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1. Introduction

The most of investigations in probabilistic number theory is devoted to the conver-
gence of distributions generated by arithmetic functions. The purpose of the present paper
is to cal one’s attention to analogues of probability theorems formulated in terms of event
occurence with probability of one (almost sure occurence). Among the results we can
reckon only proposition 6 from P. Erdös’ paper [1] and theorem 7.2 J. Kubilius’ mono-
graph [2]. More systematic investigations can be found in our papers [3–6] and in short
communications [7–11].

Our interest is attached to additive function h : IN → IR as well as to sequence{
hk(m)

def
=
∑
p≤k

h(p)(m); k ≥ 2

}

where h(p)(m) = h(pα) if pα∥m and h(p)(m) = 0 otherwise. Here and in the following
p stands for a prime number, α ∈ IN . Put νn(. . .) = n−1#{m ≤ n; . . .} . Denote
u∗ = sgnu if |u | ≥ 1 and u∗ = u , if |u | < 1 . Let ζp be independent random variables
getting values h(p) and 0 with probabilities 1

p and 1− 1
p respectively. The constants in

the symbol ≪ are considered to be absolute.
All the proofs given below are based on a tuncation procedure and the following

lemmas.

Lemma 1. Let r = r(n) → ∞ , log r = o(log n) when n → ∞ and Pi ⊂ {p; p ≤ r} ,
i = 1, . . . , s . Then uniformly in IB ⊂ IRs and s ≥ 1

νn

(( ∑
p|m, p∈P1

h(p), . . . ,
∑

p|m, p∈Ps

h(p)

)
∈ IB

)
= P

(( ∑
p∈P1

ζp, . . . ,
∑
p∈Ps

ζp

)
∈ IB

)
+o(1)

as n → ∞ .

The proposition represents one of the versions of the Kubilius Fundamental lemma
[2].
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Lemma 2. Let p1, . . . , pM be any rearrangement of the primes up to n , M = π(n) .
For arbitrary constants c1 ≥ c2 ≥ . . . ≥ cM > 0 , u > 0 and 0 < M1 ≤ M we have

νn

(
max

M1≤k≤M
ck

∣∣∣∣∑
i≤k

h(pi)(m)−
∑
i≤k

h(pi)

pi

∣∣∣∣ ≥ u

)
≪

≪ u−2

(
c2M1

∑
i≤M1

h2(pi)

pi
+

∑
M1<i≤M

c2ih
2(pi)

pi

)
.

The inequality is an easy modification of theorem 4.1 from I. Z. Ruzsa’s preprint [12].

2. A new form of the Erdös–Wintner theorem

As we have noted in paper [3] the celebrated Erdös–Wintner theorem [13] has another
form.

Theorem 2.1 ([3]). The following propositions are equivalent:
(I) for every ε > 0

a(ε)
def
= lim

n1→∞
lim sup
n→∞

νn

(
max

n1≤k≤n
|h(m)− hk(m)| ≥ ε

)
= 0 ;

(II) series ∑
p

h∗(p)

p
,

∑
p

h∗2

(p)

p

converge.

Arguments form the proof of theorem 2.2 below can be repeated to show us that
always a(ε) = 0 or a(ε) = 1 (the zero–one law). Therefore proposition (I) can be used
to determine convergence of hk(m) to h(m) ”for almost all m ” when k → ∞ . In the
following we shall use a more general definition.

Definition. Let bk , akn ∈ IR , bk > 0 . We say that bk
(
h(m)− hk(m)− akn

)
tends

to zero almost everywhere if for every ε > 0

lim
n1→∞

lim sup
n→∞

νn

(
max

n1≤k≤n
bk|h(m)− hk(m)− akn| ≥ ε

)
= 0 .

For the sake of convenience the last statement we express as

bk
(
h(m)− hk(m)− akn

)
⇒ 0 a.e.

This new definition enables us to estimate the convergence rate of hk(m) to h(m)
a.e. At first, we point out a fairly simple approach.
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Let bk ↑ ∞ as k → ∞ . According to theorem 2.1 convergence of series

(1)
∑
p

(
bph(p)

)∗
p

,
∑
p

(
bph(p)

)∗2

p

yields

gk(m)
def
=

∑
k<p≤n

bp h
(p)(m) ⇒ 0 a.e.

