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On the class of labelled combinatorial structures called assemblies we define complex-valued

multiplicative functions and examine their asymptotic mean values. The problem reduces

to the investigation of quotients of the Taylor coefficients of exponential generating series

having Euler products. Our approach, originating in probabilistic number theory, requires

information on the generating functions only in the convergence disc and rather weak

smoothness on the circumference. The results could be applied to studying the asymptotic

value distribution of decomposable mappings defined on assemblies.

1. Multiplicative functions on assemblies

We examine mappings defined on labelled combinatorial structures which, in [1], [2], and

some other recent papers, are called assemblies. Let us recall their definition. Suppose an

N-set σ of labelled points is partitioned into subsets so that, among them, there are kj of

size j, 1 6 j 6 N, with 1k1 + · · ·+NkN = N. In each such subset of size j, independent of

the choice of elements, let a structure be defined. Let the number of different structures

that can be defined on a subset of size j be mj , where 1 6 mj < ∞. From now on a

subset with a given structure is called a component of σ. Suppose the number mj does

not depend on the possibility of other subsets forming components. The set σ with a

fixed component structure satisfying the aforementioned properties is called an assembly.

For various decompositions of the N set into subsets, using the same rule to define their

structure, we get the class S = {σ} of assemblies of size N. To enumerate them, we

observe that there are

N!

N∏
j=1

(
1

j!

)kj 1

kj!

ways to partition an N set into subsets of the specified sizes as given above. Thus, for

each vector k̄ = (k1, . . . , kN) with nonnegative integer coordinates satisfying the equality
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L(k̄) := 1k1 + · · ·+NkN = N, we get

QN(k̄) := N!

N∏
j=1

(
mj

j!

)kj 1

kj!
(1.1)

different assemblies. The total number of assemblies in this class equals

p(N) :=
∑

L(k̄)=N

QN(k̄).

As can be verified directly, its exponential generating function satisfies the formal relation

Z(z) := 1 +
∑
N>1

p(N)

N!
zN =

∏
j>1

exp

{
mj

j!
zj
}
, z ∈ C. (1.2)

The function Z(z) characterizes the class of assemblies and, notably, it has the product

expression (1.2). This is similar to the Riemann zeta function with its Euler product,

very significant in number-theoretical investigations, and leads to the possibility that

combinatorial problems analogous to those of analytic and probabilistic number theory

might successfully be considered.

Examples of the classes of assemblies include the set SN of permutations acting on

N letters for which the components are cycles. Thus, p(N) = N!, mj = (j − 1)!, and

Z(z) = (1 − z)−1 in this case. The next interesting example is the class consisting of

all mappings of an N set into itself with the components defined by the connected

components of the related functional graphs. Now p(N) = NN ,

mj = (j − 1)!

j−1∑
s=0

js

s!
,

and Z(z) = (1− t(z))−1, where t(z) is defined in |z| < e−1 by the relation t(z) = zet(z). For

these and more sophisticated examples see [1, 2].

We are concerned with value distribution of decomposable mappings defined on a class

of assemblies. Their values are directly related to component structure. If σ ∈ S and has

kj = kj(σ) components of size j, 1k1 + · · · + NkN = N, we also write σ ∈ k̄. We call a

function f : S → C multiplicative if there exists a double sequence of complex numbers

fj(k) with fj(0) = 1 such that

f(σ) =

N∏
j=1

fj(kj) (1.3)

for each σ ∈ k̄. If, in addition, fj(k) = fj(1)k for any k > 0 and j > 1, the function f will

be called completely multiplicative. Apart from the uniform probability measure defined on

the set S of assemblies of size N, there are other important possibilities. The best-known

instance is the Ewens sampling formula ascribing the probability

θw(σ)/θ(θ + 1) · · · (θ +N − 1), w(σ) = k1 + · · ·+ kN, θ > 0,

for each permutation σ ∈ SN (see [2] for the further comments). In general we can use

other weighted frequencies for probability measures on a class of assemblies. In what
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follows, let νqN denote the probability measure ascribing probability

q(σ)

(∑
σ∈S

q(σ)

)−1

to each σ ∈ S. Here q is a positive multiplicative function onS. Set νN for νqN if q(σ) ≡ 1.

Being influenced by probabilistic number theory, we are interested in the asymptotic

behaviour of the mean values

M
q
N(f) :=

(∑
σ∈S

q(σ)

)−1 ∑
σ∈S

q(σ)f(σ),

where f : S → C is a multiplicative function. Here and in what follows we mean

that N → ∞. Using generating functions we reduce the problem to investigation of the

asymptotic behaviour of the complex Nth Taylor coefficient of an analytic function F(z)

in |z| < 1 having a singularity at z = 1. The transfer method cultivated by Flajolet and

Odlyzko [4, 5] has proved to be useful in many similar situations (see, for instance, [13]).

