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1. Introduction. We denote the sets of natural, real, complex, and
prime numbers by N, R, C, and P respectively. In what follows we assume
that p ∈ P, d, l, m, n ∈ N, and s = σ + iτ ∈ C. The letters c and C
with or without subscripts denote constants. Either of the notation f =
O(g) or f ≪ g will mean that |f | ≤ C|g| for some positive constant C,
which may be absolute or depend upon various parameters. In such cases
we sometimes indicate that by a subscript. Throughout the paper x ≥ 3 will
be the sequence parameter and in the asymptotic relations it is assumed
that x → ∞.

Let τ(m, v) be the number of natural divisors of m which do not exceed
v ≤ m, and τ(m) = τ(m, m). In 1979 J.-M. Deshouillers, F. Dress, and
G. Tenenbaum [2] (see also [10, Section II.6.2]) obtained the following result.

Theorem DDT. Uniformly in u ∈ [0, 1],

(1)
1

x

∑

m≤x

τ(m, mu)

τ(m)
=

2

π
arcsin

√
u + O

(
1√

log x

)
.

This asymptotic formula was announced already in [3], where some argu-
ment relating it to the well known arcsine law in the probabilistic invariance
principle was presented. In our opinion, that argument was not very con-
vincing. To support that, we observe that the arcsine law in the classical
probability theory is in some sense universal while (1) fails to hold if one
replaces τ(m) by another multiplicative number-theoretic function whose
values on prime numbers differ from two fairly often. This raises a desire
to search for another limiting relation generalizing (1). Such an attempt
was made by the second author who in [6, Section 8] announced a result
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showing that, instead of the arcsine function, a new limit belonging to the
class of beta distributions can appear. This phenomenon was also reported
by the first author in the semigroup of polynomials over a finite field [1]. In
the present note, we generalize the DDT theorem and slightly sharpen the
remainder term.

Relation (1) arouses interest from the point of view of arithmetically de-
fined random processes. First, observe that (1) will remain true if τ(m, mu)
is replaced by τ(m, xu). So, the limit in (1) can be understood as the asymp-
totic expectation of the sequence of stochastic processes if a number m ≤ x
is taken with probability νx({m}) = 1/[x]. Later results obtained in [9] dealt
with the asymptotic distribution of increments

(τ(m, mv) − τ(m, mu))/τ(m),

if 0 ≤ u ≤ v ≤ 1. Having all this in mind, the second author [5] asked
whether the distributions of the processes τ(m, xu)/τ(m) under the measure
νx weakly converge in the Skorokhod space D[0, 1]. This hypothesis together
with some generalization was proved in [7]. To formulate the result, we recall
some definition.

The space D[0, 1] consists of the real-valued functions on [0, 1] which are
right-continuous and have left-hand limits. It is assumed that the Skorokhod
metric is introduced in it. Write D for the Borel σ-algebra in D[0, 1]. For a
multiplicative function f : N → R

+, we define

(2) T (m, v) =
∑

d|m, d≤v

f(d), Xx(m, u) =
T (m, xu)

T (m)
, T (m) = T (m, m),

where u, v ∈ [0, 1]. Let νx ◦ X−1
x be the induced measure on D.

Theorem MT. If f(p) = κ > 0 for each p ∈ P and f(pk) ≥ 0 for all

p ∈ P and k ≥ 2, then νx ◦ X−1
x weakly converges to a limit measure on D.

In the Addendum [11], G. Tenenbaum generalized this theorem and
showed, in addition, that the limit measure is concentrated on the sub-
space of continuous functions. A simple example which does not satisfy the
conditions of Theorem MT but is covered by the result of [11] is defined via
the multiplicative function with f(p) = 1 + (−1)(p−1)/2 for all odd p ∈ P.
What is the asymptotic mean value of this particular process? In the present
paper, we give a more general answer.

