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FUNCTIONAL LIMIT THEOREMS FOR
DIGITAL EXPANSIONS

M. DRMOTA, M. FUCHS (Vienna) and E. MANSTAVICIUS (Vilnius)*

Abstract. The main purpose of this paper is to discuss the asymptotic
behaviour of the difference sq,x (P(n)) —k(q—1)/2 where s, x(n) denotes the sum
of the first k digits in the g-ary digital expansion of n and P(z) is an integer
polynomial. We prove that this difference can be approximated by a Brownian
motion and obtain under special assumptions on P, a Strassen type version of the
law of the iterated logarithm. Furthermore, we extend these results to the joint
distribution of g;-ary and g»-ary digital expansions where q; and g2 are coprime.

1. Introduction

Let ¢ > 1 be a given integer. A real-valued function f defined on the
non-negative integers is said to be g-additive if f(0) =0 and

f(n) = Z flag;j(n)g’) for n= Z aq.;(n)g’

720 720

where a4j(n) € Eq:=1{0,1,...,¢—1}. A special ¢g-additive function is the

sum-of-digits function
sq(n) = Z“q,j(”)-
320

In order to keep notation as simple as possible on the one hand and to
make the ideas of the proofs as lucid as possible on the other hand, we are
mainly interested in the sum-of-digits function although all results of the
paper can immediatly be extended to more general g-additive functions. In
Section 6, we are going to outline the more general case.
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The statistical behaviour of the sum-of-digits function and more gener-
ally that of g-additive function has been very well studied by several authors
(compare with the references stated in [6]).

It is also very interesting to consider the partial sum-of-digits function

Sqk(n) = Z aq,j(n).

0<j<k

The sequence (sqx(n)) may be considered as an increasing random walk

k20
and really encodes the digital expansion of n.

Here and in what follows, we assume that every integer n € {0,1,2,...,
N — 1} is equally likely! i.e. we consider the probability space (No, P(Ny),
I/N) where P(Nj) denotes the powerset of Ny and vy is the probability
measure defined by

1
vN(A) := N#{O Sn<N|neA}, AeP(Ny).
On this probability space, we introduce the following stochastic process

X (8)(n) = (%/Z (sm(n) - tLq;—1>>
Oq

for t=14/L, i=0,...,[L] and by linearizing otherwise where L := L, :=

log, N and o4 := /(¢? — 1)/12.

Throughout the paper, we are mainly interested in stochastic processes
with continuous paths. If in the following the path is only defined on a finite
number of points in [0, 1] then we always use linear interpolation in order to
get a continuous function.

In [13] the third author has proved the following functional limit theorem:

THEOREM 1. We have, as N — oo,
Xn(t) = B(t)

where B(t) denotes the standard Brownian motion and weak convergence is
considered in the space C[0,1].

As an immediate corollary, we have

COROLLARY 1. We have, as N — oo,

Orgtagxl | Xn ()| — Orél%xl | B(t)|.

1We will also consider the first 7(N) primes p < N and assume that they are equally likely.
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Furthermore in [14], the third author continued his investigations started
in [13] and obtained for the partial sum-of-digits function a law of the iterated
logarithm. In order to state the result, we need a few more notation.

For processes Yy, k< my € Ng defined on some probability space
(Qn, Fn, Pn), we use the notation

YN,k = K (PN—a..S.)

if the following two relations hold:

lim limsupPN< max p(Yni, K) 2 6) =0

=0 N 00 z<k<mpy

and

xll}rglo l}\rfrl}oréfPN(ng;léI%N p(Yn i, X) < 6) =1
for arbitrary € > 0 and X € K. Here, as usual, p is the maximum norm,
p(X,A) =inf {p(X,Y) | Y € A}, and K denotes the Strassen’s set.

We define stochastic processes on (No, P(Ny), IJN) by

1 qg—1
S t = —th—
N’k( )(n) oqvV/ 2k loglog k (Sq’tk(n) 2 >

where t =i/k, i =0,...,k and k £ L. Then the third author has proved
in [14]:

THEOREM 2. We have
Sy =K (vn-a.s.).

The purpose of this paper is to generalize these properties to the partial
sum-of-digits function on polynomial sequences. The paper is organized as
follows: in Section 2 the results are stated, Section 3 is devoted to the proofs
of the functional limit theorems and these results are sharpened in Section 4
by showing convergence of all moments. In Section 5, we are concerned with
the functional version of the iterated logarithm law and in a final section, we
outline possible extensions of the results.
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2. Results

Our first result is a direct generalization of Theorem 1 to polynomial
sequences on integers and on primes.