Now by the Abel summation due to monotonicity of bk we come to inequality

bk

∣∣∣∣ ∑
k<p≤n

h(p)(m)

∣∣∣∣ ≤ 2 max
k≤l≤n

|gl(m)| .

So from the convergence of series (1) we obtain

(2) bk
(
h(m)− hk(m)

)
⇒ 0 a.e.

When only the second of series (1) converges one must use centralizing sequences. But
such approach does not yield the exact order of the convergence rate. For some classes of
functions h(m) it can be found by use of corresponding results of probability theory.

Put for the sake of brevity Lu = logmax{e, u} ,

A(k) =
∑
p≤k

h(p)

p
, B2(k) =

∑
p≤k

h2(p)

p
, U2

k =
∑
p>k

h2(p)

p
,

Akn = A(n)−A(k) , v2k = 2LLU2
k , Rkn(m) = U−1

k v−1
k

(
h(m)− hk(m)−Akn

)
.

Theorem 2.2 Let un > 0 for every n ∈ IN . Suppose that for n → ∞ and some
sequence r = r(n) , log r = o(log n) , we have

ρn
def
=

∑
r<p≤n

h2(p)

pU2
p

= o(v2r)

and Un → 0 . If h(p) = o
(
Upv

−1
p

)
as p → ∞ then for every ε > 0

(3) lim
n1→∞

lim sup
n→∞

νn
(

max
n1≤k≤n

|Rkn(m)| ≥ 1 + ε
)
= 0

and for every a ∈ [−1, 1]

(4) lim
n1→∞

lim inf
n→∞

νn
(

min
n1≤k≤n

|Rkn(m)− a| ≤ ε
)
= 1 .
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Consequently, under the conditions of theorem 2.2 we have the exact order of the
convergence rate as well as the cluster set of sequence {Rkn(m)} . We can say that the
last one coinsides with interval [-1,1] a.e.

Proof of Theorem 2.2. As in convergence (2) values h(pα) for α ≥ 2 have no influence
on the final result. In fact, for every δ > 0

νn

(
max

n1≤k≤n

∑
k<p≤n, α≥2

pα∥m

(∣∣h(pα)∣∣+ |h(p)|
)
≥ δ

)
≤

≤ νn
(
m; ∃ pα∥m, α ≥ 2, n1 ≤ p ≤ n

)
≪

∑
n1≤p≤n

p−2 = o(1)

when n → ∞ and n1 → ∞ . Therefore in the following we consider only the case when
h(pα) = h(p) for every α ≥ 1 and p .

Let ν1 and ν2 be frequences in equalities (3) and (4) respectively. From lemma 2
with reverse rearragement of primes n1 < p ≤ n we have

∆n(δ)
def
= νn

(
max

r<k≤n
|Rkn(m)| ≥ δ

)
≪ ρn

δ2v2r
= o(1)

as n → ∞ . Whence

(5)

ν1 ≤ νn

(
max

n1≤k≤r
|Rkn(m)| ≥ 1 + ε

)
+∆n(1 + ε) ≤

≤ νn

(
max

n1≤k≤r
|hr(m)− hk(m)−Akr|U−1

k v−1
k ≥ 1 +

ε

2

)
+

+
(
∆n

(ε
2

)
+ o(1)

)
def
= v′1 + o(1), n → ∞ .

Setting Sk =
∑
p≥k

ζ̄p from lemma 1 we obtain

v′1 = P
(

max
n1≤k≤r

|Sk − Sr|U−1
k v−1

k ≥ 1 +
ε

2

)
+ o(1) ≤

≤ P
(
sup
k≥n1

|Sk |U−1
k v−1

k ≥ 1 +
ε

4

)
+

+

(
P
(
|Sr | ≥

εUrvr
4

)
+ o(1)

)
def
= Pn1 + o(1), n → ∞.

