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Abstract A class of random weakly logarithmic combinatorial assemblies is
explored in the paper. We extend total variation approximations for the distribution
of component vector of a random structure. That leads to the probabilistic approach
suitable to examine the asymptotic value distribution of additive functions defined on
such assemblies with the component sizes restricted to a given set. The results gen-
eralize several investigations of random�-permutations and their extensions to other
structures obtained mainly by the Russian mathematicians. Instead of the most popular
approach based upon the Tauber type theorems, we develop a comparative asymptoti-
cal analysis of coefficients of two Taylor series. Demonstrating possible applications,
we obtain necessary and sufficient conditions for the weak convergence of processes
defined via partial sums of an additive function to the Brownian motion.
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1 Introduction

The present paper is motivated by many recent works on the so-called �-permuta-
tions. The latest and comprehensive list of references is presented in the book by
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A.L.Yakymiv [21]. To give an impression, we include here the main results of the
paper [20].

Let � ⊂ N be a fixed set, Sn be the symmetric group of permutations of order n,
and Tn ⊂ Sn be the subset of permutations which can be decomposed into a product
of cycles with lengths in�. A σ ∈ Tn is called an�-permutation. Maybe, the simplest
instance of the �-permutations is the set {σ ∈ Sn : σ d = I }, where d ∈ N and I
denotes the identity permutation. For this class of permutations � is just the set of
natural divisors of d.

Set �n = {k ∈ � : k ≤ n}, l(n) = ∑
k∈�n

1/k, and ν(�)n (. . . ) = |Tn|−1|{σ ∈
Tn : . . . }|. By w(�)(σ ) we denote the number of cycles of σ ∈ Tn . Let γ and �(z)
stand for the Euler constant and the Euler function. In the sequel, all limits, if not
indicated otherwise, are taken as n → ∞.

Theorem (Yakymiv, 89) If for some a, 0 < a ≤ 1,

(i) |�n|/n → a
and, for arbitrary C0 > 1,

(ii) |{k ∈ �n, m − k ∈ �}|/n → a2 uniformly in m ∈ [n,C0n],
then

|Tn| ∼ n!na−1L(n)e−aγ /�(a), (1)

where

L(n) = exp {l(n)− a log n}

is slowly oscillating at infinity.
Moreover,

ν(�)n

(
w(�)(σ )− l(n) < x

√
a log n

)
→ �(x) =: 1√

2π

x∫

−∞
e−u2/2du (2)

uniformly in x ∈ R.

The proofs (see [20] or [21]) are based upon some Tauber theorems therefore one
can hardly avoid conditions (i) and (ii).

In a similar manner, probabilistic problems on subsets of other combinatorial struc-
tures have been examined. For instance, Sachkov [16] (see also [17]) initiated the
research on the random mappings of a finite set into itself with some restrictions on
the components. The list of references could be further continued. So far, the main
feature of such results is the use of some regularity condition on the set of sizes of com-
ponents comprising these structures. Under this condition, the cardinality of structures
of size n, as |Tn| in the instance above, behaves regularly.

On the other hand, as it is shown in [12], asymptotic formulas like (1) are not nec-
essary for the limit relations analogous to (2). However, the paper [12] does not cover
the mentioned works on random �-mappings and other similar subsequent studies
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of structures with component restrictions as well (see bibliography given in [21]).
We now refine our approach to explore the value distribution of functions defined on
subsets of combinatorial structures even when their cardinalities are irregular.

Let us discuss the general decomposable combinatorial structures called assem-
blies and keep the terminology presented in the book [2]. If Q is a class of labeled
combinatorial structures �i , i ≥ 1, with the exponential generating series

Q(z) =
∑

j≥1

q j

j ! z j ,

where q j denotes the number of structures in Q of size j , then an assembly σ (in the
instance above, a permutation) is a finite collection of �i relabeled in an appropriate
way. For�-permutations, Q is just the set of cycles, thus, q j = ( j − 1)! if j ∈ � and
or q j = 0 otherwise. If An denotes the class of assemblies of size n,A0 = {∅}, then
all information about enumeration of structures lays in the formal equality

∞∑

n=0

|An|
n! zn = exp {Q(z)}.

Each σ ∈ An is characterized by the component vector k̄(σ ) = (k1(σ ), . . . , kn(σ )),
where k j (σ ) ≥ 0 is the number of components of size j in σ . Hence 	

(
k̄(σ )

) :=
1k1(σ )+ · · · + nkn(σ ) ≡ n for σ ∈ An .

To begin a probabilistic theory, we introduce a weighted measure ν(w)n on An . For
a sequence w j ≥ 0, 1 ≤ j ≤ n, set

w(σ) =
n∏

j=1

w
k j (σ )

j , 00 := 1, Wn =
∑

σ∈An

w(σ),

and

ν(w)n ({σ }) = w(σ)W −1
n , σ ∈ An,

and extend it additively on all subsets of An . So, taking, for instance,w j = 0 orw j = 1
we define the uniform probability measure on the subset of assemblies with the com-
ponent size restrictions. In other words, the probabilistic theory of �-permutations
can be treated as a particular case of the theory on the whole symmetric group with
respect to some weighted probability measure.