2. Results. Let f : N → R
+ be a multiplicative function. Throughout

the paper we assume that, for some constant C > 0, it satisfies f(pl) ≤ C
for all p ∈ P and l ∈ N. We say that f belongs to the class M(α), 0 < α < 1,
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if the function defined by the series
∑

p

(
1

1 + f(p)
− α

)
1

ps
, σ > 1,

for some c > 0 and 0 < δ < 1, has an analytic continuation P (s) into the
region

σ ≥ σ(t) := 1 − c

log(|t| + 2)
, t ∈ R,

where P (s) is holomorphic and |P (s)| ≤ (1 − δ) log(|t| + 2).
The well known formula

∑

p

1

ps
= log ζ(s) + H(s),

where H(s) is analytic in σ > 1/2, gives an analytic continuation of the sum
on the left-hand side into the region σ ≥ σ(t), where it is a holomorphic
function, say, L(s). Moreover, L(s) ≪ log log(2 + |t|) there. Thus, if f ∈
M(α), then, for β := 1 − α, the function

∑

p

(
f(p)

1 + f(p)
− β

)
1

ps

again has the same properties. This observation will be repeatedly exploited
in what follows.

Throughout the paper, the dependence of the appearing remainders on
the constants α, δ, c and C involved in the definition of the class M(α) is
allowed. Using (2), we define

Sx(u) =
1

x

∑

m≤x

T (m, mu)

T (m)
,

and Sx(u, v) = Sx(v) − Sx(u) where 0 ≤ u ≤ v ≤ 1. Recall that the distri-
bution function of a beta law has the following expression:

B(u; a, b) =
1

Γ (a)Γ (b)

u\
0

dv

va(1 − v)b
, 0 ≤ u ≤ 1,

where 0 < a = 1 − b < 1 and Γ (z) denotes the Euler gamma-function. Set
B(u, v; a, b) = B(v; a, b)−B(u; a, b) for 0 ≤ u ≤ v ≤ 1 and a∧b = min{a, b}.

Theorem 1. If f ∈ M(α), then

Sx(u) − B(u; α, β) ≪ 1

logα x
+

1

logβ x

uniformly in 0 ≤ u ≤ 1.

This result follows from the next estimate which is sharper in the central
zone.
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Theorem 2. If f ∈ M(α) and 0 ≤ u ≤ v ≤ 1, then

Sx(u, v) − B(u, v; α, β) ≪ 1

logβ x

(
1 ∧ 1

(u log x)α

)

+
1

logα x

(
1 ∧ 1

((1 − u) log x)β

)
.

For the functions discussed in Theorem MT, one can take α = (1+κ)−1.

Generalizing the above mentioned example we have the following result.

Corollary. Fix m ∈ N and let al ∈ R
+ (not all zero) for 1 ≤ l < m

and (l, m) = 1. If f : N → R
+ is the multiplicative function defined by

f(p) = al for p ≡ l (mod m), where 1 ≤ l < m and (l, m) = 1, f(p) = 0
otherwise, and 0 ≤ f(pk) ≤ C1 for p ∈ P and k ≥ 2, then the assertion of

Theorem 2 holds with

1 − β := α :=
1

ϕ(m)

∑

l<m
(l,m)=1

1

1 + al
.

In the proofs, we apply the analytic approach proposed in [2].

3. Auxiliary lemmas. As usual, let ζ(s) be the Riemann zeta function.
First, we present two classical lemmas.

Lemma 1 ([10, Section II.5.3]). Let z ∈ C, M > 0, 0 ≤ ̺ < 1, and

F (s) :=
∑∞

n=1 an/ns, an ≥ 0, be such that the function Gz(s) := F (s)ζ−z(s)
can be continued as a holomorphic function for σ ≥ 1−c1/log(|t|+2), t ∈ R,
and in this domain satisfies the bound

|Gz(s)| ≤ M(1 + |τ |)̺.

Then, for A > 0 and |z| ≤ A, we have

∑

n≤x

an =
x

log1−z x

(
Gz(1)

Γ (z)
+ O

(
M

log x

))
,

where the implicit constant of the remainder depends at most on c1, ̺, and A.