Nevertheless, it requires an analytic continuation for F(z) into the region

{z ∈ C : |z| 6 1 + η1, |Arg(z − 1)| > η2}, η1 > 0, 0 < η2 < π/2.

This is a serious obstacle if we deal with generating functions of general mappings on S.

It is well known (see [13, p. 1127] or [16, p. 451]) that the function∏
j>1

(
1 + zj/j

)
,

having the natural boundary |z| = 1 and representing the exponential generating function

of the number p̂(N) of permutations with distinct cycle lengths, is amenable to Darboux’s

and transfer methods. Usually, the Hardy–Littlewood–Karamata Tauberian theorem is

applied in this case. It yields an asymptotic formula for the summation function of the

Taylor coefficients. Later some ‘bootstrapping’ (see [4, p. 235]) can be done. In this way

Greene and Knuth [6] prove that

p̂(N)/N! = e−γ(1 +N−1) + O(N−2 logN),

where γ denotes the Euler constant. Applied to this particular problem, the approach

proposed in our paper gives the main term and a weak estimate of the remainder term.

To obtain the formula above, the same bootstrapping is also needed. Nevertheless, our

method gains in generality in giving an asymptotic formula for the Nth Taylor coefficient.

To show this, at the end of the introduction we will treat the function

A(z) :=
∏
j>1

(
1 + ajz

j/j
)

with a bounded complex sequence aj . Characteristically, our approach does not require

information about functions outside the convergence disc, though some smoothness on

the circumference is needed. In this regard, we have to mention the work [3] dealing with

more specialized functions. We proceed in developing the ideas of our papers [8], [10],
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[11] and [12]. Then we add some refinements originating in probabilistic number theory

(see [9]). The main target is an extension of the following result.

Theorem A. ([12]) Let f be a complex-valued multiplicative function defined by (1.3) on

the symmetric group SN . Suppose that

|fj(1)| 6 τ, τ > 1/2,

and, for some ε > 0, ∑
j>1

∑
k>2

|fj(k)|(1 + ε)jk

k!jk
< ∞.

Then there exist constants B ∈ C, t0 ∈ (−π, π], and a function L : [1,∞) → C, |L(u)| = 1,

L(uv)/L(u) = 1 + o(1) uniformly in u 6 v 6 2u as u→∞, such that

MN(f) =
1

N!

∑
σ∈SN

f(σ) = BL(N)Nτ−1eit0N + o(Nτ−1). (1.4)

Here B = 0 is possible as well. The approach used in its proof did not allow us to

avoid the condition τ > 1/2. The same difficulties would arise even in the case τ = 1 if,

instead of the uniform probability measure νN on SN , we were to use the Ewens sampling

formula with parameter θ 6 1/2. The condition of Theorem A with the double sum could

be relaxed; it could even be omitted for completely multiplicative functions.

Consider the exponential generating function for the sequence of sums of values of a

multiplicative function g :S→ C. We have, by (1.1) and (1.3),

G(z; g) := 1 +
∑
N>1

(∑
σ∈S

g(σ)

)
zN

N!
= 1 +

∑
N>1

( ∑
L(k̄)=N

QN(k̄)

N∏
j=1

gj(kj)

)
zN

N!

=
∑
N>0

( ∑
L(k̄)=N

N∏
j=1

(
mj

j!

)kj gj(kj)
kj!

)
zN

=
∏
j>1

(
1 +

mjgj(1)

j!1!
zj +

m2
j gj(2)

j!22!
z2j + · · ·

)

= exp

{∑
j>1

mjgj(1)

j!
zj

}
H(z; g), (1.5)

where

H(z; g) =
∏
j>1

(
1 +

mjgj(1)

j!1!
zj +

m2
j gj(2)

j!22!
z2j · · ·

)
exp

{
− mjgj(1)

j!
zj
}
.

We now see that the weighted mean value Mq
N is, in fact, the quotient of the Nth Taylor

coefficient of G(z; qf) and that of G(z; q). Each of these generating series has a very

particular shape (1.5).
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As has been noticed in [1] and [2], for many classes of assemblies there exists a fixed

parameter x > 0 such that

0 < λ−/j 6 mjxj/j! =: λj/j 6 λ
+/j < ∞, j > 1. (1.6)

Thus, under this condition, the change of arguments z = sx of the functions Z(z) and

G(z; g) also unifies the treatment of various classes of assemblies. So, in the instances

above, one may take x = 1 and x = e−1 for permutations and mappings, respectively.

This yields a singularity at s = 1 for the function Z(sx) in either of the cases.

The asymptotic behaviour of quotients of the Nth Taylor coefficients is examined in

the second and third self-contained sections of the paper. The propositions proved there

allow us to extend Theorem A. The first of them implies the following result.

