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ABSTRACT. This survey is an extended version of the invited talk deliv-
ered by the author at the conference ”Erdös and his Mathematics”, Bu-
dapest, July 4–11, 1999. Starting from the invariance principle established
by P.Erdös and M.Kac in the forties and more general functional limit the-
orems for partial sum processes for i.r.vs, we describe the development of a
parallel theory dealing with specifically dependent r.vs which appear in prob-
abilistic number theory. The main efforts are paid to survey the results on
the weak convergence of processes defined in terms of arithmetical functions.
An extensive updated bibliography is given.

1 Introduction

We will consider sequences of real functions fn(m, t) defined on N× [0, 1] which
express some arithmetic properties of a natural number m. If m ≤ n is taken
at random, fn(m, ·) can be viewed as a random process with paths in some
functional space. The goal then is to describe the asymptotic behaviour as
n → ∞ of its distribution. That is implemented within the general theory
on convergence of probability measures in functional spaces (see, for instance
[Bi1]).

Many of the results on functional limit theorems for number-theoretic ob-
jects surveyed in this article had been obtained in the seventies and eighties,
nevertheless they were not touched upon by P.D.T.E.Elliott [El] nor by the re-
cent book of G.Tenenbaum [Te2]. J.Kubilius [K3] (see Chapter 7) included just
his pioniering result [K1] from 1955. So did Yu.V.Linnik devoting Chapter 10
of his book [Li] to a model of Brownian motion defined in terms of the Legendre
symbols. S.M.Ermakov also mentioned it in Chapter 8 of his monograph [Er].
This result, obtained in [K-Li], generalizes the one-dimensional limit theorem
by H.Davenport and P.Erdös [D-E]. G.J.Babu [B4] in Concluding Remarks just
mentioned his result [B2] from 1973. The situation with the survey papers is
not better: either they were written in this respect too early as [G], [K4], [Sc]
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or were aimed to present achievements of a particular school as [M1], [La]. Our
purposes are fairly broad, nevertheless due to the volume limitations, we stress
here the main directions of the development and present more or less final re-
sults. Of course, the influence of the personal taste is unavoidable. Having
in mind that some references are hardly known to a western reader, we are
attempting to include a complete updated list of references.

2 Partial sum processes for i.r.vs

In the forties P.Erdös and M.Kac [E-Ka1], [E-Ka2] took over the initiative of
L.Bachelier, P.Lévy and A.N.Kolmogorov to investigate the limit distribution
laws of functionals on the partial sums of independent random variables (i.r.vs).

Let ξ1, ξ2, . . . be i.r.vs with mean Eξj = 0 and variance Vξj = 1, sk =
ξ1 + · · ·+ ξk, k ≥ 1. The limit distributions of r.vs

max{s1, . . . , sn}, max{|s1|, . . . , |sn|}, |s1|+ · · ·+ |sn|, s2
1 + · · ·+ s2

n

under appropriate normalization in the case of identically distributed Xj were
found in [E-Ka1]. The next paper [E-Ka2] was devoted to the following extension
of the Lévy’s result.

THEOREM 2.1 (E-Ka2). Let ξj be i.r.vs, Eξj = 0,Eξ2
j = 1. Denote Nn the

number of positive sums among s1, . . . , sn. Then

limP (Nn < xn) = 2π−1 arcsin
√
x =: As(x), 0 ≤ x ≤ 1.

Here and in what follows the limits, if not indicated otherwise, are taken with
respect to n→∞.

The appearance of the arcsine law in similar problems is in no way the unique
phenomenon, for other cases we refer to the recent study [Ho-J]. Apart from the
results, the very approach used in [E-Ka1], [E-Ka2] is of great significance. The
authors noticed that if the limit distribution of any of the above quantities is
found for one particular sequence ξ1, ξ2, . . . , then it holds for all sequences of
r.vs satisfying the relevant condition, in fact, the Lindeberg condition. That
was the birth of the invariance principle.

In the new wave of investigations initiated by M.Donsker [Do], Yu.V.Prokhorov
[P], A.V.Skorokhod [Sk1] another point of view became dominating. The main
concern was the existence and the properties of the limit law for the partial sum
process

Xn := Xn(t) :=
∑
tnk≤t

ξnk

where ξn1, ξn2, . . . , ξnkn is a sequence of arrays of i.r.vs and 0 = tn0 < tn1 <
· · · < tnkn = 1 is a partition of the interval [0,1]. That was even carried out
as a particular case of the weak convergence problem of processes having paths
in the space of continuous functions with the supremum metric or in the space
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of functions D := D[0, 1] endowed with the Skorokhod topology. Here and in
what follows we use the widely accepted terminology and notation presented in
the P.Billingsley’s book [Bi1] but set Yn ⇒ Y to denote the weak convergence
of distributions of random elements Yn to that of Y or weak convergence of
nondecreasing bounded functions. If Xn ⇒ X is established, then by the very
definition, we have

φ(Xn)⇒ φ(X)

for arbitrary bounded and continuous P · X−1 - a.e. functional φ : D → R.
This opened a new way to deal with the limit distributions of r.vs mentioned
above and many others as well. It is worthwhile to quote one of the Prohorov’s
theorems (see [P], Theorem 3.2 or [Sk3], Theorem 3, Section 8.40), a fairly good
patern for raising questions in probabilistic number theory. Set ξ(ε) = ξ if
|ξ| ≤ ε and ξ(ε) = 0 if |ξ| > ε. For a stochastic process X(t) with paths in D,
we denote TX = {t ∈ (0, 1) : P (X(t− 0) 6= X(t)) = 0} ∪ {0, 1}. If TX = [0, 1],
the process X(t) will be called (stochastically) continuous.