Therefore let P(x) be a polynomial with integer coefficients, of degree r,
and positive leading term. Define stochastic processes by

Xn,pq(t)(n) :i= Xy p(t)(n) := Oqﬁ (sq,M(P(n)) — tqu;—1>
and
Yn,pq(t)(p) :== Yn,p(t)(p) := b <3q7trL(P(p)) — trLu)
oq\/ﬁ 2
where t =i/rL, i =0,...,[rL]. The only difference between Xy p and Yy p

is that the second process is defined on primes. With this notation, we have:
THEOREM 3. Let ¢ = 2 and P(x) an integer polynomial of degree r 2> 1
with positive leading term. Then, we have, as N — o0,
XNyp(t) — B(t)
and
YN,p(t) — B(t)
As above, we get as an corollary:

COROLLARY 2. We have, as N — o0,

Orgfmgxl ‘XNyp(t)‘ — Orgtamgxl ‘B(t)‘

and

Orgtagxl ‘YN,p(t)‘ — Oréltaéx1 ‘B(t)‘

It is also possible to sharpen Corollary 2 to convergence of moments.

THEOREM 4. Let ¢ = 2 and P(x) an integer polynomial of degree r 2> 1
with positive leading term. Then, for every integer k 21, we have, as
N — o0,

E( max ‘Xg\/,p(t)‘)lC — E( max ‘B(t)‘)k
0<t<1 0<t<1

and

E( max ‘YNyp(t)‘)k — E( max ‘B(t)‘)k
0<i<1 0<i<1
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This result is even of some interest if we consider just P(z) = x and
k=1. We have, as N — o0,

qg—1 2 J¢?2—1
Sq’k(n) —kT ~ \/; T logqN.

The above properties even generalize to the joint distribution of two dif-
ferent digital espansions.

1
N E max
<k<
neN O:k:logqN

THEOREM 5. Let q1,q2 = 2 be coprime and Py (z), Py(x) two integer poly-
nomials of degrees r1,m9 2 1 with positive leading terms. Then we have, as
N — oo,

(Xn,Prgr (t1), XN,p1go (B2)) = (Bi(th), Ba(t2))
and
(YN,PMIl(tl)aYN,P1,Q2(t2)) — (B1(t1),Bz(t2))

where (Bi(t1),Ba(t2)) denotes a Gaussian field consisting of two indepen-
dent Brownian motions.

COROLLARY 3. We have, as N — o0,

(03?’51‘ N,Pl,ql(tl)\,ogggl\ N,Pasge (t2)]

= ([ B ma |Ba(t)])

and

Y, Yy po o )
(Og}f"g{l‘ N,Pl,ql(tl)\,ogggl\ N,Poas (t2)]

(g, 1P g | et

As above it is possible to sharpen this corollary.

THEOREM 6. Let q1,q2 = 2 be coprime and Py (z), Py(x) two integer poly-
nomials of degrees r1,r9 2 1 with positive leading terms. Then for all integers
k1,ky 2 0 we have, as N — oo,

k1 ks
Og?‘gl ‘ N7P1,(I1 ( 1) ‘ Oglt?)g(l ‘ NaPZaq2 ( 2) ‘

k1 kz
—>E< max ‘B(tl)‘) ( max ‘B(tg)‘)
Ogtlgl 0§t2§1
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and

ky s
(s [V (0)]) (s [Virn(e)])
Ogt?)g(l | Y, Py (81))] o§?§1 | YN, Py g0 (£2)]

k;1 k?2
—>E( max ‘B(tl)‘) ( max ‘B(tz)‘) .
Ogtlgl Ogtzgl

Theorem 5 may be considered as a theoretical justification of the state-

ment that two g-ary digital expansions with coprime ¢ are (asymptotically)
independent.

Now, let us turn to the law of the iterated logarithm. Therefore, we
define for a polynomial P(z) with integer coefficients, of degree r and with
positive leading term, the following processes

SNk, Pq(t)(n) := Sn,p(t)(n) = m (Sq,tk(P(n)) - tkq;—l)

where t =i/k,i=0,...,k and kK < rL.
One might expect that these processes obey a law of the iterated loga-
rithm of the form given in Theorem 2. Although, we were not able to prove

this in general, we can state the following partial result towards a more gen-
eral result:

THEOREM 7. Let ¢ 2 2 and P(x) a polynomial with integer coefficients of
degree v 2 1 and positive leading term which is a permutation polynomial for

every power of q. Consider the processes Sy p introduced above for k < L.
Then, we have

SN,k,P =K (IJN—G,.S.).
We have the following easy consequence:
COROLLARY 4. With assumptions as in Theorem 7, we have
SNyk,p(l) - [—1, 1] (l/N—a.s.).
This result can also be extended to the joint distribution of ¢i-ary and
go-ary digital expansions.

We use the notation Iy = K x K for the two-dimensional Strassen’s set

and KCy for the set of all pairs (f1, f2), where f;, i = 1,2 are absolutely con-
tinuous functions on [0, 1] with f;(0) =0, 4 = 1,2 and

1
| i+ ot ast
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For two-dimensional processes (Yx k,, ZN k,), (k1,k2) € My € N2 defined on
some probability spaces (Qy, Fn, Py), we use the notation

(YN,k17 ZN,k2) - ’C (PN—H..S.)

(where K is either K1 or k) if the following two relations hold:

lim limsup P, ( max YNk ZNks), IC) 2= 5) =0
Z—00 N*)OOP N kl,k2§$,(k1,k2)€MNp(( Mok N,kZ) ) B
and
lim lim inf P ( min Y kes Znies)s (X1, Xo)) < 5) —1
Z—00 N—o0 N k1k22w,(k1,k2)EMN p(( Nk N7k2) = 2))

for arbitrary e > 0 and (X1, X3) € K. Here p denotes again the maximum
norm.