Theorem 1.1. Let the class of assemblies S satisfy condition (1.6) and let q :S→ R+ be

a completely multiplicative function. Assume that, for a multiplicative function f : S → C,

the above-defined H(xz; f) is analytic in |z| < 1 and continuously differentiable on |z| = 1

function. Further, let

0 < q− 6 qj(1) =: qj 6 q
+ < ∞ (1.7)

and

|fj(1)| 6 qj (1.8)

for each j > 1.

If there exists t0 ∈ (−π, π] such that the series∑
j>1

qj −<(fj(1)e−itj)
j

(1.9)

converges for t = t0, then∑
σ∈S

f(σ) =

(
exp

{
it0N +

∑
j6N

λj(fj(1)e−it0j − qj)
j

}
H(xe−it0 ; f) + o(1)

)∑
σ∈S

q(σ).

If the series (1.9) diverges for each t ∈ (−π, π], then∑
σ∈S

f(σ) = o

(∑
σ∈S

q(σ)

)
.

Theorem 1.1 allows us to reduce the problem of the summatory function of a complex-

valued function f to the simpler problem of a positive completely multiplicative function

q. In fact, we have to know a priori the asymptotic behaviour of the sum of values q(σ)

over σ ∈ S. The case of q(σ) ≡ 1 is trivial. For the weight in the Ewens sampling formula,

one can use the formula

1

N!

∑
σ∈SN

θw(σ) =
Nθ−1

Γ(θ)
+ O(Nθ−2), (1.10)

easily obtainable via the transfer method [4]. Here Γ(z) denotes the Euler gamma function.

Proposition 2.4 below indicates how to relax the condition on H(z; f).
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Theorem 1.2. Let the class of assemblies S and the completely multiplicative weight func-

tion q :S→ R+ satisfy (1.6), (1.7), and∑
n<j6N

λjqj

j
> log

N

n
+ O(1),

where 1 6 n 6 N. For a multiplicative function f :S→ C satisfying (1.8) and∑
j>1

∑
k>2

λ+k |fj(k)|
jkk!

< ∞,

both assertions of Theorem 1.1 are true.

The following corollary corresponds to the Delange–Halász result (see [15, Chap-

ter III.4]) on multiplicative number-theoretical functions.

Corollary 1.3. Let f : S → C be a multiplicative function, |f(σ)| 6 1 for all σ ∈ S.

Assume that the class of assemblies S and the weight function q satisfy the conditions of

Theorem 1.2.

If the series ∑
j>1

1−<(fj(1)e−itj)
j

(1.11)

converges for some t = t0 ∈ (−π, π], then

M
q
N(f) = exp

{
it0N +

∑
j6N

λjqj(fj(1)e−it0j − 1)

j

}
H(xe−it0 ; fq) + o(1).

If the series (1.11) diverges for each t ∈ (−π, π], then

M
q
N(f) = o(1).

Remark. If the function f depends on some parameter u ∈ I ⊂ R and the series (1.11)

converges for t = t0(u) uniformly in u ∈ I , then this uniformity is preserved in the

remainder term estimate o(1) of Mq
N(f). This is also true for the second assertion of

Corollary 1.3.

Corollary 1.4. Suppose a multiplicative function f defined on the symmetric group SN sat-

isfies the conditions of Theorem A with arbitrary τ > 0 and ε = 0; then relation (1.4)

holds.

Let us return to the function A(z) defined at the beginning of our discussion. By (1.5),

it represents the generating function of MN(f̂), where f̂ : SN → C is multiplicative and

defined by (1.3) via f̂j(1) = aj and f̂j(k) = 0 for k > 2, j > 1. Thus, from Corollary 1.4

we see that asymptotic formula (1.4) still holds for MN(f̂). Paying more attention to the

quantities appearing on the right-hand side of (1.4), for this particular case, we obtain the

following.
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Corollary 1.5. Suppose |aj | 6 τ for all j > 1 and 0 < τ < ∞. If the series

B(t) :=
∑
j>1

τ−<(aje
−itj)

j

converges for some t = t0 ∈ (−π, π], then (1.4) holds with

B =
e−B(t0)

Γ(τ)

∏
j>1

((
1 +

aje
it0j

j

)
exp

{
− aje

−it0j

j

})
and

L(N) = exp

{
i
∑
j6N

=(aje
−it0j)
j

}
.

If the series B(t) diverges for all t ∈ (−π, π], then B = 0.

The individual conditions (1.7) and (1.8) are rather restrictive. We guess that our

approach still works under some averaged requirements. Maybe we could use∑
j6N

qj ∼ δN, δ > 0,
∑
j6N

|fj(1)| 6∑
j6N

qj + O(1).

This would lead to generalizations of Pavlov’s [14] and a few other results.