THEOREM 2.2 (P). Let ξn1, ξn2, . . . , ξnkn be a sequence of arrays of i.r.vs
and 0 = tn0 < tn1 < · · · < tnkn = 1 be a partition of the interval [0, 1] such that

(i) lim maxi P (|ξni| > ε) = 0 for any ε > 0;
(ii) lim maxi |tni − tn,i−1| = 0;
(iii) (Xn(t1), . . . , Xn(ts))⇒ (X(t1), . . . , X(ts)) for some continuous process

X(t), arbitrary points 0 ≤ t1 < · · · < ts ≤ 1, and any s ≥ 1;
(iv) for some ε > 0,

lim
h→0

lim sup
n→∞

sup
0≤t≤1−h

∑
tni∈[t,t+h]

P (|ξni| > ε) = 0,

lim
h→0

lim sup
n→∞

sup
0<|t′−t′′|≤h

∣∣∣∣ ∑
tni∈[t′,t′′]

Eξni(ε)

∣∣∣∣ = 0,

lim
h→0

lim sup
n→∞

sup
0≤t≤1−h

∑
tni∈[t,t+h]

Vξni(ε) = 0;

then Xn ⇒ X.

If (i), (ii) are given a fortiori, the conditions (iii) and (iv) are necessary
for the convergence Xn ⇒ X provided X(t) is continuous process and has
independent increments. Note that (iv) represents a test of very useful form to
check the tightness of the sequence of measures P ·X−1

n . A.V.Skorohod [Sk2] (see
also [Gi-Sk], Theorem 1, Chapter 9) noted that for identically distributed i.r.vs
ξni, 1 ≤ i ≤ kn, satisfying the condition of infinitesimality (i) and the partition
given by tni = i/kn, 0 ≤ i ≤ kn, the convergence Xn ⇒ X is equivalent to the
one-dimensional convergence Xn(1) ⇒ X(1). In probabilistic number theory,
we deal with nonidentically distributed r.vs therefore we [M4] have extracted
another case of Theorem 2.2 complementing this observation.
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Let now ξni = ξi/β(n), 1 ≤ i ≤ n be i.r.vs and β(n) (β(n) > 0, β(n)→∞)
be some normalizing sequence, Fni(x) = P (ξni < x). We set u∗ = u if |u| < 1,
and u∗ = sgnu otherwise. Denote

ani(τ) =

∫
|x|<τ

xdFni(x),

where τ > 0. Apart from the condition (i), we will assume the following simpli-
fying condition

lim
τ→0

lim sup
n→∞

n∑
i=1

a2
ni(τ) = 0. (2.1)

Let

ψni(u) =

u∫
−∞

x∗
2

dFni(x), ψn(u) =

n∑
i=1

ψni(u).

For t ∈ [0, 1], we let

y(t) = y(t, n) = max
{
l : l ≤ n,

∑
i≤l

Ψni(+∞) ≤ tΨn(+∞)
}
. (2.2)

We define stochastic processes with trajectories in the space D by setting

Yn = Yn(t) =
∑
i≤y(t)

(ξni − γni),

where

γni =

∞∫
−∞

x∗dFni(x).

The processes X = X(t) appearing as limits for Yn will be continuous and will
have independent increments. It is convenient to use the following modification
of the Lévy’s canonical expression of their characteristic functions

E exp{iλX(t))} = exp

{ ∞∫
−∞

(eiλu − 1− iλu∗)u∗
−2

dMt(u)

}
, λ ∈ R, (2.3)

where Mt(u) is a bounded nonnegative function which is continuous in t and
nondecreasing in u and t so that Mt(u) −Ms(u) is also nondecreasing in u if
s < t. For u = 0 the integrand in (2.3) is equal to −λ2/2.

THEOREM 2.3 (M4). Let the i.r.vs ξni = ξi/β(n), 1 ≤ i ≤ n, satisfy (i) of
Theorem 2.2, conditions (2.1) and

ψn(u)⇒ Ψ(u), (2.4)
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where Ψ(u) is a nondecreasing bounded function defined on R̄, 0 = Ψ(−∞) <
Ψ(+∞), so that Ψn(+∞) → Ψ(+∞). Then Yn ⇒ X, where X is continuous
process with independent increments which characteristic function has expres-
sion (2.3) with

Mt(u) := M(b(t), u) :=

u/b(t)∫
−∞

(b(t)v)∗
2

v∗
−2

dΨ(v), (2.5)

where b(t) := limβ(y(t, n))/β(n) and is a continuous solution to M(b(t),+∞) =
tΨ(+∞).

The derivation [M4] of the last theorem from Theorem 2.2 relies on the
investigation of convergence of

Mn
t (u) :=

∑
i≤y(t)

ψni(u) =

uβ(n)/β(y(t))∫
−∞

(
v
β(y)

β(n)

)∗2
v∗
−2

dψy(t)(v).

The goal is to show that the convergence Mn
t (+∞) → Mt(+∞) is uniform in

t ∈ [0, 1]. By virtue of (2.1), this implies the tightness condition (iv).
Since under other restrictions in Theorem 2.3 condition (2.4) is necessary

and sufficient for Yn(1)⇒ X(1), our functional limit result is equivalent to the
one-dimensional limit theorem. The reason for this, apparently, is the succesful
choice of the time index function (2.2), going back to the paper on probabilistic
number theory [T-U1]. As it has been shown by V.M.Kruglov [Kru] in the case
of Brownian motion, the use of other choices of this function are also possible.