With this notation, we have the following result for the joint distribution
of gi-ary and g¢o-ary digital expansions:

THEOREM 8. Let q1,q2 = 2 and let Pi(z), i = 1,2, be two polynomials
with integer coefficients, degrees r; 2 1, 1= 1,2, and positive leading terms.
Furthermore, we assume that P;i(z) is a permutation polynomial for all pow-
ers of q;, 1=1,2.

(1) The processes (S gy, P qis SN ko, Paygs) With ki S Ly, and ko < Lg, sat-
isfy
(SN k1, Prgis SN o, Paygs) = K1 (Vv-a.s.).
(2) Let (qi,q2) =1. Then the processes (SN kP qi> SNk, Poygs) With k=
Ly, 4, satisfy
(SN;kvplvql’ SNak7P2aq2) == ,C2 (VN—(Z.S.).

Again, we have the following simple consequence:

COROLLARY 5. Suppose that the assumptions of Theorem 8 are satisfied.
Then, we have:
(1) The processes (SN k. P qis SN ks, Pargs) With ki < Ly, and ko < Lg, sat-
1sfy
(SN,kl,Pl,th(l)’ SN,kz,Pz,qz(l)) == [_L 1]2 (VN'G'S')'
(2) Let (q1,92) =1. Then the processes (SN k. Py qi» SNk Porgs) With k=
L, 4, satisfy

(SnkPra (1), SNgePogs (1) = {(z,9) |22 +y* £ 1} (vn-a.s.).
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3. Comparision of moments

Let ¢ > 1 be an integer and P(x) a polynomial with integer coefficients,
of degree r, and with a positive leading term. We consider the stochas-
tic processes Xy, p(t) and Yy p(t) introduced in Section 2 together with the
truncated versions

Xy p(t)(n) = gq\l/E( > (aq’j(P(n)) a q;—l> >

<5< T(1)

and

Hor0) = (3 (ana(P) - 157 )

1S5SJ(t)

where I = [(log N)"|, J(t) = min{[trLJ, |rL — (log N)"| }, t=1i/rL, i=
0,...,[rL], and 0 < n < 1/2 is an arbitrary real number. Since

~ 1
sup | Xn,p(t)(n) — Xn,p(t)(n)| < L"2
0<t<1

and

~ 1
sup |Yi.p(H)(p) = Yn.p(t)(p)| < L" 2,
0<t<1

we have, as N — o0,
XN,p(t) — XNyp(t) —0

and ~
YNyp(t) — YN,p(t) — 0.

Hence, it is enough to prove Theorem 2 for the truncated processes.
The following lemma is contained in [1].

LEMMA 1. Let A > 0 be a real constant, ki, ...,k integers with
(log N)" < kg <kg <---<kp <rL— (logN)"

and bj € E4, 1 < j < h. Then we have uniformly, as N — oo,
1 . 1 _
N#Hn < Nl ags (P) =4, 1<) Sh} = 5+ 007

and

%)#{p < N | agu, (P() =bj, 1S5 <h} = qih +O(L).

m(

We use this lemma to prove the following proposition.

Acta Mathematica Hungarica 98, 2003



FUNCTIONAL LIMIT THEOREMS 183

PROPOSITION 1. Let 0 Sty < ... <ty <1 be real numbers. Then for all
integers ly,...,lp = 1 we have, as N — 00,

EXyp(t)" - Xnp(tn)® = BB(t1)" - B(ty)"
and
EYn p(t)" - Yy p(ty)"™ — EB(t)" - B(t)"

PROOF. First of all, we observe that it is enough to show the convergence
of the mixed moments

EXyp(t)" (Xn.p(ta) — Xnp(t) - (Xnpltn) — Xnp(thoa))™

In order to demonstrate the ideas of the proof, we concentrate ourselves on
the special case h = 2 and [; = lo = 2. The general result follows in the same
manner.

We introduce the stochastic process

(3.1) Xn,p(ti)(n \/— Z Z b ( ag,;(P(n)) vb) - é)

j=I beE,

where 6(z,y) is the Kronecker function. It is clear that we have

| Xn,p(ti)(n) — Xn,p(t:)(n)| < L™
where the implied constant does not depend on n and therefore, it suffices

to show convergence of mixed moments for the stochastic process Xy p.
Next, we consider

EXy,p(t1)*(Xn,p(t2) — Xnp(t1))

= % Z XN,P(h)(n)?(XN,p(Q)(n) — XN,P(h)(n)) 2

- Y vy oy > Lot

Ji=1 jo=I jz=J(t1)+1 ja=J(t1)+1 b1€EE, b2€E,; b3s€E,; bick,

<7 3 (0000 (P) 1) = 2) (an (PO0) 02) - )

n<N

1 1

(8 (P) ) = 2 ) (e (P) 1) = 7).
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If we consider only the last sum, extract the product, use Corollary 1, and
write everything back then, we get, as N — oo,