2. Quotients of the Taylor coefficients

We now explore the asymptotic behaviour, as N → ∞, of the Taylor coefficients mN of a

function analytic in |z| < 1, such that

F(z) :=
∑
N>0

mNz
N =

∑
k>0

bkz
k exp

{∑
j>1

ajz
j

j

}
=: H(z) exp{U(z)} =: H(z)G(z) (2.1)

if aj , bk ∈ C. Different decompositions of F(z) will not affect the asymptotic behaviour

of mN . Since aj , with j > N, does not affect mN , without loss of generality we may take

them equal to zero. After this change, if there is any ambiguity, we let U(z) have the index

N. Thus the analytic continuability of U(z) does not involve difficulties. The growth of

their modulus values near the circle |z| = 1 as N → ∞ is much more significant. Dealing

with H(z), which can also be dependent on some parameters, at first we will assume its

differentiability on |z| = 1 and use the following bound:

sup
|z|=1

|H ′(z)| 6 H < ∞. (2.2)

In what follows we will assume that

|aj | 6 dj , 0 < θ− 6 dj 6 θ+ < ∞ (2.3)

for any 1 6 j 6 N with some constants θ− and θ+. The main purpose of this section is
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to find the asymptotic behaviour of the quotient mN/m̃N , where m̃N is defined by

D(z) =
∑
N>0

m̃Nz
N = exp

{∑
j>1

djz
j

j

}
=: exp{V (z)}.

Here also, for convenience, we may assume that dj = 0 for each j > N and set, if

necessary, VN(z) for V (z). Let us stress once more that we allow the dependence on N

or on other parameters of the coefficients aj , dj for 1 6 j 6 N. Bearing that in mind,

we introduce the class A of sequences {aj}, j 6 N, characterized by the following two

conditions: ∑
j6N

dj −<(aje
−it0j)

j
6 D < ∞, (2.4)

1

N

∑
j6N

|dj − aje−it0j | 6 µN = o(1) (2.5)

with some t0 ∈ (−π, π] uniformly for {aj} ∈ A. For brevity, let a ∧ b := min{a, b} and �
be the analogue of the symbol O(. . .).

Proposition 2.1. Let F(z) be given in (2.1) with H(z) satisfying (2.2). Assume that {aj} ∈ A
satisfies condition (2.3). Then

mN/m̃N = exp
{
it0N +UN(e−it0 )− VN(1)

}
H(e−it0 ) + O(RN),

where

RN � µc1

N +N−c2

with some positive quantities c1 = c1(θ−, θ+) and c2 = c2(θ−, θ+). The constant in the symbol

� depends only on H, D, θ−, and θ+.

It follows from our proof of Proposition 2.1 that

RN � Tδ−αθ+(
µN(T + δ−1) + TN−1

)
+ δαθ

−
+ δ−1T−(1−α)θ−/2

provided N−1 6 δ < 1, 0 < α < 1, 1 6 T 6 N, and µN 6 δ ∧ T−1. An analysis of this

complicated estimate shows that numerical values of c1 and c2 in particular cases can also

be obtained.

What happens when the sum (2.4) is unbounded for all t0? The answer is given by the

following result.

Proposition 2.2. Suppose conditions (2.2) and (2.3) are satisfied. Then there exists a positive

constant c3 = c3(θ−, θ+) such that

mN

m̃N
� exp

{
− c3 min

|t|6π
∑
j6N

dj −<(aje
−itj)

j

}
.

The constant in � depends only on H, θ−, and θ+.
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If dj ≡ 1 and aj > 0 for all j > 1, this estimate also follows from [7, Theorem 2].

If the sequences {aj} and {dj} do not depend on N, condition (2.4) implies (2.5). In

such a case, if 1 6 x < N and∑
j>x

dj −<(aje
−it0j)

j
6 r(x) = o(1)

as x→∞, then the quantity on the left-hand side of (2.5) can be estimated by

x

N
+
∑
x<j6N

|dj − aje−it0j |
j

� x

N
+

( ∑
x<j6N

|dj − aje−it0j |2
j

)1/2(
log

N

x

)1/2

� x

N
+ (r(x)1/2

(
log

N

x

)1/2

.

By the choice of x � Nr(x), this enables us to find some µN = o(1) in (2.5). Moreover, if∑
j6N

dj −<(aje
−itj)

j
→∞ (2.6)

for any fixed t ∈ [−π, π], then this holds uniformly in t ∈ [−π, π]. Thus we have the

following.

Corollary 2.3. Let the sequences {aj}, {bk}, and {dj} be independent of N and satisfy

conditions (2.2) and (2.3). If (2.4) holds, then the assertion of Proposition 2.1 is true. If

condition (2.6) is satisfied, then mN = o(m̃N) as N →∞.