The component vector k̄(σ ), σ ∈ An , has the following distribution:

νn(k̄(σ ) = s̄) = 1{	(s̄) = n} n!
Wn

n∏

j=1

1

s j !
(

q jw j

j !
)s j

,
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where s̄ = (s1, . . . , sn) ∈ Z
n+. This leads to the Conditioning Relation

ν(w)n (k̄(σ ) = s̄) = P
(
ξ̄ = s̄|	(ξ̄ ) = n

)
, (3)

where ξ̄ := (ξ1, . . . , ξn) and ξ j , j ≥ 1, are mutually independent Poisson r.vs defined
on some probability space {�,F ,P} with Eξ j = u j q jw j/j !, j ≥ 1, where u > 0
is an arbitrary number. If q jw j = 0 the corresponding ξ j becomes the degenerated
at the zero point random variable. Formula (3) generalizes (2.29) in [2] (p 59), where
w j ≡ w �= 0, j ≥ 1, is assumed; their proofs are the same, however. Simplifying the
notation we introduce the following class of assemblies.

Definition Let An be a set of assemblies of size n ≥ 1, and µn be a probability mea-
sure on An . The pair (An, µn) is called weakly logarithmic if the following conditions
are satisfied:

(I) there exists a random vector ξ̄ = (ξ1, . . . , ξn) with mutually independent pois-
sonian coordinates, Eξ j =: λ j ≥ 0, and such that

µn(k̄(σ ) = s̄) = P
(
ξ̄ = s̄|	(ξ̄ ) = n

)

for each s̄ ∈ Z
n+;

and
(II) there exist positive constants 
, θ0, θ1, and N such that

d j := jλ j ≤ 
 (4)

for all 1 ≤ j ≤ n and, for n > N ,
∑

j≤u

d j ≥ θ0u (5)

uniformly in u, N ≤ u ≤ n, and

θ1(v) := min
0≤k≤vn

∑

k<m<n

dm−kdn−m

m
≥ θ1 > 0 (6)

for some fixed 0 < v < 1.

The class of�-permutations satisfying conditions (i) and (ii) above is weakly log-
arithmic because then d j = 1 if j ∈ � and d j = 0 otherwise. Moreover, condition (i)
implies (5) and, from (ii), we obtain

θ1(v) ≥ 1

n
min

0≤k≤vn

∑

1≤ j<n−k

d j dn−k− j

≥ (1 − v) min
(1−v)n≤m≤n

1

m

∑

1≤ j<m

d j dm− j

≥ (1 − v)a2/2 > 0

for each 0 < v < 1 if n is sufficiently large.
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In our notation, the logarithmic class of assemblies investigated in [2] is reckoned
by the relation d j ∼ 
2 for some constant 
2 > 0 as j → ∞. Stark [18,19] has
examined assemblies under an analytic condition. He assumed that

Q(z) = −
2 log(1 − z)+ Q1(z),

where Q1(z) is an analytic in the unit disk function having an analytic continuation
to some specific region outside it. That also implies asymptotically regular behavior
of d j as j → ∞ and, consequently, regularity of |An|. In [12,13], we dealt with the
case when 0 < θ0 ≤ d j ≤ 
 for all 1 ≤ j ≤ n. So, the Definition is rather gen-
eral. Moreover, and maybe, that is even more interesting, the conditions in Definition
allow us to take parameters d j , 1 ≤ j ≤ n, depending on n. Consequently, it extends
classes of �-permutations allowing � to vary together with n. Observe that sparse
subsets of assemblies such as {σ = τ r : τ ∈ Sn}, r ≥ 2, in the case of permutations,
investigated, for instance, in [22], do not satisfy condition (II).

The main result of this paper is a total variation approximation. Let L(X) be the
distribution of a r. v. X with respect to the appropriate probability measure. After-
wards the index r, 1 ≤ r ≤ n, added to the vectors k̄(σ ) and ξ̄ will denote that only
the first r coordinates are taken. Let x+ = max{x, 0} for x ∈ R and � be an analog of
the symbol O(·). Afterwards, all further involved constants c, c1, . . . ,C,C1, . . ., and
those hidden in various symbols, if not stated otherwise, depend only on
, θ0, θ1, v,
and N in the Definition.

Theorem 1 Let (An, µn) be weakly logarithmic and n ≥ 1. There exists a constant
c, 0 < c ≤ 1/2, such that

ρT V
(L (k̄r (σ )

)
,L(ξ̄r )

) :=
∑

s̄∈Z
r+

(
µn

(
k̄r (σ ) = s̄

)− P(ξ̄r = s̄)
)
+ �

( r

n

)c
(7)

uniformly in 1 ≤ r ≤ n.

Theorem 1 deserves the title Fundamental Lemma which is used sometimes. It
reduces the value distribution problem for an arbitrary mapping defined on An via
k̄r (σ ), where r = o(n), to a problem for independent r vs. It is impossible (see [2]) to
extend this transfer if the coordinates of k̄(σ ) with large indexes are involved. Some-
times in such the cases, it suffices to apply inequalities for conditional probabilities.
This idea goes back to probabilistic number theory, in particular, to Ruzsa’s paper
[15]. It proved to be useful for permutations [3,8], for the logarithmic assemblies [14],
and their generalizations [13] as well. We now extend the same principle.

Firstly, we introduce some notation taken from the theory of euclidean spaces. For
two vectors s̄ = (s1, . . . , sn) and t̄ = (t1, . . . , tn) from the semi-lattice Z

n+, we set
s̄ ⊥ t̄ if s1t1 + · · · + sntn = 0 and write s̄ ≤ t̄ if s j ≤ t j for each j ≤ n. Further, we
adopt the notation s̄ ‖ t̄ for the expression “s̄ exactly enters t̄” which means that s̄ ≤ t̄
and s̄ ⊥ t̄ − s̄. For a subset U ⊂ Z

n+, we define its extension

V = V (U ) = {s̄ = t̄ (1) + t̄ (2) − t̄ (3) : t̄ (1), t̄ (2), t̄ (3) ∈ U,

t̄ (1) ⊥ (t̄ (2) − t̄ (3)), t̄ (3) ‖ t̄ (2)}. (8)

Set also θ = min{1, θ0}.
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Theorem 2 Let (An, µn) be weakly logarithmic, n ≥ 1, and ξ̄ be the poissonian
random vector introduced in the Definition. For arbitrary U ⊂ Z

n+,

µn
(
k̄(σ ) �∈ V

) = P
(
ξ̄ �∈ V | 	(ξ̄ ) = n

) � Pθ (ξ̄ �∈ U )+ 1{θ < 1}n−θ .