EXn p(t)* (Xn,p(ts) — Xy p(t1))
= EZn(1)?*(Zn(t2) — Zn(01))* + O(L )

where A > 0 is an arbitrary real constant and the stochastic process Zy(t)
is defined as

ZN(t)::Uq\l/E( > (gj—q;—1>), te[0,1]

<5< T(1)

with an independent, identically distributed sequence of random variables ¢;
defined on some probability space by P(¢; =d) = ¢!, d € E,.
In the more general case, we would get

EXy,p(t)" (Xn,p(t2) — Xnp(t) - (Xnp(tn) — Xnp(tn-1)) "
= B2y (1) (Zn(t2) = Zy (1)) (Zn(t) = Zn(th-1) ™ + O(L7Y).
Because of the independence of ¢;, we have
EXyp(t)" (Xwp(ts) = Xnp(t) - (Xnp(t) = Xwp(tn 1)) ™
= BEZy (1) E(Zn(t) — Zn(t1)) 2 - E(Zn(th) — Zu(th1)) ™ + OL ).

Now we apply Donsker’s theorem on the stochastic process Zy(t) and hence,
as N — 0o, Zn(t) — B(t) and especially

ZN(ti) — ZN(ti—l) — B(tz) — B(ti_l), 1 é ) é h, ty=0.

Moreover, using the inequality,

B|Zn(t) — Zn(ti)| " < LH2(a (k) = J (1) T

X Z E

J(ti—1)<g<J(t:)

where k£ = 2, we get

E(Zn(t:) — Zn(tis))" = B(B(t;) — B(ti_1))"

which together with the above result shows the first part. The second part
is proved similarly. O

Acta Mathematica Hungarica 98, 2003



FUNCTIONAL LIMIT THEOREMS 185

This proposition together with the Frechet—Shohat Theorem implies that,
as N — oo,

(XNyp(tl), . 7XN,P(th)) — (B(tl), ... ,B(th))

and
(YNyp(tl), - 7YN,P(th)) — (B(tl), - ,B(th)) .
The next step is a tightness inequality.

PROPOSITION 2. For every even integer | 2 0 there exists a positive real
constant C such that for all N and all 0 < s,t < 1, we have

E|Xyp(s) — Xnp(t)]' < Cls -t/

resp.
> 5 !
E|Yy p(s) = Yy p(t)] <Cls — t|l/2.

PROOF. First of all it is an easy exercise to show that it is sufficient to
prove the assertion for 0 < s,t < 1 with sL,tL € Z. Furthermore, we can
assume without loss of generality that s > ¢.

Repeating the first part of the proof of Proposition 1 together with a
more careful look at the involved error term implies

E(Xy,p(s) —XN,p(t))l =E(Zn(s) — ZN(t))l +O((s— )L™

where A > 0 is an arbitrary real number and the stochastic process Zy(t) is
defined as in the proof of Proposition 1.

Next, we apply to E( Zy (s) — Zn(t)) ' the same inequality as in the proof
of Proposition 1 and hence

E(Xyp(s) — Xnpt) < (s =)+ (s — ) < (s — 1)/

which is the claimed result. The proof of the second part is similar. [

The tightness inequality and the remark above together with Prokhorov’s
Theorem implies the convergence of the process Xy p resp. Yy p to the Brow-
nian motion. Hence, the untruncated process Xy p resp. Yy p also converges
to the Brownian motion and Theorem 2 is proved.

Let 1,92 > 1 be coprime integers and P;(z), P2(x) be polynomials with
integer coefficients, of degrees 1,79, and with positive leading terms. We
define the two dimensional processes

Xnp,qti,t2) = (Xn,p g (t1), XN, Py g (t2))
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and

Ynpqt,t2) = (YNpq(t), YN, P (t2)),

and their truncated versions

Xnpa(tt te) = (Xnprg (01), XN,ps 0 (t2))
and

Ynpqltist2) = (Yn,rog (t), Y p g (t2))
where P = (P, P») and q = (q1,¢2). It is easy to see that

- 1
sup || Xn,p,q(t1,t2)(n) — Xnp,q(t1, t2)(n)|| < L2
0§t1,t2§1

and

=, _1
sup || Yn,p,q(t1,12)(p) — YN pq(t t2)(p)|| < L2
Ogtl,t2§1

because we know that this is true for each component. Therefore, we have,
as N — oo,

Xyp.qg(ts,t2) — Xnpgl(ti,ta) =0
and
Ynpqlti,te) — YNpg(t,t2) =0

and it is again enough to consider the truncated processes.
For the proof of Theorem 3, we proceed as in the proof of Theorem 2.
First of all, we need a result which is contained in [6] and [8].