Lemma 2 ([4]). Let g be a multiplicative function with 0 ≤ g(pl) ≤ C1

for all prime numbers p and l ∈ N. Then

∑

m≤x

g(m) ≪C1

x

log x
exp

{ ∑

p≤x

g(p)

p

}
,

∑

m≤x

g(m)

m
≪C1 exp

{∑

p≤x

g(p)

p

}
.



DDT theorem 159

Let T (m) be as defined in Section 1. Then

T (pk) = 1 + f(p) + · · · + f(pk).

For the multiplicative function h(m) = f(m) or h(m) = I(m) :≡ 1, we
define

(3) Qx(d; h) =
∑

n≤x

h(n)

T (nd)
, F (a; h) =

∏

p

(
1 − 1

p

)a ∞∑

i=0

h(pi)

T (pi)pi

where a > 0. Similarly,

g(d; h) :=
∏

pl‖d

g(pl; h), g(pl; h) =

( ∞∑

i=0

h(pi)

T (pi+l)pi

)/( ∞∑

i=0

h(pi)

T (pi)pi

)
,

g(d) := g(d; f), and g∗(d) := g(d; I). Further, set

r(d) =
∏

p|d

1

1 + f(p)

(
1 +

C2

pσ0

)
,

where C2 > 0 and 0 < σ0 < 1 are arbitrary.

Lemma 3. If f ∈ M(α), then, for all d ∈ N,

1

x
Qx(d; f) =

1

Γ (β) logα x

(
F (β; f)g(d) + O

(
r(d)

log x

))
,(4)

1

x

∑

d≤x

g(d) =
1

Γ (α)F (β; f) logβ x

(
1 + O

(
1

log x

))
.(5)

Moreover ,

(6)
1

x

∑

d≤x

r(d) ≪ log−β x,
1

x

∑

d≤x

f(d)r(d) ≪ log−α x.

Proof. Introduce the generating series

φ(s; d, f) =
∑

n≥1

f(n)

T (nd)ns
(7)

=
∏

pk‖d

( ∞∑

i=0

f(pi)

T (pi+k)pis

)( ∞∑

i=0

f(pi)

T (pi)pis

)−1

·
∏

p

∞∑

i=0

f(pi)

T (pi)pis

=: g(s; d, f)φ(s; 1, f).

Since f(pi)/T (pi+k) ≤ f(pi)/(1 + f(pi)) ≤ C/(1 + C) < 1 for each k ≥ 0
and i ≥ 1, the last expansion is valid for σ > 1.
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We now examine the factors. First we observe that

|vp(s; f)| :=

∣∣∣∣1 +
∞∑

i=1

f(pi)

T (pi)pis

∣∣∣∣ ≥ 1 − C

(1 + C)(pσ − 1)
(8)

≥ 1 −
(

C

1 + C

)1/2

> 0

for every p ∈ P provided that

σ ≥ σ0 = max{3/4, log2(1 + (C/(1 + C))1/2)}.
Hence in the same region, if k ≥ 1,

|g(s; pk, f)| =

∣∣∣∣
∞∑

i=0

f(pi)

T (pi+k)pis

∣∣∣∣

∣∣∣∣
∞∑

i=0

f(pi)

T (pi)pis

∣∣∣∣
−1

≤ 1

1 + f(p)

(
1 +

C

pσ0
+ O

(
1

p2σ0

))(
1 − C

(1 + C)(pσ0 − 1)

)−1

≤ 1

1 + f(p)

(
1 +

(
C +

C

1 + C

)
1

pσ0
+ O

(
1

p2σ0

))
.

Consequently,

|g(s; d, f)| =
∏

pk‖d

|g(s; pk, f)|

≪
∏

p|d

1

1 + f(p)

(
1 +

(
C +

C

1 + C

)
1

pσ0

)
= r(d)

if σ ≥ σ0.

Examine the function

G(s) := φ(s; 1, f)ζ−β(s) =
∏

p

(
1 +

f(p)

T (p)ps
+

∞∑

k=2

f(pk)

T (pk)pks

)(
1 − 1

ps

)β

=: exp

{ ∑

p

(
f(p)

1 + f(p)
− β

)
1

ps

}
H(s).