In the next result we pay more attention to the function H(z). The bound for its

derivative is sometimes too stringent. Instead of (2.2) it suffices to use the bound∑
k6N

|bk| 6 H1 < ∞ (2.7)

together with one of the following conditions:

rN(u) :=
∑

uN<k6N

|bk| 6 N(θ−−1)∧0ρN(u) (2.8)

or

rN(u) 6 ρN(u),
∑

n<k6N

dj

j
> log

N

n
− C, C > 0, 1 6 n 6 N (2.9)

with some ρN(u) = o(1) for any fixed u ∈ (0, 1). Set ρ̂(N) = inf0<u<1{u+ ρN(u)}.

Proposition 2.4. Let F(z) be given by (2.1). Suppose {aj} ∈ A and conditions (2.3), (2.7)

are satisfied. Then, if one of conditions (2.8) or (2.9) holds,

mN/m̃N = exp
{
it0N +UN(e−it0 )− VN(1)

}
H(e−it0 ) + O(R̃N),

where R̃N = o(1).
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Now, the estimate of R̃N differs from that of RN in Proposition 2.1 by the extra

summand ρ̂(N). In this way we could relax the conditions on H ′(z) in Proposition 2.2.

3. Proofs of propositions

Proof of Proposition 2.1. We start the proof of Proposition 2.1 with an explanation of the

idea due to Levin and Timofeev (see [8]). For simplicity, considering aje
−it0 instead of aj ,

we reduce conditions (2.4) and (2.5) to the case when t0 = 0. Therefore, in what follows

we may set t0 = 0. Let ∆1 = {z = eit : T/N 6 |t| 6 π}, ∆0 = [−π, π] \ ∆1, K = δN > 1,

and let 0 < δ, α < 1, 1 6 T 6 N be some parameters to be chosen later. Denote

G1(z) = exp

{
α
∑
j6K

aj

j
zj

}
, G2(z) = exp

{
− α ∑

K<j6N

aj

j
zj

}
, G3(z) = Gα(z)− G1(z).

Let Dl(z) be the functions defined by Gl(z), l = 1, 2, 3, but substituting aj with dj .

Recalling our agreement that aj = dj = 0 for j > N and setting, for brevity, UN = U,

VN = V , we use Cauchy’s formula. We start from the following identity:

mN =
1

2πiN

∫
|z|=1

F ′(z)
zN

dz =
1

2πiN

∫
∆0

F ′(z)(1− G2(z))

zN
dz

+
1

2πiN

∫
∆1

F ′(z)(1− G2(z))

zN
dz +

1

2πiN

∫
|z|=1

F ′(z)G2(z)

zN
dz

=: J0 + J1 + J2. (3.1)

We at first obtain the estimate J1 + J2 � m̃NRN uniformly for {aj} ∈ A and, further,

change the integrand of J0 to get

J0 =
H(1) exp

{
U(1)− V (1)

}
2πiN

∫
∆0

D′(z)
(
1− D2(z)

) dz
zN

+ O(m̃NRN).

Since the sequence {dj} belongs to A itself and the integral in the last formula divided by

2πiN also gives the main asymptotic term of m̃N , we obtain the desired approximation of

the quotient mN/m̃N . Technical details are more complicated; some of them can be found

in the author’s paper [11].

The integrals in (3.1) should be estimated in terms of m̃N; therefore we need to know

its order expressed in more convenient quantities. Observe that the expression of m̃N is

available by multiplication of the expansions of exponential functions in D(z). In this

way, we have

m̃N =
∑

L(k̄)=N

N∏
j=1

(
dj

j

)kj 1

kj!
, (3.2)

where, as above, the summation is extended over vectors k̄ = (k1, . . . , kN) with nonnegative

integer coordinates and satisfying the relation L(k̄) = N. Recall that

D(1) = exp

{∑
j6N

dj

j

}
.
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Lemma 3.1. Let {dj} be the sequence satisfying (2.3). Then

θ−c(θ+)D(1)N−1 6 m̃N 6 θ
+D(1)N−1 (3.3)

for N > 1 with some positive constant c(θ+).

Proof. Differentiating D(z) and comparing the coefficients in the equality obtained, we

derive the recurrence relation

m̃N =
1

N

N−1∑
n=0

dN−nm̃n, M0 = 1. (3.4)

Further, we have from the expression of D(z)

N∑
n=0

m̃n 6 D(1).

By virtue of (2.3), this together with (3.4) implies the second inequality in (3.3).

To derive the left inequality in (3.3), we first obtain a lower estimate of the sum of m̃N .

We now use formula (3.2). Let 0 < ε < 1 be arbitrary, N1 = [εN] > 1. We bound the

region of summation in (3.2) to the vectors k̄ with kj = 0 for each N1 < j 6 N. Thus

N−1∑
n=0

m̃n >
∑

k1 ,...,kN1
>0

N1∏
j=1

(
dj

j

)kj 1

kj!
− ∑

L(k̄)>N
kN1+1 ,...,kN=0

N1∏
j=1

(
dj

j

)kj 1

kj!