LEMMA 2. Let A > 0 be a real constant, kgi),...,k,(f), 1= 1,2 integers
with

(log N)" < b\ < rilog, N — (logN)" (1<j<h, i=1,2)

and bg-i) € Ey, 1< h,i=1,2. Then we have uniformly, as N — oo,

—#{n<N\ 0 (Pim) =0, 1S5 < by i=1,2}

—H S < N a0 (Pm) =80, 125 < b} + 0L
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and
1 .
W(N)#{p S N| “qi,k;.i)(Pi(p)) =b), 1<j<n i=1,2}
L i . _
=11 W(N)#{p SN a, k0 (Fi(p)) = B 1< i <h}+ oL,
=1

We use this lemma to prove the following proposition.

PROPOSITION 3. Let 0 < tgi) <...<t® <1, i =1,2 be real numbers.

- ] h
Then, for all integers lgz), . ,lg), 1 = 1,2 and real constants A > 0 we have,
as N — oo,
S O R @\l
EHXN,Piyqz'(tl ) ”'XN:PiaQi(th )
=1
Tex AL O i\
= [[BXnpa(B7) - Xnpg ()" + 0L
=1

and

2 i G
EH Y/N,Pi,(h' (tgi))lg) T YN,Pi,(Ji (ti(;))lg)

=1

2
= H E?Nypiaqi (th))
1=1

lgl) l(l)

o Vpg (B0 + 0L,

PROOF. The proof is very similar to the proof of Corollary 2 in [6] and
therefore we omit it. g

This proposition together with Proposition 1 and the Frechet—Shohat
Theorem shows that the first assertion in Prokhorov’s Theorem for the pro-

cess XN p,q resp. Y N,P,q is fulfilled. For the second assertion in Prokhorov’s
Theorem, we need again a tightness inequality (see [16] p. 473).

PROPOSITION 4. For every even integer | 2 0 there exists a positive real
constant C such that for oll N and all 0 < 81, 82,t1,t2 < 1 we have

E||Xnpq(si,s2) — XN,P,q(tl,tz)Hl < O (s1,52) — (thtz)Hl/z
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resp.
EH?N,P,q(81,82) - YN,P,q(tl,h)Hl < CH (s1,82) — (t1,t2)Hl/2-
PROOF. First of all, we consider
E| X N,p,q(51,52) — XN,P,q(tlatZ)Hl

< B max {| Xy,pya (1) = Zn.prn ()] | Xo,pos(92) = K (12)]'})
< max {B| Xn.p 0 (51) = Xn,prg ()] B] X, prga (52) — Xnv,poge (t2)] '}
Now, we use Proposition 2 and hence

E||Xnpq(s1,80) — Xnpglts, )| < max {|s1 — 1]/, |so — t2]/?}

< H (31,32) — (tl,tz)Hl/z.

The second part is proved similarly. O

Now, Theorem 3 is a consequence of Prokhorov’s Theorem.

4. Proof of Theorem 4

Obviously, it suffices to prove that for every k = 0

k
(4.1) B( max | Xn.p(t)]) =0(1)
and
(42) B( max [¥vr(0)]) = 0(0)

as N — oo. In a first step, we prove corresponding properties for the trun-
cated processes Xy p(t) and Y p(t). In order to shorten our presentation,
we will only discuss the process Xy p(t).

LEMMA 3. For every integer d > 0 there exists a constant K > 0 such
that fore >0 and 0 <6 <1

5d7 1

v max X s)— X t Za)SK__
N(Ogs,tgl, |S—t‘§(5‘ N7P( ) N,P( )‘ = > €2d
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PROOF. This property is an immediate consequence of the tightness es-
timate (of Proposition 2) combined with the arguments of 2, p. 95]. O

LEMMA 4. For every k we have uniformly for 0 < § <1

k
X - X _ o(5k-2)/2
B(,., mox [ Xnr) - Xar@)]) = 05 25).

PROOF. Set

ZN = max X s)— X t)].
N 0§S,t§1, ‘S*t|§(5‘ N7P( ) N7P( )‘

Furthermore, assume that 2d > k. Then it follows that

EZk = k/ KN (Z > 2)dz
0

(K§)/? 00
= k/ K un(Z > 2)dz + k/ KN (Z > 2) dz
0 (K6§)/?

g (K(S)k/2 + kK&d*l /OO s Zk;flf2ddz < 5(/672)/2
(F) -

which proves the lemma. Il

Now observe that the trivial relation

Orgf‘gxl | Xn,p(t)| £ | Xn,p(0)] + ogs,tgl??\);—qg | Xn,p(s) — Xn,p(t)]
- max | Xn.p(s) — Xn,p(t)]

0<s,t<1, |s—t|S1

combined with Lemma 4 (applied for § = 1) directly gives

(4.3) B( wax | Xnr(0)]) = 000),

as N — oo.
In the second step, we compare the moments of max‘X Nyp(t)‘ and

max‘)z' Nyp(t)‘. For this purpose, we make use of the following property
of moments.
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LEMMA 5. Suppose that U, V are real valued non-negative random vari-
ables satisfying U — V| < e (for some € > 0). Then the k-th moment of U
exists if and only if the k-th moment of V ewists. More precisely, we have

k
k
(4.4) EVF <) ( g) et BUF
£=0
PROOF. It is of course sufficient to prove (4.4). Therefore notice

EVF—E|V -U+U/" <E(|V-U|+|U))"

and the result follows immediately by the binomial theorem. O

Now, we are ready to complete the proof of Theorem 4. Set

U := Orgéa,gxl ‘XNyp(t)‘ and V.= Orgtagxl ‘XNyp(t)‘.