Theorems 1 and 2 are the basic tools to prove general limit theorems for additive
functions defined on An . To save some space, we now recall their general definition.
Let (G,+) be an abelian group and h j (s), j, s ≥ 1, be a two-dimensional array in G

and h j (0) ≡ 0. Then an additive function h : An → G is defined by

h(σ ) =
∑

j≤n

h j
(
k j (σ )

)
. (9)

If h j (s) = a j s for some a j ∈ G, where j, s ≥ 1, then the function h(σ ) is called
completely additive. So far, several one-dimensional limit theorems for h(σ ) were
proved (see, for instance, [2], Section 8.5 or [12]). A lot of attention has been paid to
the weak convergence of random combinatorial processes (see [3–5,9,10], and [2],
Section 8.1). Partial cases of Theorems 1 and 2 have also been applied to examine the
strong convergence of truncated sums of additive functions and to prove the iterated
logarithm laws (see [13] or [14] and the references therein).

We now generalize the weak invariance principle establishing necessary and suffi-
cient conditions. The result extends to the class of weakly logarithmic assemblies the
corresponding functional limit theorems obtained for permutations [3] and all map-
pings of a finite set into itself [9]. Unfortunately, it does not cover theorems presented in
Chapter 8 of [2] where stronger types of convergence are explored. Avoiding technical
difficulties, we fix the class of weakly logarithmic assemblies, e.g. we assume that the
sequencesλ j , d j , j ≥ 1, in the Definition do not depend on n. Let h j (k) ∈ R, j, k ≥ 1,
be an arbitrary two-dimensional sequence, also not depending on n, h j (0) ≡ 0, and
a j := h j (1) for j ≥ 1. Set

B2( j) =
∑

i≤ j

a2
i λi , τnj = B2( j)

B2(n)
, τn0 = 0, anj = a j

B(n)
,

Ĥn := Ĥn(σ, t) =
∑

j,τnj ≤t

anj
(
k j (σ )− λ j

)
,

H̃n := H̃n(σ, t) = 1

B(n)

∑

j,τnj ≤t

(
h j (k j (σ ))− a jλ j

)
,

and

Xn := Xn(t) =
∑

j,τnj ≤t

anj (ξ j − λ j ),

where 0 ≤ t ≤ 1. Let Hn be either of the processes Ĥn or H̃n . All just defined
trajectories belong to the D[0, 1] space (see [6]). We consider the weak convergence
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(denoted afterwards by ⇒) of the process Hn to the standard Brownian motion, e.g.
the weak convergence of distributions µn ◦ H−1

n to the Wiener measure W concen-
trated on the space C[0, 1]. In the case of such limiting measure, it is natural to use the
uniform metric in D[0, 1]. Of course, taking the linearized versions of the processes,
one could equivalently examine convergence in C[0, 1].
Theorem 3 Let (An, µn) satisfy the conditions in Definition and, in addition, let
θ1(v) → ∞ as v → 0. Assume that B(n) → ∞. The following assertions are
equivalent:

(I1) µn ◦ H−1
n ⇒ W ;

(I2) P ◦ X−1
n ⇒ W ;

(I3)

∑

j≤n

1{|anj | ≥ ε}a2
njλ j = o(1)

for every ε > 0.

It is worth to recall [4] that, in general, (I3) is not necessary for the one-dimensional
convergence of µn ◦ H−1

n (·, 1) to the standard normal distribution.

2 Proof of Theorem 1

The first lemma reduces the problem to a one-dimensional case. For s̄ = (s1, . . . , sn),
set 	i j (s̄) = (i + 1)si+1 + · · · + js j if 0 ≤ i < j ≤ n. Moreover, let 	r (s̄) := 	0r (s̄),
where 1 ≤ r ≤ n. Then 	n(s̄) = 	(s̄).

Lemma 1 We have

ρT V
(L (k̄r (σ )

)
,L(ξ̄r )

) = ρT V
(L (ξ̄r |	(ξ̄ ) = n

)
,L (ξ̄r

))

=
∑

m∈Z+

P
(
	r (ξ̄ ) = m

)
(

1 − P
(
	rn(ξ̄ ) = n − m

)

P
(
	(ξ̄ ) = n

)

)

+
(10)

Proof See [1] or [2], p. 69.

Since

P
(
	rn(ξ̄ ) = m

) = 1

2π i

∫

|z|=1

1

zm
exp

⎧
⎨

⎩

∑

r< j≤n

λ j (z
j − 1)

⎫
⎬

⎭
dz, (11)

we can apply the comparative analysis of the Taylor coefficients developed in [11,13].
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For an arbitrary sequence d j = d j (n) ≥ 0, 1 ≤ j ≤ n, and 0 ≤ r ≤ n, we
introduce the following functions

D(z) := exp

⎧
⎨

⎩

∑

j≤n

d j

j
z j

⎫
⎬

⎭
=:

∞∑

s=0

Ds zs

and

F(z) := exp

⎧
⎨

⎩

∑

r< j≤n

d j

j
z j

⎫
⎬

⎭
=:

∞∑

s=0

Fs zs .

Set

er = exp

⎧
⎨

⎩
−
∑

j≤r

d j

j

⎫
⎬

⎭
.