> exp

{
N1∑
j=1

dj

j

}
− e−ε−1

∑
k1 ,...,kN1

>0

N1∏
j=1

(
dj exp{N−1

1 j}
j

)kj 1

kj!

= exp

{
N1∑
j=1

dj

j

}
− exp

{
N1∑
j=1

dj exp{N−1
1 j}

j
− ε−1

}

> exp

{
N1∑
j=1

dj

j

}(
1− exp{eθ+ − ε−1}).

The choice ε−1 = eθ+ + log 3 now yields

N−1∑
n=0

m̃n >
2

3
exp

{
N1∑
j=1

dj

j

}
> c(θ+)D(1)

with some positive constant c(θ+) when N > N0(θ+). Since the case of bounded N is

trivial, this and (3.4) imply the desired estimate.

Lemma 3.1 is proved.

We now start to estimate the integrals in (3.1). In what follows we indicate only

the dependence on the newly introduced parameters, leaving aside those given by the

conditions of Theorem 1.2.
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Lemma 3.2. We have

J2 � m̃Nδ
αθ−

if N > 1/δ.

Proof. The estimation is based on the following equality:

F ′(z)G2(z) = H(z)G1−α(z)G1(z)U ′(z) +H ′(z)G1−α(z)G1(z).

Let

Gα(z) =:
∑
s>0

gs(α)z
s, gs(1) = gs.

Applying the relations between gs(α) and aj and (2.3), we obtain

∑
s6N

|gs(α)| 6 exp

{
α
∑
j6N

|aj |
j

}
6 exp

{
α
∑
j6N

dj

j

}
.

Similarly, if g̃s(α) denotes the Taylor coefficient of G1(z), then∑
s6N

|g̃s(α)| 6 exp

{
α
∑
j6K

dj

j

}
.

By condition (2.2) the function H ′(z) belongs to the Hardy class H1; thus the series of

the coefficients |bk| is bounded by a constant depending on H only. Cauchy’s formula,

previous estimates, and Lemma 3.1 yield

J21 :=
1

2πiN

∫
|z|=1

H(z)G1−α(z)G1(z)U ′(z)
zN

dz

=
1

N

∑
k,n,s>0

k+n+s6N−1

bkgn(1− α)g̃s(α)aN−s−k−n

� 1

N

∑
k6N

|bk|
∑
n6N

|gn(1− α)|
∑
s6N

|g̃s(α)|

� 1

N
D(1) exp

{
− α ∑

K<j6N

dj

j

}
� m̃N δ

αθ− (3.5)

provided N > 1/δ.

Further, using conditions (2.2), (2.3), and Lemma 3.1, we obtain

J22 :=
1

2πiN

∫
|z|=1

H ′(z)G1−α(z)G1(z)

zN
dz

� 1

N
exp

{
(1− α)∑

j6N

|aj |
j

+ α
∑
j6K

|aj |
j

}
� m̃N δ

αθ− , (3.6)

if N > 1/δ.

Since J2 = J21 + J22, Lemma 3.2 follows from (3.5) and (3.6).
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Lemma 3.3. We have

J1 � m̃Nδ
−1T−(1−α)θ−/2

if 1 6 T 6 N.

Proof. Recalling the previous notation and condition (2.2), we have

J1 =
1

2πiN

∫
∆1

F ′(z)
G(z)

G1−α(z)G3(z)
dz

zN

� 1

N
max
z∈∆1

|G1−α(z)|
∫
|z|=1

(1 + |U ′(z)|)|G3(z)| |dz|. (3.7)

To estimate the quantity

max
z∈∆1

|G(z)|
D(1)

= max
T/N6|t|6π

exp

{∑
j6N

<(aje
itj)− dj
j

}
,

we use (2.3), (2.4), and the following trigonometrical estimates:

|a| − <(aeiu)− d(1− cos u) = −(d− |a|)(1− cos u) + (|a| − <a) cos u+ =a sin u

� (d−<a) + |=a|| sin u|
for |a| 6 d and |u| 6 π. Since the sum in (2.4) remains bounded if <aj are changed by

|aj |, using (2.3) we obtain

max
z∈∆1

|G(z)|
D(1)

� max
T/N6|t|6π

exp

{
θ−
∑
j6N

cos tj − 1

j

+O

((∑
j6N

dj −<aj
j

)1/2(∑
j6N

1− cos tj

j

)1/2)}
� T−θ−/2. (3.8)

Here the calculations of the maximum were based on the relations∑
j6N

1− cos tj

j
=
∑
j>1

1− cos tj

j
e−j/N + O(1)

= log
|1− e−1/N+it|

1− e−1/N
+ O(1) =

1

2
log

(
1 +

2e−1/N(1− cos t)

(1− e−1/N)2

)
+ O(1).