From

max ‘XN,p(t) — XNyp(t)‘ < Lnié,
0<t<1

it follows |U — V| < L”fé, too, and thus we can combine (4.4) and Lemma 5
to prove (4.1).

As already mentioned the proof of (4.2) is completely the same. Further-
more, it is now an easy exercise to extend the above considerations to the
joint case leading to a proof of Theorem 6.

5. The law of the iterated logarithm

Let ¢ > 1 and P(z) a polynomial with integer coefficients, of degree r,
and with positive leading term.

First of all, we summarize a few well-known facts about permutation
polynomials:

LEMMA 6. P(z) is a permutation polynomial for each power of q if and
only if P(zx) is a permutation polynomial for q?. Especially, there are in-
finitely many polynomials P(x) with integer coefficients and positive leading
terms which are permutation polynomials for each power of q.

PROOF. See for instance [15]. O

In order to prove Theorem 7, we follow the approach developed by the
third author in [14] and therefore, we have to extend the so called funda-
mental lemma of [13].
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LEMMA 7. Let P(x) be a permutation polynomial for each power of q.
Then there is a sequence of independent and identically distributed random
variables (§5) o< <y, defined on some probability space (Qn, Fn, Pn) such that

k k41
B0 oloaa(pon) €)= by (g e ) + 20
=0

where k < L and |0] < 1 and
L

(52) o (san(P0) € 4) Sap (L € 4)
j=0

where A is an arbitrary subset of R.

PROOF. For the proof, we first of all introduce some notation. For b;
€EE,(0Sj<k, k<L), weset

B(bg, ..., by) = {n € No| ag;j(P(n)) =b;, 0 <5 <k}
Furthermore, set {2y := Ny and consider the o-algebra Fy generated by
{neNg|ag;(P(n) =b;}, bjeE, 0<j<L.

It is easy to see that each C' € F has a unique representation of the form

(5.3) c= |J  Blo....b)

(boy-br)EELT!

where the sum is extended over a subset of E(f“. We define
1 I

(boyeesbr)EEET!

On this probability space, we introduce a sequence of random variables (;),
0 < 5 £ L defined by

&j(n) == aq;(P(n)), 0=j<L.

It follows
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moreover
1
Py (&) = by, & = biy) = i Py (&, = biy) -+ Pn(&; = bij)

where 0 < iy <...<i; = L and b;,...,b;; € E;. Therefore the sequence
(&), 0 = j < L is independent and identically distributed.

It is clear that the set {sq,k (P(n)) € A} is contained in Fy for all k < L
and all subsets A of R. Moreover, this set can be written in the form

{sor(P) €A=" |J Blbo.....bx)

(bo,...,bk,)EEl;-‘rl

where the sum is extended over a certain subset of Ef;“. Next, we compute

v (ser(P) € )= 3" wn(Blbo.... b))

(bo,...,bk)€E5+1

' N 1 ' 20¢k+1
= 1

Z \‘q J + 1 + N
(bOa"'ybk)EE§+1 (bOa"'ybk)eE§+1

2|

where 0 € {0,1} and |#| < 1. If we replace each (k + 1)-tuple in the last sum
by (bo, ..., bk, bkt1,...,br) where bj, k < j < L runs through all elements of

E, and replace the factor 1/¢**! by 1/¢“*! then we do not change the value
of the sum. Hence (5.1) follows.
For the second part, we again have

{sqr(P) €at= | Blo,-....br)

(boye-br)EEET!

where the sum is extended over a subset of EqL“. We consider

VN(Sq,L(P(n)) S A) = ZI VN(B(bo,...,bL))

(b0, )EELT!

1 1 !
v X s X

(bos--br)EEET! (boyeenbr)EEET!

A
A

and the definition of Py implies (5.2). O
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To obtain Theorem 7, we can now proceed as in [14]. Therefore, we give
only a sketch of the proof.

ProOF OoF THEOREM 7. We consider the stochastic processes Sy p to-
gether with the truncated versions

gN,k,P(t)(n) = m< Z (aq’j(P(n)) B q;—1> >

FSI()

where J(t) = min{tk,L - (logN)"}, t=1i/k,i=0,...,k, and n > 0. Fur-
thermore, we define

1 qg—1 . .
Typlt) = —— TN ik i=0,.. .k
) = = nglogk(%(@ ) =i

for k £ L where the sequence ¢; is the one from the fundamental lemma and
we consider again the truncated versions

~ 1 qg—1 . .
Inp(t) = ———— - — t=1/k, 1=0,...,k
N:k() o, 2k10g10gk( Z <§] 9 >>’ Z/ y b ) )