Proposition Assume that condition (II) in the Definition is satisfied. There exist
n0 ≥ N , 0 < δ0 ≤ 1/2, and c1 > 0 such that, for every 1/n ≤ δ ≤ δ0, n ≥ n0, and
0 ≤ η ≤ 1/2,

Fm/(er Dn)− 1 � (η + (r/n)1{r ≥ 1}) δ−1 + δc1

uniformly in

0 ≤ r ≤ δn, n(1 − η) ≤ m ≤ n. (12)

The constant in � depends only on n0, δ0, and c1.

The Proposition will be proved in the next section. Using it, we now afford the first
task.

Proof of Theorem 1 If λ j = d j/j , then, by (11) and our notation,

P
(
	rn(ξ̄ ) = n − m

) = Fn−m

er D(1)
, P

(
	(ξ̄ ) = n

) = Dn

D(1)
. (13)

Let n0, δ0 and c1 be as in the Proposition. For n ≥ n0 and 1 ≤ r ≤ δ
2(1+c1)
0 n =: c2n,

we can choose

η = √
r/n, δ = (r/n)1/2(1+c1)

to obtain

P
(
	rn(ξ̄ ) = n − m

)

P
(
	(ξ̄ ) = n

) − 1 �
( r

n

)c1/2(1+c1) =:
( r

n

)c3

uniformly in 0 ≤ m ≤ ηn = √
rn.
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The summands over m >
√

rn in (10) contribute not more than

(rn)−1/2E	r (ξ̄ ) = (rn)−1/2
∑

j≤r

jλ j ≤ 
(r/n)1/2.

Hence, by (10), we obtain

ρT V
(L (k̄r (σ )

)
,L(ξ̄r )

) � (r/n)c,

where c := min{1/2, c3} = c3 and 1 ≤ r ≤ c2n. Since the claim of Theorem 1 is
trivial for n ≤ n0 or c2n ≤ r ≤ n, we complete the proof.

3 Proof of Proposition

We can follow the path drawn up in our papers [11,13]. In the sequel some of the
steps are repeated, however, due to the weaker conditions than that used previously,
the calculations become more cumbersome. As in [13], we introduce the following
notation. Let K = K (n), 1 ≤ max{δn, N } < K ≤ n, to be chosen later. For a fixed
0 < α < 1, we set

G(z) : =
∑

r< j≤n

d j z
j−1, G1(z) = exp

⎧
⎨

⎩
α

∑

r< j≤K

d j

j
z j

⎫
⎬

⎭
,

G2(z) = exp

⎧
⎨

⎩
−α

∑

K< j≤n

d j

j
z j

⎫
⎬

⎭
, G3(z) = Fα(z)− G1(z).

Denote by [zk]V (z) the kth Taylor coefficient of a function V (z) analytic at zero and
observe that

[zk]G3(z) ≤ [zk]Fα(z) (14)

for each k ≥ 0.
Set T = C(δn)−1, where C > 0 is a constant to be chosen later,

� = {z = ei t : T < |t | ≤ π}, �0 = {z = ei t : |t | ≤ T }.
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We start from the following identity

Fm = 1

2π im

∫

|z|=1

F ′(z)
zm

dz

= 1

2π im

⎛

⎜
⎝

∫

�0

+
∫

�

⎞

⎟
⎠

F ′(z) (1 − G2(z))

zm
dz

+ 1

2π im

∫

|z|=1

F ′(z)G2(z)

zm
dz =: J0 + J1 + J2. (15)

In the proof of Proposition, there are two milestones. Firstly, we have to estimate
the integrals J1 and J2. Secondly, changing the integrand, we have to reduce J0 to the
main term of an asymptotical formula for er Dn . The technical details are hidden in a
few lemmas.

Lemma 2 If conditions (4) and (6) are satisfied, then there exist n0 ≥ 1 and c4 > 0
such that

c4 D(1) ≤ nDn ≤ 
D(1) (16)

for all n ≥ n0.

Proof Differentiating the function D(z) we obtain

s Ds =
s−1∑

m=0

Dmds−m, s ≥ 1. (17)

Consequently, the second inequality in (16) follows from (4). Similarly, by condition
(6), using repeatedly (17), we obtain

nDn = dn +
n−1∑

m=1

dn−m

(
1

m

m−1∑

k=0

Dkdm−k

)

= dn +
n−2∑

k=0

Dk

n−1∑

m=k+1

dn−mdm−k

m

≥ θ1(v)
∑

k≤vn

Dk ≥ θ1

∑

k≤vn

Dk . (18)
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To substitute D(1) for the last sum, we take an arbitrary 0 < x < 1. Then

D(x) ≤
∑

k≤vn

Dk + x D′(x)
vn

D(x)

D(x)

=
∑

k≤vn

Dk + D(x)

vn

∑

j≤n

d j x j

≤
∑

k≤vn

Dk + 
D(x)

(1 − x)vn
.

Hence

∑

k≤vn

Dk ≥ D(x)

(

1 − 


(1 − x)vn

)

Now we choose x = e−2
/vn . If n ≥ max{4
/v, 1} = n0, applying the inequalities
te−t ≤ 1 − e−t ≤ t if t ≥ 0, we obtain

∑

k≤vn

Dk ≥ D(e−2
/vn)

(

1 − 1

2
e2
/vn

)

≥
(

1 −
√

e

2

)

exp

⎧
⎨

⎩

∑

j≤n

d j

j

(
1 + (e−2
j/vn − 1)

)

≥ (1 − √
e/2)D(1) exp{−2
2v−1} = c5 D(1).