The next steps are based on Parseval’s equality. We have∫
|z|=1

|U ′(z)|2 |dz| �
∫
|z|=1

|V ′(z)|2 |dz| �∑
j6N

d2
j � N. (3.9)

Observe that, by virtue of the definition of G3(z),

G3(z) =
∑
n>K

( ∑
L(k̄)=n

′ n∏
j=1

(
αaj

j

)kj 1

kj!

)
zn.

where ′ denotes that the summation is extended over k̄ = (k1, . . . , kn) such that there exists

j > K with kj > 1. The modulo of the nth Taylor coefficient of G3(z) in brackets does
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not exceed the nth Taylor coefficient qn(α) of the function Dα(z). Hence Parseval’s equality

and (3.9) imply∫
|z|=1

|G3(z)|2 |dz| � 1

K2

∑
n>1

q2
n(α)n

2 � 1

K2

∫
|z|=1

∣∣(Dα(z))′∣∣2 |dz|
� D2α(1)

K2

∫
|z|=1

|V ′(z)|2 |dz| � D2α(1)δ−2N−1. (3.10)

From (3.7), (3.8), (3.9), the last estimate, and Lemma 3.1, we obtain

J1 � 1

N
·
(
D(1)

Tθ−/2

)1−α
· √N · D

α(1)

δ
√
N
� m̃Nδ

−1T−(1−α)θ−/2.

Lemma 3.3 is proved.

Lemma 3.4. We have

J0 =
H(1) exp

{
U(1)− V (1)

}
2πiN

∫
∆0

D′(z)
(
1− D2(z)

) dz
zN

+O
(
m̃NTδ

−αθ+(
µN(T + δ−1) + TN−1

))
provided N is sufficiently large, µN 6 δ ∧ T−1, δN > 1, and 1 6 T 6 N.

Proof. Under the conditions of Proposition 2.1 we have

D2(z)� δ−αθ+

, G2(z) = D2(z)
(
1 + O(δ−1µN)

)
= D2(z) + O

(
µNδ

−1−αθ+)
(3.11)

if µN 6 δ and

G(z) = D(z) exp{U(1)− V (1)}(1 + O(TµN)
)

= D(z) exp{U(1)− V (1)}+ O
(
TD(1)µN

)
if TµN 6 1. Observing, in addition, that U ′(z) = V ′(z) + O(NµN), we obtain

G′(z)(1− G2(z)) = exp{U(1)− V (1)}D′(z)(1− D2(z))

+O
(
ND(1)µNδ

−αθ+

(T + δ−1)
)

(3.12)

provided µN 6 δ ∧ T−1. Hence, by virtue of Lemma 3.1,

J00 :=
1

2πiN

∫
∆0

G′(z)(1− G2(z))
dz

zN

=
exp{U(1)− V (1)}

2πiN

∫
∆0

D′(z)(1− D2(z))
dz

zN

+O
(
m̃NTµNδ

−αθ+

(T + δ−1)
)
.

The remaining parts of the integral J0 give new error terms. Let

J01 :=
1

2πiN

∫
∆0

H ′(z)G(z)(1− G2(z))
dz

zN
.

Conditions (2.2) and (2.3), (3.11), and Lemma 3.1 imply

J01 � D(1)TN−2δ−αθ+ � m̃NTN
−1δ−αθ+

.
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Similarly,

J02 :=
1

2πiN

∫
∆0

(H(z)−H(1))G(z)U ′(z)(1− G2(z))
dz

zN

� m̃NT
2N−1δ−αθ+

.

Since

J0 = H(1)J00 + J01 + J02,

the proposition of Lemma 3.4 follows from the above estimates.

Lemma 3.5. We have

1

2πiNm̃N

∫
∆0

D′(z)
(
1− D2(z)

) dz
zN

= 1 + O
(
Tδ−αθ+

µN
(
T + δ−1

)
+ δαθ

−
+ δ−1T−(1−α)θ−/2)

provided N is sufficiently large, µN 6 δ ∧ T−1, δN > 1, and 1 6 T 6 N.

Proof. Since {dj} ∈ A, the estimates obtained in the previous lemmas hold for this

sequence. In addition, in this case we may consider that H(z) ≡ 1 and U(z) ≡ V (z).

Lemma 3.5 is proved.

Inserting the estimates obtained in Lemmas 3.2, 3.3, 3.4, and 3.5 into (3.1), we end the

proof of Proposition 2.1.

Proof of Proposition 2.2. Instead of (3.1), we now start with

mN =
1

2πiN

∫
|z|=1

F ′(z)
G(z)

G1−α(z)G3(z)
dz

zN
+

1

2πiN

∫
|z|=1

F ′(z)G2(z)

zN
dz =: J + J2.

