

(7.1) D =
{

s ∈ C ; max
(

1
2
, 1 − 1

dL

)
< σ < 1

}
.

[The “degree” dL of L is defined by data from the functional equation
of L.] Then ([225], Chapt. 6) the probability measure PT converges
weakly to some probability measure P , as T → ∞ , and the measure P
is explicitly given.

This limit theorem permits the proof of a universality result for
Dirichlet–series in the restricted Selberg class S̃.29

Let K be a compact subset of the strip D with connected complement,
and let g(s) be a non–vanishing function continuous on D, and holo-
morphic in the interior of K. If L ∈ S̃, then, for any ε > 0

lim inf
T→∞

1
T

· L–measure of
{

τ ∈ [0, T ]; max
s∈K

|L(s + iτ) − g(s)| < ε

}
> 0.

29In the literature there are many universality results, for example for L–
functions, for the Lerch zeta–function, the Matsumoto zeta–function, for zeta–
functions attached to cusp forms, for Hecke L–functions, . . . . See, for example,
[153], [152], [175], [176], [194], [222], [221], [223], [225], and many others. V.

Garbaliauskienė, in her Vilnius dissertation [66] gives universality results for
L–functions attached to elliptic curves. In [69] there are such results for the
Estermann zeta–function.

There are also “joint universality results” — that means that tuples of cer-
tain zeta–function can simultaneously approximate given holomorphic function
(of course, under suitable assumptions). A first prototype of this phenomenon
for Dirichlet L–functions with non–equivalent charactes is also due to Voronin

[242]. See also [117], more recently [68] or [67].
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So, Voronins result on the zeta–function is extended to a much
larger class of zeta–functions, and the assertion “There is some τ” is
made quantitive — these τ ’s with the universality property do have a
positive lower density.

There are survey papers on universality, for example [72], [149],
[177], and [148].

§8. Conclusion

In this survey article only some parts of Probabilistic Number The-
ory could be sketched. The author hopes, that it became clear that
Probabilistic Number Theory is an active field of mathematical research,
where methods from number theory, analysis and probability theory
work together in order to obtain interesting arithmetical results.

The author enjoyed the conference in Kanazawa very much, it was
— thanks to the organizers Profs. Sugita, Matsumoto, and Murata

— a pleasant stay. He gratefully acknowledges financial support from
the organization committee.

Photographs were taken by Ulrike Vorhauer, Yi–Wei Lee, J.

Pintz and the author. Photographs of Kac, Kubilius, Rényi, Turán,

Wintner can be found in Elliotts monographs [37], [38].
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[ 65 ] V. Garbaliauskienė, Discrete value-distribution of L-functions of elliptic
curves, Publ. Inst. Math. Beograd, 76 (2004), 65–71.



410 W. Schwarz
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[ 68 ] V. Garbaliauskienė and A. Laurinčikas, Discrete value–distribution of L-
functions of elliptic curves, Publ. Inst. Math., 76 (2004), 65–71.
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[ 71 ] V. L. Gončarov, On the field of combinatorial analysis, Izv. Akad. Nauk

SSSR Ser. Mat., 8 (1944), 3–48 [Russ.], Translations Amer. Math. Soc.,
19 (1962), 1–46.

[ 72 ] K.-G. Grosse–Erdmann, Universal families and hypercyclic operators,
Bull. Amer. Math. Soc., 36 (1999), 345–381.

[ 73 ] J. Hadamard, Sur la distribution des zéros de la fonction ζ(s) et ses
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[140] J. Kubilius and Z. Juškys, The distribution of the values of multiplicative
functions. (Russian), Litovsk. Mat. Sb., 11 (1971), 261–273.

[141] H. Kubota and H. Sugita, Probabilistic Proof of Limit Theorems in Num-
ber Theory by means of Adeles, Kyushu J. Math., 56 (2002), 391–404.

[142] P. Kunth, Einige funktionalanalytische Aspekte in der Theorie der zahlen-
theoretischen Funktionen, Dissertation, Frankfurt, 1988.
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Ann. Sci. École Norm. Sup. (3), 62 (1945), 185–204; Groupe de Travail



416 W. Schwarz

en Théorie Analytique et Élémentaire des Nombres, 1987–1988, Publ.
Math. Orsay, 89–01, Univ. Paris XI, Orsay, 1989, pp. 49–64.

[182] J.-L. Mauclaire, Deux résultats de théorie probabiliste des nombres, C. R.
Acad. Sci. Paris Sér. I. Math., 311 (1990), 69–72.

[183] J.-L. Mauclaire, Measure theory and arithmetic functions, New Trends in
Prob. and Stat., 2, Palanga, 1991, VSP Utrecht, 1992, pp. 251–267.

[184] J.-L. Mauclaire, Some Results on Additive Arithmetical Functions with
Values in a Group, Anal. Probab. Methods Number Theory, (eds. A.
Dubickas et al.), 2002, TEV Vilnius, 200–220.

[185] J.-L. Mauclaire, On some multiplicative functions and vector spaces of
arithmetical functions, Ann. Univ. Sci. Budapest., Sect. Comp., 24
(2004), 29–68.

[186] T. Maxsein, W. Schwarz and P. Smith, An example for Gelfand’s theory
of commutative Banach algebras, Math. Slovaca, 41 (1991), 299–310.

[187] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Num-
ber Theory and Harmonic Analysis, Amer. Math. Soc., 1994.

[188] H. L. Montgomery and R. C. Vaughan, Exponential sums with multiplica-
tive coefficients, Inventiones Math., 43 (1977), 69–82.

[189] W. Narkiewicz, The Development of Prime Number Theory, Springer-
Verlag, 2000.

[190] J.-L. Nicolas, Sur la distribution des entiers ayant une quantité fixée de
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