Recalling (18), we see that the left-hand inequality in (16) holds with c4 = θ1c5.
The lemma is proved.

Lemma 3 Let T = C(δn)−1 ≤ 1. If conditions (4) and (5) are satisfied, then there
exist sufficiently small positive constants c6 and δ0, and sufficiently large C such that

min
T ≤t≤π

∑

δn< j≤n

d j (1 − cos t j)

j
≥ c6 log

1

δ

and

max
T ≤t≤π

∣
∣
∣F(ei t )

∣
∣
∣ � er D(1)δc6

for δ ≤ δ0.

Proof Let 0 < ε < 1 be arbitrary but sufficiently small so that a := a(ε) = arccos(1−
ε) ≤ 1/2, y1(k) = (2πk − a)/t , and y2(k) = (2πk + a)/t . If N = [(nt + a)/(2π)]
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and M = �(δnt − a)/(2π)�, then

Sδn(t) :=
∑

δn< j≤n

d j (1 − cos t j)

j
≥ ε

N−1∑

k=M

∑

y2(k)< j≤y1(k+1)

d j

j

= ε
∑

y1(M)< j≤y2(N )

d j

j
− ε

N∑

k=M

∑

y1(k)< j≤y2(k)

d j

j

=: ε�1 − ε�2.

By virtue of conditions (4) and (5), for arbitrary N ≤ x < y,

�(x, y) :=
∑

x< j≤y

d j

j
=

y∫

x

1

u
d

⎛

⎝
∑

j≤u

d j

⎞

⎠

= 1

y

∑

j≤y

d j − 1

x

∑

j≤x

d j +
y∫

x

⎛

⎝
∑

j≤u

d j

⎞

⎠ du

u2

≥ θ0 log
y

x
−
. (19)

Hence

�1 = �(y1(M), y2(N )) ≥ θ0 log
1

δ
− C1

provided that y1(M) ≥ N . This can be assured by a choice of C .
Further, exploiting the well-known four terms expansion for the harmonic numbers,

we obtain

�2 ≤ 


N∑

k=M

∑

y1(k)< j≤y2(k)

1

j

≤ 


N∑

k=M

(

log
y2(k)

y1(k)
+ O

(
1

y2
1 (k)

))

= 


N∑

k=M

(

log

(

1 + 2a

2πk − a

)

+ O

(
1

k2

))

= 
a

π
log

N

M
+ C2 ≤ 
a

π
log

1

δ
+ C3.

Returning to the initial sum, we have

Sδn(t) ≥ ε

(

θ0 − 
a

π

)

log
1

δ
− C4 ≥ εθ0

4
log

1

δ
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uniformly in T ≤ t ≤ π provided that ε is chosen so small that a = a(ε) ≤ θ0π/2

and δ ≤ δ0, where log(1/δ0) ≥ 4C4/(εθ0).

To prove the second claim of the lemma, it suffices to apply the relation

|F(ei t )|
D(1)

= er exp

⎧
⎨

⎩

∑

r< j≤n

d j (cos t j − 1)

j

⎫
⎬

⎭
≤ er exp {−Sδn(t)} .

The lemma is proved.

Lemma 4 Assume that conditions (4) and (6) are satisfied. If 0 < α < 1, 1 ≤ δn <
K < n, and n ≥ n0, then

J2 � Dner (K/n)αθ0

uniformly in 0 ≤ r ≤ δn and n/2 ≤ m ≤ n.

Proof For brevity, let

us := [zs]G1(z), vl := [zl ]F1−α(z), s, l ≥ 0.

Since

F ′(z)G2(z) = G(z)G1(z)F
1−α(z),

from Cauchy’s formula, we have

J2 = 1

2π im

∫

|z|=1

G(z)G1(z)F
1−α(z) dz

zm

= 1

m

∑

r< j≤m

d j

∑

s+l=m− j

usvl .

Hence, by condition (4),

|J2| ≤ 2


n

∑

s≤n

us

∑

l≤n

vl

≤ 2


n
F1−α(1)G1(1) = 2
F(1)

n
exp

⎧
⎨

⎩
−α

∑

K< j≤n

d j

j

⎫
⎬

⎭

≤ 2
D(1)er

n
exp {−α�(K , n)} � Dner (K/n)αθ0

by (19) and Lemma 2.
The lemma is proved.
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Lemma 5 Assume that conditions (4) and (5) are satisfied. Let 0 < α < 1 be
arbitrary, δ0 be as in Lemma 3, 1 ≤ δn < K < N , δ ≤ δ0, and n ≥ n0. Then

J1 � er nDn

K
δc6(1−α)

uniformly in r, 0 ≤ r ≤ δn, and m, n/2 ≤ m ≤ n.

Proof Recalling the previous notation we can rewrite

J1 = 1

2π im

∫

�

G(z)F1−α(z)G3(z)
dz

zm
.

Hence, by Lemma 3, if δ ≤ δ0,

J1 � n−1 max
z∈� |F(z)|1−α

∫

|z|=1

|G(z)| |G3(z)| |dz|

� n−1 (er D(1)δc6
)1−α

⎛

⎜
⎝

∫

|z|=1

|G(z)|2 |dz|
⎞

⎟
⎠

1/2

×
⎛

⎜
⎝

∫

|z|=1

|G3(z)|2|dz|
⎞

⎟
⎠

1/2

.

By Parseval’s equality,

∫

|z|=1

|G(z)|2 |dz| = 2π
∑

r< j≤n

d2
j ≤ 2π
2n

and, recalling (14),
∫

|z|=1

|G3(z)|2|dz| ≤ 2π
∑

l>K

(
[zl ]G3(z)

)2

≤ 2π

K 2

∞∑

l=1

l2
(
[zl ]Fα(z)

)2 � 1

K 2

∫

|z|=1

∣
∣(Fα(z))′

∣
∣2 |dz|

� (er D(1))2α

K 2

∫

|z|=1

|G(z)|2|dz| � (er D(1))2αn

K 2 .