We end this section mentioning a recent result [Ba-M1] motivated mainly
by number-theoretic applications. The convergence problem in the space D for
processes

Zn(t) := e−α(z(t))
∏

k≤z(t)

|ξk|1/β(n) sgn ξk, (2.6)

where ξk, k ≥ 1 are i.r.vs, α(u), β(u) denote some normalizing sequences, and
z(t) = zn(t) is a time index function, has been investigated. We stress that
achieving these purposes we had to modify the definition of the weak conver-
gence of finite dimensional distributions and also needed some refinement of the
process Zn(t) in the neibourhood of the zero point.

3 Additive functions and functionals on them

A mapping h : N → R is called additive function if it satisfies the following
relation

h(mn) = h(m) + h(n)

for each pair of coprime numbers m,n ∈ N. It has the canonical representation

h(m) =
∑
p

h(pαp(m)),
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where p denotes a prime number and αp(m) = k if pk|m and pk+1 6| m. For
brevity, afterwards we confine ourselves to the case of strongly additive func-
tions. By definition they have the expression

h(m) =
∑
p|m

h(p) =
∑
p

h(p)δp(m),

where δp(m) = 1 or 0 according to p divides m or does not. Set hr(m) to denote
its partial sum over p ≤ r, 2 ≤ r ≤ n. Let νn(. . . ) be the probability measure
on N ascribing probability 1/n for any m ≤ n. Distributions of the vector of
”truncated” (strongly) additive functions

(hx1(m), . . . , hxn(m)), 2 ≤ x1 ≤ · · · ≤ xn ≤ n,

or its transforms, especially when the number of points xj is not fixed, with
respect to νn are of great interest. By virtue of strong dependence of δp(m) for
large primes p, this problem is pretty difficult.

We quote the historically first result of this kind obtained by J.Kubilius [K1].
Set

A(u) =
∑
p≤u

h(p)

p
, B2(n) =

∑
p≤u

h(p)2

p
, tnq = B2(q)/B2(n),

where 2 ≤ u ≤ n and q denotes a prime number. Denote

νn(ψ1, ψ2) = νn

(
ψ1(tnq) <

hq(m)−A(q)

B(n)
< ψ2(tnq), q ≤ n

)
,

where ψ1, ψ2 are continuously differentiable functions, ψ1(t) < 0 < ψ2(t), t ∈
[0, 1]. Let w(x, t) be a solution to the equation

∂w

∂t
+

1

2

∂2w

∂x2
= 0

subject to conditions w(x, 1) = 1 for ψ1(1) < x < ψ2(1) and w(ψ1(t), t) =
w(ψ2(t), t) = 0 for 0 ≤ t < 1.

THEOREM 3.1 (K1). Suppose that B(n)→∞ and

max
p≤n
|f(p)|/B(n) ≤ µn = o(1). (3.1)

Then
νn(ψ1, ψ2)− w(0, 0) =: Rn = o(1).

Let us observe that w(0, 0) equals the probability that the standard Brownian
motion process W (t) starting at t = 0 does not reach the boundaries ψ1(t) and
ψ2(t). Later in [K5], it was shown that Rn � µn log(µ−1

n )/ log log(µ−1
n ). It was

also remarked that Theorem 3.1 holds under the Lindeberg condition

1

B2(n)

∑
p≤n

|h(p)|≥εB(n)

h(p)2

p
= o(1) (3.2)
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for each ε > 0, and conditions on the boundaries were relaxed. Actually, lin-
ear combinations of additive functions were investigated in [K1] but we leave
relevant problems for the next sections.

In 1972 G.J.Babu [B1] derived asymptotical formulas of distribution of the
maximum type functionals defined on truncated additive functions.

THEOREM 3.2 (B1). Assume that B(n)→∞ and condition (3.2) is satisfied.
Then for x > 0,

νn

(
max
k≤n

hk(m)−A(k)

B(n)
< x

)
=

2√
2π

∫ x

0

e−u
2/2 du+ o(1)

and

νn

(
max
k≤n

∣∣∣∣hk(m)−A(k)

B(n)

∣∣∣∣ < x

)
=

1√
2π

∞∑
k=−∞

(−1)k
∫ x

−x
exp

{
− (u− 2kx)2

2

}
du+o(1).

The aformentioned Erdös-Kac formulas for partial sums of i.r.vs were used in
the proof. Observe that the limit distributions coinside with that of max0≤t≤1W (t)
and max0≤t≤1 |W (t)| for the Brownian motion W (t).

Several years later P.Erdös, remaining faithful to the invariance principle, in
1969 formulated the following analog of Theorem 2.1.

THEOREM 3.3 (E2). Let p1(m) < · · · < pw(m) be the prime factors of m
and ω = ω(m) be their number. Set Ly = log max{e, y}. We have

lim
n→∞

νn

(
1

LLm
|{1 ≤ j ≤ ω(m) : LLpj(m) < j}| < x

)
= As(x)

uniformly in 0 ≤ x ≤ 1.

The hint to apply Theorem 2.1 was also given. A proof going along this line
was furnished by the author in [M7].

To our knowledge, the above listed results were the only attempts to examine
the weak convergence of distributions of functionals on the sequence of truncated
additive functions without the direct use of limit theorems in functional spaces.

Values of the maximum type functionals on normalized integer-valued arith-
metic functions have a particular lattice structure thefore stronger approxima-
tions of their distributions are available to obtain. The convergence in total
variation distance was established in some cases (cf. [Da-L], [L3], [Kr3], [Kr4]).