FSI(1)

of these processes. First of all (5.2) and Kolmogorov’s inequality imply

(5.4) IJN( max p(SN,kyp, S’N,kyp) z 6) = 0(1)
z<k<L
for all € > 0 and therefore we need to prove Theorem 7 only for the truncated

processes.
By (5.1), we have

S >e) = 7 > -
VN(wglkagL p(SNk,p, K) 2 6) PN(II;?;L p(Zn g, K) 2 6) +O(L™)

and

. ~ — . nd _77
VN(mIEI}ClgL,O(SNyk,p,X) < 6) PN( g}clng(ZN’k’X) < E) +O(L™)

x

where £ > 0 and X € K. Hence it is enough to prove the theorem for the

processes Zy .
Using Kolmogorov’s inequality once more, we get

(5.5) VN( max p(Zy g Zng) 2 5) =o(1)
xSk<L
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where € > 0 and hence it is sufficient to show the theorem for the processes
Zn k- But for this processes the theorem is valid by the classical theory. (|

The next aim is the proof of Theorem 8. Therefore let ¢1,99 > 1 be
integers and Pj(z), P»(z) polynomials with integer coefficients, of degrees
r1,79 2 1 and with positive leading terms.

First we show that part (1) of Theorem 8 is a consequence of Theorem 7.
We use the following simple result:

LEMMA 8. Let fi1, fa be continuous functions on [0,1] and S1, Sy subsets
of C[0,1]. Then there is a constant C > 0 depending only on the involved
norm such that we have

p((f1,f2), 51 x S2) < Cp(f1,51) + Cp(f2,S2).

PROOF. First, we consider the case S; = {¢g1} and S2 = {g2}. We have

p((f1,f2), (91,92)) = max_||(fi(t1) — g1(tr), fa(t2) — g2(t2)) ||

Ogtl,tzgl

<0 max_ (max{| fi(tr) — g1(01)],] folts) — 2(02)| })

Ogtl,tzgl

< Oogrgifg(\fl(tl) —g1(t)] + | falt2) — ga(t2)] )

< Co(f1,91) + Cp(f2, 92)-

The general case follows from the definition of p(( f1, f2), 51 % Sz) resp.
o(fi,Si),i=12. O

The proof of part (1) of Theorem 8 runs as follows:

PROOF OF THEOREM 8(1). Observe that Lemma 8 implies

VN( max P((SN o, Progrs SN o Pangs)s K1) 2 5)
kikaZa, k1SLqy, k2SLgy

= s K) 2 £/0)
= VN((mgrlgaé)iql P(SN k1,P1,a1, K) 2 €/

>
U ( mgrlga'g}iw p(SN;k27P2,q27 ,C) = 5/0))
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and

v min S SN ko Poas )y (X1, X <€)
N<k1,k2§$, klqul,bqugp(( N,k1,P1,q15 N;k27P2aQZ)7( 15 2))

> i S X 0)
Z VN ((mggjlgnlqu P(SN k1, Prg, X1) <€/

ﬂ(mgggllgnLq2 P(SN ks, Poges X2) < €/C )

By using the simple facts
I/N(A1 U AQ) é I/N(Al) + I/N(Ag)
and
I/N(A1 N Ag) > I/N(Al) + I/N(Ag) -1

where Aj, As are arbitrary subsets of N the result follows. O

For the proof of the second part of Theorem 8, we prove a two dimen-
sional version of the fundamental lemma. (Till the end of the section, we use
the notation L := Ly, 4,.)

LEMMA 9. Let (q1,q2) =1 and let Pi(z) be permutation polynomials for
each power of q;, 1 =1,2. Then there are independent random wvariables
(fj)ongL, (nj)ongL where the & resp. n; are identically distributed defined
on some probability space (Qn, Fn,Py) such that we have

(5.6) vn (5404 (P1(n)) 50, (Pa(n))) € 4)

k k+1
:pN<Z(§j7nj) c A) +%
j=0

where k < L and |0] < 1 and

51) ox (st (Pr(0) s (Pa) € 1) = araer

J

L

(fj’nj) € A)
=0
where A is an arbitrary subset of R?.
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PrOOF. We are going to use the following notation. Let bg-i), 055 <k,
1= 1,2 with bg-i) € K, be given. Then, we write

1 1), (2 2
B(Y,... .66 b))

= {n €Ny |ag;(Pn) =b", 0<j <k, i=12}.

We define Qp := Ng and consider the o-algebra Fx generated by
{neNo|ag;(Pi(n) =b;}, b €By, 0Zj<Li=12
As in the proof of Lemma 7 each C' € Fx has a unique representation of the
form
! 1 1), (2 2
C = U B(,... .06 b))
(05,0 eEETY i=1,2

where the sum is extended over a subset of Equ“ X EqL;“l. Therefore we
define Py by

Py(C) = ﬁ 3 1.

192 ; .
(g (b(()l),...,bZL)EEqL(z')l, i=1,2

On this propability space, we consider the random variables
&i(n) = ag,j(Pi(n)), 0<j<L

and
nj(n) := ag, ;(Pa(n)), 0<j <L

As in the proof of Lemma 7 it follows that the random variables are inde-
pendent and the £; resp. n; are identically distributed with

1 1
PN(fj = b) = q—l, be qu, and PN(T]j = b) = q—z, be EQQ.