Collecting the last three estimates by Lemma 2 we obtain the desired claim.
Lemma 5 is proved.

We now arrive at the first milestone.
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Lemma 6 Let condition (II) in the Definition be satisfied and δ0 be as in Lemma 3. If
δ ≤ δ0 and n ≥ n0, then there exists a positive constant c7 such that

Fm = J0 + O
(
er Dnδ

c7
)

(20)

uniformly in 0 ≤ r ≤ δn and n/2 ≤ m ≤ n. Moreover,

Dn = 1

2π in

∫

�0

D′(z)dz

zn
+ O

(
Dnδ

c7
)
. (21)

Proof It suffices to apply Lemmas 4 and 5 with K = δc(α)n, where

c(α) := min{1, c6(1 − α)/(αθ0 + 1)}.

Then

Fm = J0 + O
(

er Dnδ
θ0αc(α)

)

with the needed uniformity. The constant c7 := sup{θ0αc(α) : 0 < α < 1} would be
the best choice.

To obtain (21), use (20) with r = 0 and m = n.
Lemma 6 is proved.

Lemma 7 Assume that condition (II) in the Definition is satisfied, δ0 is defined in
Lemma 3, 1/n ≤ δ ≤ δ0, and n ≥ n0. If 0 ≤ η ≤ 1/2 is arbitrary, then

J0 = er Dn

(
1 + O

(
(η + (r/n)1{r ≥ 1}) δ−1 + δc7

))

uniformly in n(1 − η) ≤ m ≤ n and 0 ≤ r ≤ δn.

Proof If z ∈ �0 and r ≥ 1, then, by condition (4),

F ′(z) = er D(z) exp

⎧
⎨

⎩
−
∑

j≤r

d j

j
(z j − 1)

⎫
⎬

⎭
G(z)

= er D(z)
(

1 + O
( r

δn

))
⎛

⎝
∑

j≤n

−
∑

j≤r

⎞

⎠ d j z
j−1

= er D′(z) (1 + O (r/δn))+ O (rer D(1))

and

z−m = z−n
(

1 + O(ηδ−1)
)
.
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Consequently, by virtue of m−1 = n−1 (1 + O(η)), from Lemma 2, and (18), we
obtain

J0 = er

2π in

(

1 + O

(( r

n
+ η

) 1

δ

))∫

�0

D′(z)dz

zn
+ O

(
er Dn

r

δn

)

= er Dn

(
1 + O

(
(r/n + η)δ−1 + δc7

))
.

If r < 1, the terms with the fraction r/n do not appear.
The lemma is proved.

Proof of Proposition Apply (20) and the last lemma.

4 Proof of Theorem 2 and Corollaries

Set Z
n+(m) = {s̄ ∈ Z

n+ : 	(s̄) = m} where 0 ≤ m ≤ n. For arbitrary distributions
p j (k), 1 ≤ j ≤ n, on Z+ we define the product measure on Z

n+ by

P({k̄}) =
∏

j≤n

p j (k j ), k̄ = (k1, . . . , ks) ∈ Z
n+.

Denote for brevity Pn = P(Zn+(n)). Let V = V (U ) be the extension of an arbitrary
subset U ⊂ Z

n+ defined in (8) and U := Z
n+(m)\U .

Lemma 8 Suppose n ≥ 1 and there exist positive constants α1, α2, β1, β2 such that

(i) p j (0) ≥ α1 for all 1 ≤ j ≤ n;
(ii) P

(
Z

n+(m)
) ≤ β1

(
n

m+1

)1−θ
Pn for 0 ≤ m ≤ n − 1 and for some 0 < θ ≤ 1;

(iii) Pn ≥ α2n−1;
(iv) for 1 ≤ m ≤ n,

∑

k j=m

p j (k)

p j (0)
≤ β2

m
.

Then

P
(
V |Zn+(m)

) � Pθ (U )+ n−θ1{θ < 1},

where the constant in � depends on the constants given in the conditions only.

Proof See [3], Appendix.
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Proof of Theorem 2 It suffices to verify that condition (II) in the Definition implies
relations (i)–(iv) of the last lemma for the poissonian probabilities p j (k) with param-
eters λ j . By virtue of (4), requirements (i) and (iv) are trivial. Further, we find

P
(
Z

n+(m)
) = P

⎛

⎝
m∑

j=1

jξ j = m, ξm+1 = 0, . . . , ξn = 0

⎞

⎠

= exp

⎧
⎨

⎩
−

n∑

j=1

λ j

⎫
⎬

⎭

∑

	m (k̄)=m

m∏

j=1

λ
k j
j

k j !

= exp

⎧
⎨

⎩
−

n∑

j=1

λ j

⎫
⎬

⎭
[zm] exp

⎧
⎨

⎩

∑

j≤m

λ j z
j

⎫
⎬

⎭
, 0 ≤ m ≤ n.

Let a � b mean a � b � a. If θ0 ≤ 1, applying Lemma 2 with m instead of n and
(19), we obtain

P
(
Z

n+(m)
) � 1

m + 1
exp

⎧
⎨

⎩
−

∑

m< j≤n

d j

j

⎫
⎬

⎭
� 1

m + 1

(
m + 1

n

)θ0

for 0 ≤ m ≤ n. For m = n, this gives Pn � n−1 and, further, relation (ii) with
θ = min{1, θ0} as well.