4 Additive functions and Brownian motion

The first published remark on limit theorems for processes defined in terms
of additive functions is the abstract announced by P.Billingsley [Bi2]. Basing
upon [Bi3] and the W.Philipp’s comments [Ph] mentioning also an unpublished
manuscript, we can imagine that the weak convergence of processes

Hn := Hn(m, t) =
1

B(n)

∑
p|m, p≤x(t)

h(p)
(
δp(m)− 1

p

)
,
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where x(t) := xn(t) = max{u : B2(u) ≤ tB2(n)}, under the conditions B(n)→
∞ and h(p) � 1, was established. To be more exact, the result was proved
for sequences of additive functions. In the sequel we will stress the dependence
on n by attaching the additional lower index n only when proofs in this more
general case require new ideas. We now present a result of G.J.Babu [B2], [B3],
and W.Philipp [Ph] proved in different ways.

THEOREM 4.1 (B2, Ph). Assume that B(n)→∞ and the Lindeberg condi-
tion (3.2) is satisfied. Then Hn ⇒W in the space D.

Since the paths of Hn(m, t) can be easily drawn, it is often called a model
of the Brownian motion. Either of the proofs use the Kubilius’ method going
back to [K2] (see also [K3]). To get an impression, we give a few details.

Fundamental Lemma (K3). Let 2 ≤ r ≤ nε for each ε > 0 and 2, 3, . . . , ps
be all prime numbers not exceeding r. Then there exists a probability space
{N,F , P} and i.r.vs ξp, p ≤ r, defined on it by

P (ξp = 1) = 1− P (ξp = 0) = 1/p

such that ∑
δ̄∈{0,1}s

∣∣∣∣νn(δp(m) = δp, p ≤ r)−
∏
p≤r

P (ξp = δp)

∣∣∣∣ = o(1). (4.1)

Here the sum is taken over all choices of vectors δ̄ := (δ2, . . . , δps) ∈ {0, 1}s.

Denote

Wn(t) =
1

B(n)

∑
p≤x(t)

h(p)(ξp −
1

p
).

The total variance distance estimate (4.1) gives at once

sup
B⊂D

∣∣νn(Hr
n(m, ·) ∈ B)− P (W r

n(·) ∈ B)
∣∣ = o(1), (4.2)

where Hr
n and W r

n are obtained from Hn(m, t) and Wn(t) by substituting
min{x(t), r} for x(t). The processes Xr

n are treated using Prokhorov’s The-
orem 2.2. Thus, condition (3.2) is necessary and sufficient for Xr

n ⇒W , and by
virtue of (4.2), the same holds for for Hr

n ⇒W . This condition implies also the
estimate

P (ε) := P ( sup
t∈[0,1]

|Xn(t)−Xr
n(t)| ≥ ε) = o(1)

for any ε > 0. To complete his proof, G.J.Babu [B2] obtains a similar estimate
for the difference of Hn(m, t) − Hr

n(m, t). W.Philipp [Ph] uses Fundamental
Lemma to prove convergence of finite-dimensional distributions of Hn but fairly
complicately deals with the tightness of the sequence of measures νn · H−1

n
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repeating much of the traditional argumentation used in the case of i.r.vs. The
author [M3] observed that, from the I.Z.Ruzsa’s [R1] inequality, it follows

νn( sup
t∈[0,1]

|Hn(m, t)−Hr
n(m, t)| ≥ ε)� P (ε/3). (4.3)

This makes either of the proofs shorter.
Though Hn asymptotically models Brownian motion and is algorithmically

simple, it is hard to expect that it is much useful for numerical imitation prob-
lems. This scepticism is based on the slow convergence rates. To illiustrate
that consider a linearized version of the process Hn with paths in the space of
continuous functions C := C[0, 1].

Let us take h := hn, a sequence of strongly arithmetic functions normalized
so that ∑

p≤n

σ2
np = 1, (4.4)

where σ2
np = h2(p)p−1(1− p−1). Set

tnp =
∑
q≤p

σ2
nq, αs = αsn =

∑
p≤n

|h(p)|sp−1.

Define the polygonal line Ĥn := Ĥn(m, t) with vertices(
tnp,

∑
q≤p

h(q)(δq(m)− 1/q))

)
,

where p ≤ n, starting at the point (0, 0). Thus, in the space C provided with
the supremum norm, an arithmetic process is defined. Let further, C be the
σ-algebra of Borel sets of the space C, B ∈ C, and Bε be the ε- neighbourhood
of the set B. In the space M(C) of probability measures defined on C, we study

the Lévy-Prokhorov distance ρ(Ĥn,W ) of the measure corresponding to the

process Ĥn from the Wiener measure. We recall that for measures P,Q ∈M(C)
the distance cited above is defined as inf ε, for which P (B) ≤ Q(Bε) + ε and
Q(B) ≤ P (Bε) + ε. In the symbol ρ(·, ·) we indicate the random elements with
values in C and not their distributions.

THEOREM 4.2 (M3). For a sequence of strongly additive functions hn sat-
isfying (4.4) and the inequality αs ≤ 1/3 for 2 < s ≤ 3, one has the estimate

ρ(Ĥn,W ) ≤ C(s)α1/(s+1)
s

(
ln ln

1

αs

)(s−2)/(2(s+1))

. (4.5)

Comparing this estimate with the unimprovable A.A.Borovkov’s result [Bo]
obtained for i.r.vs, we see that (4.5) has the only extra iterated logarithm
factor. Under condition (4.4) for s = 3, by Cauchy’s inequality we have
α3 � (LLn)−1/2. Thus the convergence rate in terms of α3 in (4.5) is not

473



better than (LLn)−1/8(LLLLn)1/8. Dropping of the second factor would be of
little help for numerical applications.

Observe that taking the sets B ∈ C with boundary δB, satisfying the condi-
tion P (W ∈ (δB)ε) ≤ KBε for any ε > 0, we get from (4.5)

|νn(Hn(m, ·) ∈ B)−P (W ∈ B)| ≤ (KB+1)C(s)α1/(s+1)
s (ln ln 1/αs)

(s−2)/(2(s+1)).