Here H(s) is some product over primes. In the routine way, taking loga-
rithms, which is allowed by (8), we verify that the function H(s) is analytic
and bounded for σ ≥ σ0. Dealing with the sum under the exponent, we ex-
ploit the definition of the class M(α). Thus, G(s) has an analytic continua-
tion into the region σ ≥ σ(t), where it is holomorphic and G(s) ≪ (2+|t|)1−δ

for some 0 < δ < 1. Together with (7) and (8) this also implies an analytic
continuation of φ(s; d, f)ζ−β(s) and the estimate

φ(s; d, f)ζ−β(s) = g(s; d, f)G(s) ≪ r(d)(2 + |t|)1−δ
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for σ ≥ σ(t). Since g(1; d, f) = g(d), by Lemma 1 we obtain (4) with
F (β; f) = G(1).

To derive the asymptotic formula (5), we will apply Lemma 1 for

Gα(s) = ζ(s)−α
∞∑

n=1

g(n)

ns
=

∏

p

(
1 − 1

ps

)α(
1 +

∞∑

l=1

g(pl)

pls

)
.

By definition of g(pk), we obtain

Gα(s) =
∏

p

(
1 +

(
1

1 + f(p)
− α

)
1

ps
+

up(s)

p2s

)
,

where |up(s)| ≤ C3 uniformly in σ ≥ 3/4 and p ∈ P. Separating a finite
number of factors, with p ≤ p0, where p0 is sufficiently large, we can ensure
that the remaining factors (for p > p0) do not vanish for σ > 1. So expanding
their logarithms we obtain the representation

Gα(s) = exp

{ ∑

p

(
1

1 + f(p)
− α

)
1

ps

}
H1(s),

where H1(s) is an analytic and bounded function in σ ≥ 3/4. Again, since
f ∈ M(α), having an analytic expansion of the series under the exponent
and the appropriate estimate, we can apply Lemma 1 with M = 1. This
yields

∑

d≤x

g(d) =
x

Γ (α) lnβ x

(
Gα(1) + O

(
1

log x

))
,

where Gα(1) > 0.

It remains to show that Gα(1)F (β; f) = 1, where F (β; f) has been de-
fined in (3). If x(p) := vp(1; f), using α + β = 1, we obtain

Gα(1)F (β; f) =
∏

p

(
1 − 1

p

)(
1 +

1

x(p)

∞∑

l=1

1

pl

∞∑

i=0

f(pi)

T (pl+i)pi

)
x(p)

=
∏

p

(
1 − 1

p

)(
x(p) +

∞∑

i=0

f(pi)

∞∑

j=i+1

1

T (pj)pj

)

=
∏

p

(
1 − 1

p

)(
x(p) +

∞∑

j=1

1

pjT (pj)

j−1∑

i=0

f(pi)

)

=
∏

p

(
1 − 1

p

)(
x(p) +

∞∑

j=1

1

pj
− (x(p) − 1)

)
= 1.

Thus, relation (5) is proved.
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Since f ∈ M(α) implies

∑

p≤x

r(p)

p
=

∑

p≤x

1

p(1 + f(p))
+ O(1) = α log log x + O(1),

the first estimate in (6) is a corollary of Lemma 2. Similarly, we obtain the
second one.

Lemma 3 is proved.

In a similar manner we prove the next lemma.

Lemma 4. If f ∈ M(α), then, for all d ∈ N,

(9)
1

x
Qx(d; I) =

1

Γ (α) logβ x

(
F (α; I)g∗(d) + O

(
r(d)

log x

))
.

Moreover ,

(10)
1

x

∑

d≤x

g∗(d)f(d) =
1

Γ (β)F (α; I) logα x

(
1 + O

(
1

log x

))
.

Proof. We now start with

φ(s; d, I) =
∑

n≥1

1

T (nd)ns

=
∏

pk‖d

( ∞∑

i=0

1

T (pi+k)pis

)( ∞∑

i=0

1

T (pi)pis

)−1

·
∏

p

∞∑

i=0

1

T (pi)pis

= g(s; d, I)φ(s; 1, I).