The theorem is proved.

The following corollaries of Theorem 2 are of independent interest.

Corollary 1 Let (G,+) be an abelian group and h : An → G be an additive function.
Uniformly in A ⊂ G,

µn (h(σ ) �∈ A + A − A) � Pθ

⎛

⎝
∑

j≤n

h j (ξ j ) �∈ A

⎞

⎠+ 1{θ < 1}n−θ .

Proof Apply Theorem 2 for

U = {
t̄ ∈ Z

n+ : H(t̄) ∈ A
}
,

where H(t̄) := ∑
j≤n h j (t j ), t̄ = (t1, . . . , tn), and check that

V (U ) ⊂ {
s̄ ∈ Z

n+ : H(s̄) ∈ A + A − A
}
.

Now

µn (h(σ ) �∈ A + A − A) = P
(
H(ξ̄ ) �∈ A + A − A| 	(ξ̄ ) = n

)

≤ P
(
ξ̄ �∈ V (U )| 	(ξ̄ ) = n

)

� Pθ
(
ξ̄ �∈ U

)+ 1{θ < 1}n−θ

= Pθ
(
H(ξ̄ ) �∈ A

)+ 1{θ < 1}n−θ .

Corollary 1 is proved.
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Corollary 2 Let h : An → R be an additive function. Uniformly in x ∈ R and y ≥ 0,

µn (|h(σ )− x | ≥ y) � Pθ

⎛

⎝

∣
∣
∣
∣
∣
∣

∑

j≤n

h j (ξ j )− x

∣
∣
∣
∣
∣
∣
≥ y/3

⎞

⎠+ 1{θ < 1}n−θ .

Proof Apply the previous corollary for G = R with A = {t : |t − x | ≤ y/3}.
Theorem 2, applied for the vector-valued additive function (h(σ, 1), . . . , h(σ, n)) ∈

R
n , where

h(σ,m) :=
∑

j≤m

h j
(
k j (σ )

)
, 1 ≤ m ≤ n,

leads to analogs of Kolmogorov’s and Lévy’s inequalities.

Corollary 3 Uniformly in x(m) ∈ R, 1 ≤ m ≤ n, and y ≥ 0,

µn

(

max
1≤m≤n

|h(σ,m)− x(m)| ≥ y

)

� Pθ

⎛

⎝ max
1≤m≤n

∣
∣
∣
∣
∣
∣

∑

j≤m

h j (ξ j )− x(m)

∣
∣
∣
∣
∣
∣
≥ y/3

⎞

⎠+ 1{θ < 1}n−θ .

Proof Apply Corollary 1 for G = R
n and A = {t̄ ∈ R

n : ||t̄ − x̄ || ≤ y/3}, where
x̄ ∈ R

n and || · || is the maximum norm.

5 Proof of Theorem 3

The very idea goes back to [3,9], or even to some earlier author’s number-theoretic
papers.

Firstly, we observe that the measures µn ◦ Ĥ−1
n and µn ◦ H̃−1

n can only converge
simultaneously. Indeed, if δ > 0 and K > 2 are arbitrary, then, by Corollary 3 of
Theorem 3 and by virtue of λ j ≤ 
/j and B(n) → ∞, we have

µn(δ) := µn

(

sup
0≤t≤1

∣
∣Ĥn(σ, t)− H̃n(σ, t)

∣
∣ > δ

)

� Pθ
(∃ j ≤ K : ξ j ≥ K

)+ Pθ
(∃ j ≥ K : ξ j ≥ 2

)

+Pθ

⎛

⎝
∑

j≤K

(|h j (ξ j )| + |a j |ξ j
) ≥ δB(n)/3, ξ j ≤ K ∀ j ≤ K

⎞

⎠+ o(1)

�
⎛

⎝
∑

j≤K

∑

k≥K

λk
j

k!

⎞

⎠

θ

+
⎛

⎝
∑

j≥K

∑

k≥2

λ j

k!

⎞

⎠

θ

+ oK (1)

� K −θ + oK (1).
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This yields that µn(δ) = o(1) for each δ > 0. Thus, from now on we may analyze the
processes Ĥn omitting the “hat”.

Secondly, the r. vs ξ̂nj := anj (ξ j − λ j ), 1 ≤ j ≤ n, are infinitesimal, therefore the
equivalence of (I2) and (I3) is well known (see, for instance, [7], Section IX.3).

Proof of Sufficiency of (I3) Let (I3) be satisfied, r := εn, 0 < ε < 1, and

X (r)n (t) =
∑

j≤r
τnj ≤t

ξ̂nj , H (r)
n (σ, t) =

∑

j≤r
τnj ≤t

anj
(
k j (σ )− λ j

)
.

Using the conditions of Theorem 2, for every δ, we obtain

Pn(δ) := P

(

sup
0≤t≤1

∣
∣
∣Xn(t)− X (r)n (t)

∣
∣
∣ ≥ δ

)

= P

⎛

⎜
⎜
⎝ sup
τnr ≤t≤1

∣
∣
∣
∣
∣
∣
∣
∣

∑

r< j≤n
τnj ≤t

ξ̂nj

∣
∣
∣
∣
∣
∣
∣
∣

≥ δ

⎞

⎟
⎟
⎠

≤ P

⎛

⎝ max
r≤k≤n

∣
∣
∣
∣
∣
∣

∑

r< j≤k

ξ̂nj

∣
∣
∣
∣
∣
∣
≥ δ

⎞

⎠

≤ P

⎛

⎝
∑

r< j≤n

|ξ̂nj | ≥ δ

⎞

⎠ ≤ 1

δ2

∑

r≤ j≤n

a2
njλ j

≤ Cε2

δ2

∑

r≤ j≤n

1

j
+ 1

δ2

∑

1≤ j≤n
|anj |≥ε

a2
njλ j

� ε2

δ2 log
1

ε
+ o(1).