This estimate yields convergence rates for distributions of functionals defined
on Ĥn.

Convergence of processes Hn yields the one-dimensional relation Hn(·, 1)⇒
W (1), the assertion known since 1956 (see [K2], [K3] or [El]). Fascinatingly, but
the last relation does not imply the Lindeberg condition (3.2), as N.M.Timofeev
[T] has proven by a counterexample. As we have seen, (3.2) makes the influence
of large prime factors negligible, nevertheless the sum of dependent summands
h(p)(δp(m) − 1/p)/B(n), nε ≤ p ≤ n, in its turn can yield the limiting normal
distribution. Convergence of the processes Hn is more restrictive. Recall that
the Brownian motion has independent increments therefore one could expect
that these summands should be negligible in the functional limit theorem. That
motivates the necessity of condition (3.2) which was proved by N.M.Timofeev
and Kh.Kh.Usmanov [T-U3]. Here we would like to ask two questions.

PROBLEMS. Is it true that Hn(·, 1) ⇒ W (1) and max0≤t≤1Hn(·, t) ⇒
max0≤t≤1W (t) imply (3.2)? For which functionals φ : D → R the joint con-
vergence Hn(·, 1)⇒W (1) and φ(Hn)⇒ φ(W ) implies (3.2)?

We now formulate a result for a more general model than Hn. Set

Gn := Gn(m, t) =
1

β(n)

∑
p|m, p≤z(t)

h(p)− α(n, z(t)),

where β(n) > 0 is arbitrary,

z(t) := zn(t) = max{u : B2(n, u) ≤ tB2(n, n)}, t ∈ [0, 1],

B2(n, u) =
∑
p≤u

(
h(p)

β(n)

)∗2
1

p
, α(n, u) =

∑
p≤u

(
h(p)

β(n)

)∗
1

p
.

THEOREM 4.3 (T-U3). Assume that h : N→ R is a fixed function, β(n)→
∞. For convergence Gn ⇒W , the condition

Ψn(u) :=
∑
p≤n

h(p)<uβ(n)

(
h(p)

β(n)

)∗2
1

p
→

{
1 if u > 0,

0 if u < 0

is necessary and sufficient.

One of the ways how to derive Theorem 4.1 from this result is indicated in
[U5]. Note that it is easy to prove the sufficiency in Theorem 4.3 for sequences of
functions hn. The necessity in this more involved case follows from the author’s
result [M6].
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5 Models of other processes with independent
increments

Let us return to the arithmetic processes Hn. Can they model stochastic pro-
cesses other than the Brownian motion? The positive answer to this question
was given by P.Billingsley [Bi4]. Considering sequences of functions hn, he suc-
ceeded to model the Poisson process and any other process with independent
increments which distributions have finite variances. The last limitation comes
from the use of standard normalizations A(n) and B(n) in the definition of Hn.
To verify this, one needs just to apply the Kubilius’ inequality ([K3], Lemma
3.1). The models Gn do not have this limitation. The very idea to study them
comes from the paper [T-U1] by N.M.Timofeev and Kh.Kh.Usmanov who pre-
sented fairly general sufficient conditions assuring the convergence Gn ⇒ X
for a fixed additive function h. It appeared in the eighties that the conditions
used by them were necessary in the case of limit processes with independent
increments. In the previous section we have discussed the case of the Brownian
motion. The necessity of their conditions for a stable limit processes was proved
by the author in [M2], [M3].

THEOREM 5.1 (M3). Assume that h : N→ R is a fixed function, β(n)→∞.
Let X be a homogenuous stable process with characteristic function

M exp{iλX(t)} = exp

{
ta1

∫ 0

−∞
(eiλu − 1− iλu∗) d(|u|−α)−

−ta2

∫ ∞
0

(eiλu − 1− iλu∗) d(u−α)

}
,

a1, a2 ≥ 0, a1 + a2 > 0, 0 < α < 2, 0 ≤ t ≤ 1.

In order that Gn ⇒ X, it is necessary and sufficient that for any u > 0,∑
p≤n

h(p)<−uβ(n)

p−1 → a1u
−α,

∑
p≤n

h(p)>uβ(n)

p−1 → a2u
−α,

and
lim
ε→0

lim sup
n→∞

β−2(n)
∑
p≤n,

|h(p)|<εβ(n)

h2(p)p−1 = 0.

Using an idea going back to the P.D.T.A.Elliott’s book [El], Chapter 16, we
easily construct an example of the function satisfying the conditions of Theorem
5.1. One can take

h(m) =
∑
p|m

p≡1(4)

(
2a1

{p
√

2}

)1/α

−
∑
p|m

p≡3(4)

(
2a2

{p
√

2}

)1/α

, 0 < α < 2,

where now {u} denotes the fractional part of u, β(n) = (log log n)1/α, and z(t) =
= exp(logt n).
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The most difficult step in the proof was to show that the truncation condition
B(n, n)−B(n, nε) = o(1) for each ε > 0 is given implicitely by the conditions of
Theorem 5.1 and also to derive it in the necessity part. Later [M4] an extension
of the approach gave necessary and sufficient conditions for a larger class of limit
processes including processes X for which the values X(1)−X(t) in some neig-
bourhood of t = 1 had absolutely continuous with respect to Lebesgue measure
distributions. Generalizing Theorem 5.1, N.M.Timofeev and Kh.Kh.Usmanov
[T-U4] reached a remarkable milestone. In the previous notation we have

THEOREM 5.2 (T-U4). Assume that h : N→ R is a fixed function, β(n)→
∞. In order that Gn ⇒ X, where X is a process in D with independent in-
crements, it is necessary and sufficient that the following two conditions are
satisfied

(i) there exists a nondecreasing function Ψ(u) defined on R̄ such that Ψn(u)⇒
Ψ(u) including Ψn(±∞)→ Ψ(±∞);

(ii) B(n, n)−B(n, nε) = o(1) for each 0 < ε < 1. The characteristic function
of the limit process is of the form given in Theorem 2.3.