For the factor appearing in the denominator,

vp(s; I) = 1 +
∞∑

i=1

1

T (pi)pis
,

as in (8), we have

|vp(s; I)| ≥ 1 − 1

3σ − 1
≥ c2 > 0

for every p ≥ 3 if σ ≥ 1 − c3 with sufficiently small c3 < 1. If f(2k) ≡ 0
for k ≥ 1, then |v2(s; I)| = |1 − 2−s|−1 ≥ c4 > 0 in the same region. If
f(2k) = c5 > 0 for some k ≥ 1, then

|v2(s; I)| ≥ 1 − 1

2σ − 1
+

1

2kσ

(
1 − 1

1 + c5

)

for σ > 0. Hence v2(1, I) ≥ c5(1 + c5)
−12−k > 0 which shows that the

continuous function |v2(s, I)| will remain bounded from above by some pos-
itive constant if σ ≥ 1 − c6 with sufficiently small c6. In the following, let
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σ0 = 1−min{c3, c6}. Now, as in the proof of Lemma 3, we derive the estimate

|g(s; d, I)| ≪
∏

p|d

1

1 + f(p)

(
1 +

2

pσ0

)
= r(d)

if σ ≥ σ0.
Further, expanding the logarithms of non-vanishing factors, we obtain

the representation

φ(s; 1, I) = ζα(s) exp

{ ∑

p

(
1

1 + f(p)
− α

)
1

ps

}
H2(s),

where H2(s) is an analytic and bounded function in σ ≥ 3/4. Again, by
Theorem 1, having an analytic expansion of the series under the exponent
and the appropriate estimate, we can apply Lemma 1 with M = r(d). So,
since g(1; d, I) = g∗(d), we obtain (9).

Finally, we examine

Wβ(s) := ζ(s)−β
∞∑

n=1

g∗(n)f(n)

ns
, σ > 1.

By the definition we obtain g∗(p)f(p) = f(p)/T (p) + O(1/p) and

Wβ(s) =
∏

p

(
1 +

(
f(p)

1 + f(p)
− β

)
1

ps
+

wp(s)

p2s

)
,

where wp(s) are bounded for σ ≥ 3/4. By the same argument as when
dealing with Gα(s) earlier, we arrive at the formula

Wβ(s) = exp

{ ∑

p

(
f(p)

1 + f(p)
− β

)
1

ps

}
H3(s),

where H3(s) is analytic in the region σ ≥ 3/4. Since f ∈ M(α), applying
Lemma 1 with z = β and M = 1, we obtain

(11)
∑

k≤x

g∗(k)f(k) =
x

Γ (β) logα x

(
Wβ(1) + O

(
1

log x

))
,

where

Wβ(1) =
∏

p

(
1 − 1

p

)β( ∞∑

i=0

f(pi)g(pi)

pi

)
> 0.

Repeating the similar argument above, we obtain Wβ(1)F (α, 1) = 1. This
and (11) yield the desired equality (10).

Lemma 4 is proved.

4. Proof of Theorem 2. If u ≤ 1/log x or 1 − 1/log x ≤ v ≤ 1, the
assertion of Theorem 2 follows from easy estimates of the tails of a beta
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distribution. Moreover, we can concentrate on the cases: (A) 1/log x ≤ u ≤
1/2 = v and (B) u = 1/2 ≤ v ≤ 1 − 1/log x.

(A) For convenience, in the definition of Sx(u) we replace nu by xu.
The error at this step is negligible. Indeed, checking monotonicity of the
appropriate factors in sums, we have

Rx(u) :=
1

x

∑

n≤x

1

T (n)

∑

d|n
nu<d≤xu

f(d)

=
1

x

∑

d≤xu

f(d)
∑

m≤x/d

m<d(1−u)/u

1

T (md)

≪ 1

x
+

uβ

x

∑

3≤d≤xu

f(d)d(1−u)/u

logβ d

(
g∗(d) + O

(
ur(d)

log d

))

≪ 1

xu logβ x

∑

d≤xu

f(d)g∗(d) +
1

xu log1+β x

∑

d≤xu

f(d)r(d) +
1

x
.