Now by use of theorem 2 [14] we conclude that Pn1 = o(1) when n1 → ∞ . This, via
inequality (5), proves the first part of our theorem.
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Similarly, according to lemma 1 and the theorem used

ν2 ≥ νn

(
min

n1≤k≤r
|Rkn(m)− a| ≤ ε

)
≥

≥ νn

(
min

n1≤k≤r

∣∣∣hr(m)− hk(m)−Akr

Ukvk
− a
∣∣∣ ≤ ε

2

)
−∆n

(ε
2

)
=

= P
(

min
n1≤k≤r

∣∣(Sk − Sr)U
−1
k v−1

k − a
∣∣ ≤ ε

2

)
+ o(1) ≥

≥ P
(

inf
k≥n1

∣∣SkU
−1
k v−1

k − a
∣∣ ≤ ε

4

)
+ o(1)

when n → ∞ for every fixed n1 ≥ 2 . Theorem 2.2 is proved.

Equality (4) can be strengthenden to

lim
n→∞

νn

(
min

n1≤k≤n
|Rkn(m)− a| ≤ ε

)
= 1

for every n1 ≥ 2 as we have seen for strongly additive functions. Is it possible to prove
proposition (3) with ε = 0 ?

3. An analogue of the Feller theorem

Now we shall consider the exact growth order of the sequence {hk(m)−A(k); k ≥ 2}
a.e. At first for the comparison we quote an analogue of the Kolmogorov law of the iterated
logarithm in the so–called Strassen’s formulattion.

Theorem 3.1 ([4]). Let βn
def
= B(n)

√
2LLB(n) → ∞ and

max
p≤n

|h(p)| = O

(
B(n)√
LLB(n)

)
as n → ∞ . Then for every ε > 0

lim
n1→∞

lim sup
n→∞

νn

(
max

n1≤k≤n
β−1
k |hk(m)−A(k)| ≥ 1 + ε

)
= 0

and for every a ∈ [−1, 1]

lim
n1→∞

lim inf
n→∞

νn

(
min

n1≤k≤n

∣∣β−1
k

(
hk(m)−A(k)

)
− a
∣∣ ≤ ε

)
= 1 .

So in this case we can say that infinitely often (i.o.) for almost all (a.e.) m inequalities

(1− ε)βk ≤ hk(m)−A(k) ≤ (1 + ε)βk
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are satisfied. Term ε βk can be improved by use of W. Feller’s paper [15]. Not trying to
change its style we use normalizations

bk
def
= dk

(∑
p≤k

E ζ̄ 2
p

)1/2

= dk

(∑
p≤k

h2(p)

p

(
1− 1

p

))1/2

def
= dk D(k)

in the place of βk . Here dk stands for a monotonically increasing to infinity sequence
which would be determined. Moreover, avoiding too cumbersome conditions in this para-
graph we confine ourselves to strongly additive functions satisfying

(6) |h(p)| ≤ λpD(p) ↑ ∞

with λp ↓ 0 when p → ∞ .

Let us define some quantities frequently used in the large deviation theorems. Define,
in a formal way, coefficients Γpl by

log

[∏
q≤p

(
1 +

exp{th(q)} − 1

q

)
exp

{
− th(q)

q

}]
=

∞∑
l=2

Γpl t
l

l!
.

Here q denotes a prime number, t ∈ IR . For |x |λp ≤ 1
12 under condition (6) equation

∑
l=2

Γpl t
l−1

(l − 1)!
= xD(p)

has a unique solution, say t = t(x) . Let Qp(x) be the function defined by

x2 +
(
1 +Qp(x)

)
= 2

∞∑
l=2

Γpl
l − 1

l!
tl .

Function Qp(x) is analytic for |x |λp < 1
12 and for the coefficients of the expansion

Qp(x) =

∞∑
l=1

apl x
l =

1

3D3(p)

∑
q≤p

h3(q)

q

(
1− 3

q
+

2

q2

)
x+ . . .

estimates ∣∣apl| ≤ (12λp

)l
7

, l = 1, 2, . . .

are known (s.f. [15]).
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Theorem 3.2. Suppose condition (6) is satisfied, dp ≥ 2 , dp ↑ ∞ when p → ∞
and

(7) λp ≤ 1

200
dp .