Actually, the authors were using the superfluos condition Ψ(−1) 6= Ψ(1) in
the sufficiency part. Moreover, some arguments should have been added in the
necessity part if the value X(1) has the distribution degenerated at one point.
By a result of A.Hildebrand [Hi], under the conditions of Theorem 5.2, the
value X(1) can have arbitrary distribution from the class of selfdecomposable
laws. Formulas (2.3), (2.4), and (2.5) give then the characterization of the
distributions of X(t) for each t ∈ [0, 1].

Remark that having in advance some additional information on the values
h(p), say, if they are not very large in average, one can strengthen the necessity
part of Theorem 5.2. The requirement on the increments of X may be ommited
in such a case (cf. [T-U5] for the details). The same can be achieved under a
fortiori condition on normalizing sequences β(n) = L(log n) → ∞ with some
slowly varying function L(u) in the Karamata sence. Moreover, Theorem 5.2
remains to be true if (ii) is changed by the last requirement on β(n).

Desiring to extend Theorem 5.2, one can ask when do the arithmetic pro-
cesses defined using arrays of additive functions hn instead of h/β(n) converge to
a continuous process with independent increments which characteristic function
is given by (2.3). An answer was given by the author in [M6].

Let v(·) := vn(·) : [0, 1]→ {1, . . . , n} be a monotonically increasing mapping
with the range vn([0, 1]) = {1 = kn1 < · · · < knjn = n}. We will assume that

max
1≤j≤jn

(kn,j+1 − knj) = o(nε) (5.1)

for each ε > 0 and
max

1≤j≤jn
meas v−1(knj) = o(1). (5.2)

As earlier, confying ourselves to strongly additive functions hn, set

Vn := Vn(m, t) =
∑
p|m
p≤v(t)

hn(p)−
∑
p≤v(t)

h∗n(p)

p
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and

B̃2(n, u) =
∑
p≤u

h∗
2

n (p)

p
, Mn

t (u) =
∑
p≤v(t)
hn(p)<u

h∗
2

n (p)

p
.

THEOREM 5.3 (M6). Assume that hn(p)→ 0 for each fixed prime number p
and conditions (5.1) and (5.2) are satisfied. In order that Vn ⇒ X, where X is a
continuous process in D with independent increments having the characteristic
function (2.3), it is necessary and sufficient that the following two conditions
are satisfied

(i) for any t ∈ [0, 1], Mn
t (u)⇒Mt(u) including Mn

t (±∞)→Mt(±∞);
(ii) B̃(n, n)− B̃(n, nε) = o(1) for each 0 < ε < 1.

It is easy to believe that independency of increments of X should exclude
influence of strongly dependent summands with the large prime indeces. That
is the case and, as in the theorems above, (ii) expresses this phenomenon.

Further, one can ask: Is it possible to obtain models of processes having
dependent increments? The answer was given in [T-U2].

THEOREM 5.4 (T-U2). Assume that an additive function h satisfies the
condition (i) of Theorem 5.2,∑

p≤y

(
|h(p)|
β(n)

)∗
1

p
�
(

log y

log n

)γ
for some γ > 0 and all 2 ≤ y ≤ n;

1

log n

∑
p≤n

h(p)<xβ(n)

log p

p
⇒ U(x) 6=

{
1 if x > 0,

0 if x < 0

for some nondecreasing function U(x). Then β(n) = (log n)ρL(log n) where
L(u) is a slowly varying function, ρ > 0, and the processes Gn with z(t) =
exp{t1/ρ log n} weakly converge in the space D.

The limit process has dependent increments, his pretty complicated char-
acteristic function is given in [T-U2]. The strongly additive function defined
by h(p) = (log p)ρ, ρ > 0, is a typical example illiustrating Theorem 5.4. The
interest to this very function was raised by P.Erdös in the paper [E1].

Finally, we mention some generalizations obtained so far. They concern
the arithmetic models of stochastic processes with values in multidimensional
spaces. The first result in this direction belongs to Kh.Kh.Usmanov [U3] who
proved a theorem for additive functions taking values in Rd with d ≥ 1. B.Gri-
gelionis [Gr] obtained an extension of Theorem 5.3 above to a separable Hilbert
space. The results of I.Z.Ruzsa [R2] deserve a special attention. They are stated
as limit theorems for sequences of additive functions hn taking values in a general
commutative topological group. Though, roughly speaking, the function space
D is not a topological group, this paper opens a broad perspective to derive
general functional limit theorems.
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6 Additive functions on sparce sequences

Functional limit theorems for additive functions on sparce sequences {R(m)}
such as integer-valued polynomials, the sequence {pm + 1}, where pm runs the
set of all prime numbers, and other subsequences of natural numbers have some
peculiarities. Consider the asymptotic behaviour of

Zn := Zn(m, t) =
1

β(n)

∑
p|R(m), p≤z(t)

h(p)− α(n, z(t)),

where β(n) > 0 is arbitrary, z(t) and α(n, u) are defined as in Section 5. The
maximum type functionals in the case of polynomials R(m) were examined by
G.J.Babu in 1972 (cf. [B1]). The following question is of great interest: for
what subsequences R(m) of natural numbers we can prove weak convergence of
Zn to a limit process?