Now, by Lemmas 3 and 4, we obtain Rx(u) ≪ u−α log−1 x uniformly in
1/log x ≤ u ≤ 1/2. Thus,

(12) Sx(u, 1/2) = Ŝx(1/2) − Ŝx(u) + O(u−α log−1 x),

where by Lemma 4,

Ŝx(u) :=
1

x

∑

n≤x

T (n, xu)

T (m)
=

1

x

∑

d≤xu

f(d)
∑

m≤x/d

1

T (md)

=
F (α, I)

Γ (α)

∑

d≤xu

f(d)g∗(d)

d logβ(x/d)
+ O

( ∑

d≤xu

f(d)r(d)

d logβ+1(x/d)

)

=:
F (α, I)

Γ (α)

∑

d≤xu

f(d)g∗(d)

d logβ(x/d)
+ R̂x(u).

In the same region, summing by parts and using (6) we obtain

R̂x(u) ≪ 1

logβ+1 x

(
1

(u log x)α
+

xu\
1

∑

d≤v

f(d)r(d)
dv

v2

)
≪ 1

uα log x
.
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Hence

Γ (α)

F (α, I)
Ŝx(u) =

1

((1 − u) log x)β

1

xu

∑

d≤xu

f(d)g∗(d) + O

(
1

uα log x

)

+

xu\
1

∑

d≤v

f(d)g∗(d)

(
1

v2 logβ(x/v)
+

β

v2 logβ+1(x/v)

)
dv

=

xu\
1

∑

d≤v

f(d)g∗(d)
dv

v2 logβ(x/v)
+ O

(
1

uα log x

)
.

Further applying (10) and (12) we have

Sx(u, 1/2) =
1

Γ (α)Γ (β)

x1/2\
xu

dv

v(logα v) logβ(x/v)

+ O

(
1

uα log x

)
.

Substituting v = xt, we obtain the desired formula for 1/log x ≤ u ≤ 1/2.

(B) Now let 1/2 ≤ v ≤ 1 − 1/log x and

Sx(v) =
1

x

∑

n≤x

T (n, nv)

T (m)

= 1 − 1

x

∑

n≤x

1

T (n)

∑

d|n
d>xv

f(d) − 1

x

∑

n≤x

1

T (n)

∑

d|n
nv<d≤xv

f(d)

=: 1 − Šx(v) − Řx(v).

Set

d(v) = eβv/(1−v) ≤ e−βxβ.

Then by Lemma 4,

Řx(u) =
1

x

( ∑

d≤d(v)

+
∑

d(v)<d≤xv

)
f(d)

∑

m≤d(1−v)/v

1

T (md)

≪ 1

x

∑

d≤d(v)

f(d)

T (d)

+
1

x

∑

d(v)<d≤xv

f(d)
d(1−v)/v

(log d(1−v)/v)β

(
g∗(d) +

r(d)

(1 − v) log d

)
.
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The first sum can be estimated using Lemma 2. Checking that the function
t/logβ t is increasing for t ≥ eβ, we obtain

Řx(u) ≪ 1

x

d(v)

log d(v)
exp

{ ∑

p≤d(v)

f(p)

p(1 + f(p))

}
(13)

+
1

((1 − v) log x)β

1

xv

∑

d≤xv

f(d)(g∗(d) + r(d))

≪ 1

xα
+

1

((1 − v) log x)β logα x
≪ 1

(1 − v)β log x
.