If we write

{(Sql,k(Pl (1)), s (P2(n))) € A}

! 1 1 2 2
= U B, ..., b))
(657 ) e Bl =12
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where the sum is extended over a suitable subset of E,’;l+ Ly E,’;j 1 and note
that because of the Chinese remainder theorem

UN(B(bgU,...,b,gl>;bg2>,...,b§>)) = % Q(LWJ +5>

q9192)
where 6 € {0,1}, then (5.6) and (5.7) follow in a similar way as in the proof
of Lemma 7. (|

With this lemma we can reduce the proof of part (2) of Theorem 8 to
the case of independent and identically distributed random variables.

PROOF OF THEOREM 8(2). We introduce the notations

SNyk,qu = (SNyk;P17q17 Sva:P27q2)

and
SNkP.q = (SNkPyais SNk,Pgs)

where P := (P, ), q := (¢1,¢2) and Sy k. p, q, is the truncated process de-
fined in the proof of the first part of Theorem 8.

We also consider the processes Zp j(t) resp. Zn (t) defined in the proof
of Theorem 8 for the random variables £; of the fundamental lemma and

denote by Wi 4 (t) resp. Wy x(t) the corresponding processes for the random
variables 7; of the fundamental lemma. Furthermore, we set

Zni(t) == (Zni(t), Wa k()

and
Zyi(t) = (Znp(t), Wi i(t)) .

First of all, we can conclude from Lemma 8 that

vy| max p(S S > 5)
N(l‘<k§Lp( N.k,P,q> N,k,P,q) =

S v <<;§sz PSN k. Prans Snkpiar) 2 /C)

U(:z:glkang p(SN,hPLQm SN,k7P2,tI2) = 5/0) > .

By combining this with (5.4) it follows that it is enough to prove the theorem
for the truncated processes.
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Now, the fundamental lemma implies

S >e) = 7 > -
VN(;;/?%(LP(SN,k,P,qJCZ) Z 6) PN(II;?;LP(ZN,IC,’CZ) Z 6) +O(L™")

and

m (S X, X )
I/N(IIEI}CISLP(SN,k,P,qa( 1, X7)) <e

= PN(;gr}cing(ZN’k’ (Xl,Xz)) < 6) + O(Lfn)

where ¢ > 0 and (X1, X2) € Ky. Therefore it is sufficient to prove the iterated
logarithm law of the form given in Theorem 8(2) for the processes Zy .

Using once more Lemma 8 together with (5.5), we can further reduce the
proof to the processes Zy ;. But for these processes Theorem 8(2) is true by
the classical law of iterated logarithm due to Strassen (see [18]). O

6. Generalizations

In this section we shortly outline generalizations of the results of the pa-
per to more general g-additive functions. We only state a possible extension
of Theorem 3, all other theorems can be extended in a similar way.

We consider a sequence of g-additive functions

(6.1) fn(n) =" fni(ag;(n))

i20

where fyj(a), N 21, j 20, a € E,, is a family of real numbers with the
property fn j(0) =0 for all N and j. Using partial sums of (6.1), we con-
struct a model of the Brownian motion generalizing that given in Theorem 3.
Our result is an analogue of Theorem 5.2 in [13].

In order to state the result, we need some notation. Set

_ 141 140
frgla) = fvgla) = =Y a0, ony ==Y faie)
q b=0 q a=0

2 _ 2 2 _ 2
BN,k = E ON,j» By = BN,rL
j<k
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where r 2 1. With
y(t) == yn(t) = max {k : B]2\7,k <tB%}, 0<t<1,

we can formulate the following generalization of Theorem 3.

THEOREM 9. Let ¢ = 2 and P(x) an integer polynomial of degree r > 1
with positive leading term. If the sequence of additive functions fn satisfies
the following conditions, as N — oo,

(6.2) max gé%);\fzv,j(a)\ = o(1),

63) S el @) = o)
J<(0g N)" or
rL—(log N)"<j<rL

where n > 0, and
(6.4) By =14+ 0(1),

then the process

Hyp(t)(n):= > fvilag;(P(n)))

JSy(t)

(where t is a point of discontinuity of the function y(t)) weakly converges to
the Brownian motion.

PROOF. Let £x.,1 = N, j < rL be independent random variables for each
fixed N given by

_ 1
P(énj = fn,(a) = pt a=0,1,...,9—1

and

ZN(t): Z f]v,j, Oétél.
i<y(t)
According to a well known result of Prokhorov (and by the assumptions of
Theorem 9) Zx weakly converges to the Brownian motion. By using this re-

sult instead of Donsker’s theorem and the method of the proof of Theorem 3,
we immediately obtain the result. O
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REMARK 1. Condition (6.2) actually means infinitesimality of the sum-
mands. However, one cannot expect much more by using Lindeberg’s con-
dition instead of it (see the comments in [13]). Condition (6.3) is needed to
deal with polynomials while (6.4) comes from Prokhorov’s paper.

REMARK 2. As already mentioned, Theorem 9 is a generalization of The-
orem 3. We only have to set

1
n) = ———=s,(n).
fN( ) Oq\/E l]( )
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