At first, we need some analog of Fundamental lemma quoted in Section 4.
As it is described in Chapter 3, [El], the Selberg sieve or many other sieve
versions are capable to give it if R(m) has a good in some sense distribution in
arithmetic progressions. The paper [U1] and short announcements [U2], [U3]
(the details are given in [U4]) contain rather long list of the conditions on R(m)
required for that. Some Lévy type estimates, though weaker than (4.3), are used
in [U1], [U4] to show that the errors in the truncation procedure are negligible.
Characteristically, the condition

1

n

∑
p≥nδ

∣∣∣∣ h(p)

β(n)

∣∣∣∣∗ ∑
m≤n,p|R(m)

1 = o(1)

for some δ > 0 is exploited in either of the steps. The dependence of summands
in Zn indexed by large primes is more influential than in the case R(m) = m
therefore establishing of necessity of conditions seems to be rather difficult.
Despite to this, investigation of the case R(m) = pm + 1 was more successful.

THEOREM 6.1 (U6). Assume that Zn is the process above with R(m) =
pm + 1 and arbitrary β(n) → ∞. In order that Zn ⇒ X, where X is a process
in D with independent increments and X(1) is nondegenerate, it is necessary
and sufficient that the conditions of Theorem 5.2 are satisfied.

Kh.Kh.Usmanov [U6] dealt also with sums of several additive functions with
shifted prime arguments. Nevertheless, in the necessity part, he has left a
gap. The relevant asymptotic formula of the increment of the process in the
neighbourhood of the point one is not correct but does help in the case of
Theorem 6.1. This attempt to deal with sums of functions with shifted natural
arguments was not the first one. Say, Theorem 3.1 in [K3] is presented in
more general than stated in this paper context. Extending this result, under
certain extra conditions, the weak convergence of such arithmetic models to
limit processes was also established (see [M4], [M5], [U2], [U3]). The proofs are
mainly based upon some analogs of Fundamental lemma. The examination of
necessity of these conditions seems to be problematic ([M5]).
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The same difficulties arise if we examine the asymptotic distribution of arith-
metic processes with respect to the short interval probabilities, e.g. instead of
νn(...) we take frequences

(x− y)−1|{m ∈ (y, x] : ...}|, y < x, y, x ∈ N

where y = y(x) and x→∞. The experience (cf. [I-M], [Ba-I1]) shows that the
smaller difference x − y more difficult the problem. The lower bounds for this
difference are not known.

Z.Kryžius [Kr1], [Kr2] observed that sums of increasing number of additive
functions with shifted arguments can also be used to model random processes.
Since definition of the arithmetic processes is different from those considered
earlier, we present some sketch.

Let h be an additive function belonging to the Kubilius’s H class, e.g.
B(n) → ∞ and B(n) = L(log n) where L is a slowly varying function on R+.
For a positive sequence s(n)→∞, define stepwise functions

Kn := Kn(m, t) =
1

B(n)
√
s(n)

∑
j≤ts(n)

(
h(m+ j)−A(n)

)
, t ∈ [0, 1].

Under an appropriate analog of the Lindeberg condition and a fairly long list
of conditions on s(n) convergence Kn ⇒ W was established in [Kr2]. The
prime divisor function ω(m) and any sequence s(n) = o(log log / log log log n)
satisfy these conditions (cf. [Kr1]). Similar models using increasing number of
multiplicative functions with shifted arguments appeared even in the fifties. We
discuss them in the next section.

7 The use of multiplicative functions

In 1952 H.Davenport and P.Erdös [D-E] proved a one-dimensional limit the-
orem for sums of the Legendre symbols with shifted arguments. Extending
it J.Kubilius and Yu.V.Linnik [K-Li] defined a sequence of arithmetic pro-
cess and examined convergence of its finite dimensional distributions. In 1973
N.N.Lyashenko [L1] and W.Philipp [Ph] independently proved weak convergence
in D.

Let
(
a
b

)
denote the Jacobi symbol, where b is an odd number.

THEOREM 7.1 (K-Li, L1, Ph). Let Q run through any infinite increasing
sequence of odd square free numbers such that for every fixed c ≥ 0∏

p|Q

(
1− c

p

)
→ 1

as Q→∞. Let v = v(Q)→∞ so that log v = o(logQ). Then the process

Ln := Ln(m, t) :=
1√
v

∑
k≤vt

(
m+ k

Q

)
converges weakly to the standard Brownian motion W .
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The method of moments was used in the proof. The Dirichlet characters,
instead of the Jacobi symbols, can also be used. N.N.Lyashenko [L2] and
Z.Kryžius [Kr4] attempted to use more general multiplicative functions. By
definition such a function g : R → R satisfies the relation g(mn) = g(m)g(n)
for each pair of coprime numbers m,n. The following chalenging hypothesis for
the Möbius function µ seems to remain unreachable in the nearest future.

CONJECTURE (Kubilius-Linnik, 1959). There exists a sequence
v = v(n)→∞ such that the process

1√
v

∑
k≤vt

µ(m+ k)

weakly converges to the Brownian motion at least for some subsequence n =
n′ →∞.

The attempts made by N.M.Lyashenko [L3], [L4] and Z.Kryžius [Kr4] still
remain pretty far from the complete solution. They prove the convergence just
for processes defined in terms of truncated multiplicative functions. The short
annoncement [L5] of a proof of Conjecture should have a gap. As it was observed
in the book [Li], the negative solution of the hypohesis would be more desirable.

Having the patern of processes (2.6), we jointly with G.Bareikis [Ba-M2]
investigated the modified weak convergence of

e−α(z(t)
∏

p|m, p≤z(t)

|g(p)|1/β(n) sgn g(p), t ∈ [0, 1].

Here z(t) = zn(t) and α(.), β(n) are appropriately chosen normalizing sequences.
By analogy, models with multiplicative functions on shifted primes were studied
(cf. [Ba-I2]).