This shows that there exists a sequence ε = εn = o(1) such that Pn(δ) = o(1) for every
δ. Consequently, it follows from (I3) that the process X (r)n for r = εnn also weakly
converges to the standard Brownian motion. Moreover, by Corollary 1 of Theorem 2,

µn

(

sup
0≤t≤1

∣
∣
∣Hn(σ, t)− H (r)

n (σ, t)
∣
∣
∣ ≥ δ

)

� Pθn (δ/3) = o(1). (22)

By Theorem 1, the distributions of X (r)n and H (r)
n asymptotically are the same, using

(22), we obtain the convergence µn ◦ H−1
n ⇒ W .

Sufficiency of (I3) is proved.

To prove that (I1) implies (I3), we need an extra lemma. For b j ∈ C, 1 ≤ j ≤ n, we
define a completely multiplicative function An → C by setting

f (σ ) =
n∏

j=1

b
k j (σ )

j , 00 := 1.
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Let En f (σ ) be its mean-value with respect to µn,E stand for the expectation with
respect to P, D(z), and Dn be defined previously. Afterwards the conditions of
Theorem 2 are assumed.

Lemma 9 Let J ⊂ (n/2, n] and b j ∈ C, |b j | ≤ 1, for 1 ≤ j ≤ n. If b j = 1 for all
but j ∈ J , then for the multiplicative function defined above, we have

En f (σ ) = 1 +
∑

j∈J

(b j − 1)λ j
Dn− j

Dn
. (23)

Moreover, if condition (II) in the Definition is satisfied, J ⊂ ((1 − δ)n, n], where
δ > 0 is sufficiently small, then

|En f (σ )| ≥ 1/2

provided that n is sufficiently large.

Proof We can use the Conditioning Relation and (13) to obtain

En f (σ ) := E

⎛

⎝
n∏

j=1

b
ξ j
j | 	(ξ̄ ) = n

⎞

⎠

= 1

P
(
	(ξ̄ ) = n

)
∑

	(s̄)=n

n∏

j=1

b
s j
j P(ξ̄ = s̄)

= 1

Dn

∑

	(s̄)=n

n∏

j=1

(b jλ j )
s j

1

s j !

= 1

Dn
[zn] exp

⎧
⎨

⎩

∞∑

j=1

b jλ j z
j

⎫
⎬

⎭

= 1

Dn
[zn]

⎛

⎝D(z) exp

⎧
⎨

⎩

∑

j∈J

(b j − 1)λ j z
j

⎫
⎬

⎭

⎞

⎠ .

Expanding the exponential function we easily find the relation (23). From it, recalling
(18), we obtain

|En f (σ )− 1| ≤ 2


Dn

∑

j∈J

Dn− j

j
≤ 4


nDn

∑

k≤δn
Dk ≤ 4


θ1(δ)
≤ 1/2

provided that δ is sufficiently small and n is sufficiently large.
The lemma is proved.

Proof that (I1) implies (I3) Let µn ◦ H−1
n ⇒ W . Then for each 0 ≤ t < 1, the dif-

ference Hn(σ, 1) − Hn(σ, t) converges weakly to the normal distribution with zero
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mean and variance 1 − t . Let ψn(u, t), u ∈ R, denote the characteristic function of
Hn(σ, 1)− Hn(σ, t). Then

ψn(u, t) = En exp

⎧
⎨

⎩
iu

∑

t<τnj ≤1

anj
(
k j (σ )− λ j

)
⎫
⎬

⎭

= exp

{

− u2

2(1 − t)

}

+ o(1) (24)

uniformly in |u| ≤ T for each T > 0.
Define b( j) = exp{iuanj }, u ∈ R, if t < τnj ≤ 1 and b( j) = 1 elsewhere. For the

completely multiplicative function f defined via such b( j), we will apply Lemma 9.
Let 0 < δ < 1/2 be as in the lemma, m = [(1 − δ)n], and τn = τnm . Observe that
τn → 1. Indeed, if τn → t0 < t1 < 1 for some subsequence n := n′ → ∞, then by
the lemma |ψn(u, t1)| > 1/2 uniformly in u ∈ R. This contradicts to (24).

Now it follows that

1 + o(1) ≤ τn ≤ B2 (m + 1)

B2(n)
≤ B2 ((1 − δ))n + 1)

B2(n)
≤ 1.

Hence B(un) ∼ B(n) for each u ∈ [(1 − (δ/2))n, n] and some δ > 0. Substitut-
ing (1 − (δ/2))n for n repeatedly, we deduce the existence of r = r(n) → ∞ such
that r = o(n) and B(r) ∼ B(n). Now repeating the arguments of the proof of the
sufficiency part we obtain (22) and

µn
(
Hr

n (σ, 1) < x
) = �(x)+ o(1),

where� denotes the standard normal distribution function. This, by virtue of Theorem
1 and (22), leads to the central limit theorem

P (Xn(1) < x) = �(x)+ o(1).

Since the r. vs {ξ̂nj , 1 ≤ j ≤ n} form an infinitesimal array, we can apply the
necessity part of the Lindeberg-Feller theorem. By it, the last relation implies (I3).

Theorem 3 is proved.

In the forthcoming paper, we intend to explore the weak convergence of processes
defined via sequences of additive functions on An . Moreover, we will present gen-
eralizations of Theorem 3 to the more general case when the limiting process is an
arbitrary stochastically continuous and has independent increments. Such attempts for
permutations have been made in [4,10].
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