The following propositions are true:

(I) if series

(8)
∑
p

h2(p) dp
pD2(p)

exp

{
−

d2p
2

(
1 +Qp(dp)

)}
converges, then

lim
n1→∞

lim sup
n→∞

νn1,n
def
= lim

n1→∞
lim sup
n→∞

νn

(
max

n1≤k≤n
b−1
k |hk(m)−A(k)| ≥ 1

)
= 0 ;

(II) if lim
n1→∞

lim inf
n→∞

νn1,n = 0 , then series (8) converges;

(III) if series (8) diverges, then for every n1 ≥ 2

lim
n→∞

νn

(
max

n1≤k≤n
b−1
k |hk(m)−A(k)| ≥ 1

)
= 1 ;

(IV) if lim
n1→∞

lim sup
n→∞

νn1,n = 1 , then series (8) diverges.

Corollary ([10]). If in the place of condition (7) estimate

λp = O
(
d−3
p

)
is satisfied, then the propositions of the theorem are true after the change of series (8) by∑

p

h2(p) dp
pD2(p)

exp

{
−

d2p
2

}
.

Proof of Theorem 3.2. Choose r = max
{
log n, exp{d−1

n log n}
}
. Then conditions

(6) and (7) yield

D2(n)−D2(r) ≪ D2(n)d−2
n log

log n

log r
≤ D2(n) d−2

n log dn .

Therefore 2D2(r) ≥ D2(n) , when n is large enough. Now from lemma 2 we have

(9)

∆n
def
= νn

(
max

r≤k≤n
b−1
k |hk(m)−A(k)| ≥ 1

)
≪

≪ d−2
r +

∑
r<p≤n

h2(p)

pb2p
≪ d−2

r = o(1), n → ∞.
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Whence setting ηk =
∑
p≤k

ζ̄p and using lemma 1 for n → ∞ we obtain

(10)

νn1,n ≤ νn

(
max

n1≤k≤r
b−1
k |hk(m)−A(k)| ≥ 1

)
+∆n =

= P
(

max
n1≤k≤r

b−1
k |ηk| ≥ 1

)
+ o(1) = Wn1 + o(1)

and

(11) νn1,n ≥ νn

(
max

n1≤k≤r
b−1
k |hk(m)−A(k)| ≥ 1

)
= Wn1 + o(1)

where Wn1 = P
(
sup
k≥n1

b−1
k |ηk| ≥ 1

)
.

If series (8) converges then according to the Feller theorem Wn1 = o(1) as n1 → ∞ .
This via estimate (10) proves the first proposition of our theorem. Similarly, the second
one follows from estimate (11).

When series (8) diverges then by the Feller theorem P
(
b−1
k |ηk| ≥ 1 i.o.

)
= 1 . Con-

sequently, Wn1 = 1 for every n1 ≥ 2 and estimate (11) yields statement (III) of our
theorem.

The condition of the last proposition of theorem 3.2 and estimate (10) yield asymptotic
Wn1 = 1 + o(1) as n1 → ∞ . This due to the quoted probabilistic theorem proves the
divergence of series (8). Theorem 3.2 is proved.

For example, we note that for every s ≥ 4 and δ > 0(
2L2k

(
L4k +

3

2
L5k + L6k + . . .+ (1− δ)Lsk

)) 1
2 ≤

∑
p≤k, p|m

1− L2k ≤

≤
(
2L2k

(
L4k +

3

2
L5k + L6k + . . .+ (1 + δ)Lsk

)) 1
2

i.o. a.e.

Here Lk+1U = L(LkU) for k ≥ 1 .
It is easy to see that theorems 3.1 and 3.2 contain the zero–one law for the possible

iterated limits of the frequences considered. The following problem arises: to prove an
analogue of the zero–one law without any preliminary condition on additive functions and
normalizations.

4. A theorem of the Chung type

Let us consider the sequence{
fk(m)

def
= max

l≤k
|hl(m)−A(l)|; k ≥ 2

}
.
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Using the monotonicity of βk from theorem 2.1 one can obtain information expressed by

1− ε ≤ lim sup
k→∞

β−1
k fk(m) ≤ 1 + ε a.e.

However, fairly frequently fk(m) takes much smaller values than βk . The following
theorem represents an analogue of the Chung law of the iterated logarithm.

Put for sake of brevity γk = πB(k)√
8LLB(k)

.