8 Natural divisors and stochastic processes

Properties of natural divisors are closely related to that of prime divisors. In-
vestigating the statistical value distribution of the function τ(m), the number
of natural divisors of m ∈ N, one can compair it with the function 2Ω(m), where
Ω(m) denotes the number of all prime divisors of m. Motivated by this relation
and Erdös’ Arcsine law (Theorem 3.3), we have proved the following result.

THEOREM 8.1 (M9). Let 1 = d1(m) < · · · < dτ (m) = m be the natural
divisors of m, τ := τ(m), and I+ be the characteristic function of the set of
positive numbers. Then

lim νn

(∑
j≤τ

1

j
I+
(

log2 j − LLdj(m)
)
< (L2)uLLn

)
= As(u)

uniformly in 0 ≤ u ≤ 1.
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Limit theorems for other functionals involving natural divisors can be ob-
tained from the next result. They could comprise some addendum of the inter-
esting study by R.Hall and G.Tenenbaum [H-Te].

THEOREM 8.2 (M9). Let τ(m,u) be the number of natural divisors not ex-
ceeding u and

Tn := Tn(m, t) :=
1√
LLn

(
log2 τ(m, exp{(Ln)t})− tLLn

)
, 1 ≤ t ≤ 1.

The sequence of processes Tn weakly converges to the standard Brownian motion.

One of the obstacles in the proof of this theorem was the fact that truncated
sums over natural divisors are no longer multiplicative functions.

J.-M.Deshouillers, F.Dress, and G.Tenenbaum [De-Dr-Te] and G.Tenenbaum
[Te1] proved two chalenging theorems on the value distribution of the ratio

Dn := Dn(m, t) :=
τ(m,nt)

τ(m)
, t ∈ [0, 1].

THEOREM 8.3 (De-Dr-Te). We have

1

n

n∑
m=1

Dn(m, t) = As(t) + o(1)

uniformly in t ∈ [0, 1].

THEOREM 8.4 (Te1). We have

νn
(
Dn(m, t)−Dn(m, s) < x

)
⇒ Fst(x)

uniformly for 0 ≤ s ≤ t ≤ 1. Here Fst is some purely discrete distribution
function.

Evidently, the previous theorem deals with the mean value of some arith-
metic process, while the last one considers its increments. Thus the problem,
raised by the author in [M9], to investigate the weak convergence of the processes
Dn in the space D was a very natural extension of the presented assertions. It
was recently solved with some generalization. For a real-valued multiplicative
function f , we now set

F (m, v) =
∑

d|m, d≤v

f(d), F (m,m) = F (m), Sn := Sn(m, t) = F (m,nt)/F (m).

THEOREM 8.5 (M-T). If f(p) = κ > 0 and f(pk) ≥ 0 for all prime numbers
p and k ≥ 2, then Sn weakly converges to some process S := S(t) in D.

Extending this result, G.Tenenbaum [Te3] showed that the support of the
measure corresponding to the limit process S is the space of continuous functions
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on [0, 1]. As in [De-Dr-Te], we now obtain that the expectation of S(t) is the
beta-distribution function, e.g.

ES(t) =
1

Γ(γ1)Γ(γ2)

∫ t

0

vγ1−1(1− v)γ2−1 dv,

where γ1 = κ/(1+κ), γ2 = 1/(1+κ), and Γ denotes the Euler gamma-function.
For κ = 1, the last formula yields the arcsine law.

9 Concluding remarks

Apart from the multiplicative expression of natural numbers by a product of the
prime ones, there exist a great variety of additive decompositions. Some of the
ideas developed proving the functional limit theorems just discussed can also be
adopted in this scheme. The author has shown [M10] that the q-additive sum-
of-digit function plays also Brownian motion. Considering other numeration
systems, one can face more strongly dependent random variables and thus more
difficult obstacles.

A lot of combinatorial structures have similar decompositions into compo-
nents. So a permutation or a mapping of a finite set into itself have respectively
a unique product expression into cycles or into components defined by connected
parts of its functional graps. Taking a permutation or a mapping with some
probability, we arive into a new less investigated branch of discrete probability
theory. The limit distributions of appropriately defined additive functions and
processes are of great interest. In this way, the author jointly with G.J.Babu
[B-M1], [B-M2], [B-M3], [B-M4] developed an analogue theory for random per-
mutations. Several functional limit theorems for random mappings are also
established (cf. [M11], [M12]) so far.

The weak convergence of processes can be strengthend to stronger type of
convergence, say, to convergence with probability one. The obstacle that our
objects are defined on a sequence of probability spaces can be overcome. This
was shown by the author [M8] deriving the Strassen law of iterated logarithm
for the arithmetic processes. W.Philipp during the Erdös conference personally
communicated to the author that one can construct a sufficiently rich product
probability space and find in it strong approximations of additive functions by
sums independent gaussian or more general r.vs. This would lead to better
understanding of the functional results.
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[B-M4] G.J.Babu, E.Manstavičius, Random permutations and the Ewens
sampling formula in genetics, In: Probab. Theory and Math. Stat.,
B.Grigelionis et al. (Eds), VSP/TEV, Vilnius/Utrecht, 1999, 33–42.

[Ba-I1] G.Bareikis, K.-H.Indlekofer, Multiplicative processes in short inter-
vals, Lietuvos Matem. Rink. 39(1999), 2, 185–199.

[Ba-I2] G.Bareikis, K.-H.Indlekofer, Arithmetic processes on the set of
shifted primes, Lietuvos Matem. Rink. (to appear, 1999, 20 p.).
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[M12] E. Manstavičius, Stochastic processes with independent increments
for random mappings, Lithuanian Math. J. 39(1999), 4 (to appear).
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