Here we have also used Lemmas 3 and 4.
Dealing with Šx(v) we replace d by n/d. Then applying Lemma 3 we

obtain

Šx(v) =
1

x

∑

d≤x1−v

∑

xv<m≤x/d

f(m)

T (md)

=
F (β; f)

Γ (β)

∑

d≤x1−v

1

d logα(x/d)

(
g(d) + O

(
r(d)

log(x/d)

))

− F (β; f)

Γ (β)x1−v logα xv

∑

d≤x1−v

(
g(d) + O

(
r(d)

log x

))

= − F (β; f)

Γ (β)

x1−v\
1

∑

d≤y

g(d) d

(
1

y logα(x/y)

)

+

( ∑

d≤x1−v

r(d)

d
+

1

x1−v

∑

d≤x1−v

r(d)

)
O

(
1

logα+1 x

)
.

By Lemmas 2 and 3, the terms containing the function r(d) contribute the
error O((1 − v)−β log−1 x), thus, by (13) and Lemma 3 again,

Sx(1/2, v) = Šx(1/2) − Šx(v) + O((1 − v)−β log−1 x)

=
1

Γ (α)Γ (β)

x1/2\
x1−v

(
1 + O

(
1

log y

))
dy

y logβ y logα(x/y)

+ O

(x1/2\
x1−v

dy

y logβ y logα+1(x/y)

)
+ O

(
1

(1 − v)β log x

)
.

Substituting y = xt and recalling our notation, we obtain

Sx(1/2, v) = B(1 − v, 1/2; β, α) + O((1 − v)−β log−1 x)

= B(1/2, v; α, β) + O((1 − v)−β log−1 x).

Theorem 2 is proved.
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5. Proof of Corollary. We will use the properties of the Dirichlet
L(s, χ) functions.

Lemma 5 (see [8, Theorems 4.2, 5.7, and 5.8]). Fix m ∈ N and let χ be

an arbitrary Dirichlet character modulo m. If c3 = c3(m) > 0 is sufficiently

small , in the region σ ≥ 1 − c3/log(|t| + 2), t ∈ R, we have L(s, χ) 6= 0 and

L(s, χ) ≪ log(|t| + 2).

Proof of Corollary. It suffices to show that the function f(m) defined
via al, 1 ≤ l < m and (l, m) = 1, belongs to the class M(α), where α is as
in the Corollary. By classical calculations (see [8, Section 4.3]) we explore
the sum

P (s) :=
∑

p

(
1

1 + f(p)
−α

)
1

ps
=

∑

1≤l<m
(l,m)=1

(
1

1 + al
−α

) ∑

p≡l (modm)

1

ps
+H4(s),

where H4(s) is an entire function corresponding to p |m. In the region de-
fined in Lemma 5, we can use the main branch of log L(s, χ) defined by
L(σ, χ) → 0 as σ → ∞. For σ > 1, we have

log L(s, χ) = −
∑

p

log

(
1 − χ(p)

ps

)−1

=
∑

p

χ(p)

ps
+ H5(s, χ),

with H5(s, χ) holomorphic in σ > 1/2 and bounded in σ ≥ 3/4. By the
orthogonality of characters,

∑

p≡l (modm)

1

ps
=

1

ϕ(m)

∑

χ

χ(l)
∑

p

χ(p)

ps

=
1

ϕ(m)

∑

χ

χ(l)(log L(s, χ) + H5(s, χ)).

Hence

P (s) =
1

ϕ(m)

∑

1≤l<m
(l,m)=1

(
1

1 + al
− α

)∑

χ

χ(l) log L(s, χ) + H6(s)

=
1

ϕ(m)

∑

1≤l<m
(l,m)=1

(
1

1 + al
− α

) ∑

χ 6=χ0

χ(l) log L(s, χ) + H6(s)

with some H6(s) holomorphic and bounded in σ ≥ 3/4. In the last step
we exploited the choice of α and set χ0 to be the principal character. By
Lemma 5 the last equality gives the desired analytic continuation of P (s)
into the region σ ≥ 1− c3/log(2+ |t|) where P (s) is holomorphic. Moreover,
by Lemma 5, in the same region we obtain P (s) ≪ log log(3 + |t|), where
the constant in ≪ depends also on m and the constants al.
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Consequently, f(m) ∈ M(α) and the assertion of the Corollary follow
from the theorems.
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