Theorem 4.1. Let h(p) = o(γp) and B(p) → ∞ as p → ∞ . Then for every ε > 0

(12) lim
n1→∞

lim sup
n→∞

νn

(
min

n1≤k≤n

fk(m)

γk
≤ 1− ε

)
= 0

but

(13) lim
n1→∞

lim inf
n→∞

νn

(
min

n1≤k≤n

fk(m)

γk
≤ 1 + ε

)
= 1 .

Proof. For every K > 0 and δ > 0 we have

δn
def
= νn

(
max

n1≤k≤n
γ−1
k

∑
pα∥m

p≤k, α≥2

(
|h(pα)|+ |h(p)|

)
≥ δ

)
≤

≤ νn

( ∑
pα∥m, pα≤K

(
|h(pα)|+ |h(p)|

)
≥ δγn1

)
+

+ νn
(
m; ∃ pα∥m, pα > K, α ≥ 2

)
≪ o(1) +

∑
p>

√
K

p−2

when n → ∞ and n1 → ∞ . Consequently, using the standard way we can confine
ourselves to strongly additive functions. Now we repeat the truncation procedure. Let

r = max

{
logn, exp

{ log n

LLB(n)

}}
,

then B(r) = B(n)
(
1+o(1)

)
as n → ∞ . By µ−

n1,n and µ+
n1,n we denote the frequences in

equalities (12) and (13) respectively. Let ηk be random variables defined in paragraph 3.
By use of lemma 1 we have

(14)

µ−
n1,n ≤ νn

(
min

n1≤k≤r

fk(m)

γk
≤ 1− ε

)
+ νn

(
min

r≤k≤n

fk(m)

γk
≤ 1− ε

)
≤

≤ P
(

min
n1≤k≤r

(
γ−1
k max

l≤k
|ηl|
)
≤ 1− ε

)
+ o(1)+

+ νn

(
max
l≤r

|hl(m)−A(l)| ≤ (1− ε)γn

)
= P

(
inf

k≥n1

(γ−1
k max

l≤k
|ηl|) ≤ 1− ε

)
+

+ P
(
B−1(r) max

l≤r
|ηl| ≤ (1− ε)γnB

−1(r)
)
+ o(1), n → ∞ .
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According to A. I. Martikainen’s theorem [16] the first probability in the right side
tends to zero when n → ∞ . The second one by the well–known functional limit theorem
can be approximated with o(1) error by

4

π

∞∑
k=1

−1k

2k + 1
exp

{
− π2(2k + 1)2

8(1− ε)

B2(r)

γ2
n

}
.

The last quantity due to γn

B(r) = o(1) tends to zero when n → ∞ . So from estimates (14)

we obtain the first statement of the theorem.
For µ+

n1,n we have

µ+
n1,n ≥ νn

(
min

n1≤k≤r

fk(m)

γk
≤ 1 + ε

)
= P

(
inf

k≥n1

(γ−1
k max

l≤k
|ηl|) ≤ 1 + ε

)
+ o(1)

as n → ∞ . But even

P
(
lim inf
n1→∞

(
γ−1
k max

l≤k
|ηl|
)
≤ 1 + ε

)
= 1

(s.f. [16]), therefore for strongly additive function h(m)

(15) lim
n→∞

µ+
n1,n = 1

when n1 ≥ 2 is fixed. Remembering the estimate of δn we obtain equality (13). Theorem
4.1 is proved.

The proposition (13) can be strengthend to (15) without the extra hypothesis of strong
additivity. This can be done using a more general version of the Fundamental lemma [2].
Some other form can be given to the conditions of theorem 4.1 (s.f. [16]).

In [5] we have laws of the iterated logarithm for additive functions not necessarilly
belonging to the H class of Kubilius [2]. Nevertheless, investigation of sequences{ ∑

p|m, p≤k

logc p; k ≥ 2

}

with c > 0 remains problematic.
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8. E. Manstavičius, The law of iterated logarithm in probabilistic number theory, Fourth
International Vilnius Conf. on Probab. Th. and Math. Statistics, Abstracts of
Comm., Inst. of Math. and Cybern. of the Acad. Sci. Lith. SSR, 1985, t.IV,
193–194.
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