The estimate for J2 is given in Lemma 3.2. As in the proof of Lemma 3.3, we have by

(3.9) and (3.10)

J � 1

N
max
|z|=1
|G1−α(z)|

∫
|z|=1

(1 + |U ′(z)|)|G3(z)| |dz|

� D1−α(1)

N
exp

{
(1− α) min

|t|6π
∑
j6N

<(aje
itj)− dj
j

}∫
|z|=1

(1 + |U ′(z)|)|G3(z)| |dz|

� m̃Nδ
−1 exp

{
(1− α) min

|t|6π
∑
j6N

<(aje
itj)− dj
j

}
=: m̃Nδ

−1E1−α.

Thus it follows from Lemma 3.2 and the last estimate that mN/m̃N � δαθ
−

+ δ−1E1−α
provided δ > 1/N. Now we choose δ = max{E(1−δ)/(1+αθ−), N−1} and get

mN/m̃N � Eα(1−α)θ−/(1+αθ−) +N−αθ− .

Further, by virtue of condition (2.3), we see that E � N−2θ+

. Thus, if α = 2θ+/(θ−+ 2θ+),

the first term dominates the second one. So we can find an expression of c3 = c3(θ−, θ+)

in Proposition 2.2. The proof is complete.
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Proof of Proposition 2.4. We now start with the formula

mN =
1

2πiN

∫
|z|=1

H(z)G′(z)
zN

dz +
1

2πiN

∫
|z|=r

H ′(z)G(z)

zN
dz =: I1 + I2

with a fixed 0 < r < 1. The integral I1 can be calculated repeating all steps in the proof

of Proposition 2.1. Actually we have the same integrals estimated in Lemmas 3.2 and 3.3

but without the summands containing H ′(z). Thus we obtain in this way

I1 =
1

2πiN

∫
∆0

H(z)G′(z)(1− G2(z))

zN
dz + O(m̃Nδ

αθ− ) + O(m̃Nδ
−1T−(1−α)θ−/2)

provided N > 1/δ, 1 6 T 6 N. If z ∈ ∆0, the functions G′(z) and G2(z) have been

considered in Lemma 3.4. For H(z), we use the inequality

max
|t|6T/N

|H(eit)−H(1)| 6 T

N

∑
k6uN

k|bk|+ 2
∑

uN<k6N

|bk| � uT + ρN(u)

for arbitrary 0 < u < 1. This after a relevant choice of u, by (2.8) or (2.9), becomes

O(Tρ̂(N)). So in the previous notation we obtain

I1 = H(1)J00 + O

(
Tρ̂(N)

N

∫
∆0

|G′(z)||1− G2(z)||dz|
)

+O(m̃Nδ
αθ− ) + O(m̃Nδ

−1T−(1−α)θ−/2) (3.13)

provided N > 1/δ, 1 6 T 6 N, and µN 6 δ ∧ T−1. The integral J00 has been considered

in the proof of Lemma 3.4. Applying also Lemma 3.5, as in the proof of Proposition 2.1,

we can express it with the required accuracy in terms of m̃N .

By (3.11), (3.12), and the inequalities |D′(z)| � ND(1) � N2m̃N , the integral in the

second term on the right-hand side of (3.13) does not exceed∫
∆0

|D′(z)|(1 + |D2(z)|)|dz|+ O(m̃NTNµnδ
−αθ+

(T + δ−1)� m̃NTNδ
−αθ+

if µN 6 δ ∧ T−1. Gathering these estimates we obtain

I1/m̃N = H(1) exp{U(1)− V (1)}+ O
(
T 2δ−αθ+

(µN + ρ̂(N))
)

+

+O(Tδ−1−αθ+

µN) + O(δαθ
−

+ δ−1T−(1−α)θ−/2)

provided N > 1/δ, 1 6 T 6 N, and µN 6 δ ∧ T−1.

By Cauchy’s formula, we have

I2 =
1

N

∑
n<N

(N − n)bN−ngn.

Lemma 3.1 yields |gn| 6 m̃n � m̃N(N/n)1−θ− . Hence, for 0 < u < 1,

I2/m̃N � N1−θ− ∑
uN6k6N

|bk|+ u
∑
k6uN

|bk|.

This, in the case of (2.7) and (2.8), implies I2 � m̃Nρ̂(N). Similarly, under condition (2.9),

we use the inequality m̃n � m̃N .

The estimates of I1 and I2 yield the assertion of Proposition 2.4.
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4. Proofs of theorems

Proof of Theorem 1.1. In Corollary 2.3 it suffices to take aj = λjfj(1) and dj = λjqj .

Proof of Theorem 1.2. Apply Proposition 2.4 also with aj = λjfj(1) and dj = λjqj . The

conditions of Theorem 1.2 imply (2.7) and (2.9).

Proof of Corollary 1.3. This is straightforward. Applying Theorem 1.2, we just have to

change f(σ) to f(σ)q(σ).

Proof of Corollary 1.4. In addition to the previous argument, it suffices to use (1.10).

Proof of Corollary 1.5. To get the quantities appearing on the right-hand side of (1.4),

one can exploit the expression given in Proposition 2.1.
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