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1. Introduction and results

Statistical group theory and probabilistic number theory are the fields to which P.Erd¨os has
contributed many pioneering and enduring works. Studying his papers written mainly with
P.Turán as well as more recent articles which deal with the value distribution problems of
maps defined on the symmetric groupSn we could not shake off an impression that this di-
rection has much in common with probabilistic number theory, nevertheless, the interaction
between them is rather poor. We came to an opinion that in developing of the analytic tools,
number theory is a bit ahead than similar branches of discrete mathematics. For instance,
the survey [4] considered as the most comprehensive paper on analytic approaches of dis-
crete mathematics can be compared to the Selberg– Delange method used to investigate
mean values of multiplicative functions but we hardly could find an analogous influence of
the method taking its background in the G.Hal´asz’ papers [6] or [7]. The articles [9], [14],
[15] comprise a rare exception. Now solving the problem of the remainder term estimation
in the central limit theorem we demonstrate other possibilities of this approach.

Let σ ∈ Sn be an arbitrary permutation and

σ = κ1 · · ·κω (1)

be its (unique up to the order) expression by the product of the independent cyclesκ and
ω = ω(σ) be the number of the cycles comprisingσ. Denote

νn(. . .) = (n!)−1#{σ ∈ Sn : . . .} .
* Partially supported by Grant from Lithuanian Foundation of Studies and Science.
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In 1942 V.L.Goncharov [5] proved that

νn
(
ω(σ)− logn < x

√
logn

)
→ Φ(x) :=

1√
2π

∫ x

−∞
e−u

2/2 du .

Here and in what follows, the limit is taken with respect ton → ∞ . Starting a very
fascinating series of papers on the asymptotic distribution of the group-theoretic order of
the random permutationσ, P.Erdös and P.Tur´an [3] considered the sums(σ) of natural
logarithms of different lengthsl(κ) of the cycles comprisingσ. It was shown that

νn
(
s(σ)− (1/2) log2 n < (1/

√
3)x log3/2 n

)
→ Φ(x) .

The convergence rate in this relation was estimated by J.-L.Nicolas [16]. An improvement
of the convergence rate estimates in the central limit theorem for the group-theoretic order
function was given by A.D.Barbour and S.Tavar´e [2]. Other relevant references can be
found in the book [10] and in the recent lecture [18]. In addition, we note that random
permutations, not necessarily taken with equal probabilities, comprise a rather significant
object in applied mathematics (see [1] and the references therein). So we hope that our
remark, though written in purely theoretical style, will be useful for those interested in
analytic problems of the applied probability theory.

In what follows we adopt a few definitions from probabilistic number theory. Having in
mind the examples of functionsω(σ) ands(σ), we call the maph : Sn :→ R additiveif
it satisfies the relationh(σ) = h(κ1) + · · ·+ h(κω) for eachσ having the expression (1).
Similarly, the mapf : Sn :→ C satisfying the equalityf(σ) = f(κ1) · · · f(κω) is called
multiplicative. Further, the functiong : Sn → C will be calledclass dependent, or shortly,
CD function if its values on cycles depend only on their lenghts, e.g., there exists a function
ĝ : N→ C such thatg(κ) = ĝ(l(κ)). To argue the definition, we remind that eachσ ∈ Sn
belongs to a class of conjugate elements, which we denote bym̄ := (m1, . . . ,mn) with
0 ≤ mk ≤ n/k and1m1 + · · ·+ nmn = n. The relationσ ∈ m̄ means thatσ consists of
mk cycles of the lengthk, 1 ≤ k ≤ n. The CD additive and multiplicative functions have
the representations

h(σ) =
n∑
k=1

ĥ(k)mk, f(σ) =
n∏
k=1

f̂(k)mk (2)

with mk = mk(σ). The general task is to describe these functions when the valuesĥ(k)
or f̂(k), k ≥ 1 are given. The problem of weak convergence to a limit law of

νn
(
h(σ)− α(n) < xβ(n)

)
,

whereα(n) andβ(n) > 0 are suitably chosen normalizing sequences, was considered in
the paper [14]. According to the result of V.L.Goncharov [5], the distribution with respect
to νn of the random variablemk(σ) tends to the Poissonian law having the parameter1/k
for each fixedk. Hence the choice of

α(n) =
n∑
k=1

ĥ(k)
k

, β(n) =
( n∑
k=1

ĥ2(k)
k

)1/2
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calledstandard normalizationshould be considered at the first place. That motivates the
normalization used afterwards. We quote the following partial result.

Theorem A ([14]). Let hn(σ) be a sequence of real CD additive functions satisfying
the condition

n∑
k=1

ĥ2
n(k)
k

= 1 (3)

and

A(n) :=
n∑
k=1

ĥn(k)
k

.

If the Lindeberg type condition

∑
k≤n

|ĥn(k)|≥ε

ĥ2
n(k)
k

= o(1) (4)

holds for eachε > 0, then

νn(x) := νn
(
hn(σ)−A(n) < x

)
= Φ(x) + o(1) (5)

uniformly inx ∈ R and also

1
n!

∑
σ∈Sn

(
hn(σ)−A(n)

)2 = 1 + o(1) . (6)

Having in mind the Berry–Esseen estimate in the central limit theorem for sums of
independent random variables (see V.V.Petrov [17], Chapter 5), we expect that the remainder
in (5) can be estimated in terms of

Ln :=
n∑
k=1

|ĥn(k)|3
k

.

Observe that the relationLn = o(1) implies also the condition (4). It appears that depen-
dence of the random variablesmk(σ), 1 ≤ k ≤ n involved by (2) in the functionhn(σ)
makes a substantial influence.

In what follows, let the symbolsO or¿ contain absolute constants when there is no other
indication, and

Dn =
∑

1≤k,l≤n
k+l>n

ĥn(k)ĥn(l)
kl

.
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In contrast to the above mentioned Berry–Esseen bound, we have the following results.

Theorem 1. Let hn(σ), n ≥ 1 be a sequence of real CD additive functions satisfying
the condition (3). Then

R′n := sup
x∈R

∣∣∣∣νn(x)− Φ(x)− Dnx

2
√

2π
e−x

2/2

∣∣∣∣¿ Ln.

Corollary. We have

Rn := sup
x∈R
|νn(x)− Φ(x)| ¿ L2/3

n .

There exists a sequence of CD additive functions satisfying the condition (3) andLn = o(1)
but such that

Rn À L2/3
n .

Theorem 2. Lethn(σ), n ≥ 1 be a sequence of real CD additive functions normalized
so that

n∑
k=1

ĥ2
n(k)
k
−Dn = 1 . (7)

Then with the same centralizing sequenceA(n), we have

Rn := sup
x∈R
|νn(x)− Φ(x)| ¿ Ln .

Theorems 1 and 2 are analogous to the results obtained by A.Maˇciulis [13] for additive
functions defined onN. The proofs are based upon the Esseen inequality connecting the
convergence rate of distribution functions to their characteristic functions and analysis of
the last. Ifg(σ) := exp{ith(σ)}, t ∈ R and, as above, the function̂g is defined by
ĝ(l(κ)) = g(κ), then the main difficulty is to find asymptotic formulae for

Mn(g) :=
1
n!

∑
σ∈Sn

g(σ) =
∑
m̄

n∏
k=1

(
ĝ(k)
k

)mk 1
mk!

uniform in parameters ofg. Moreover, we have

exp
{ ∞∑
k=1

ĝ(k)zk

k

}
=
∞∑
n=0

Mn(g)zn, |z| < 1. (8)

So, our task reduces to a problem in function theory. We hope that the analysis of the
relations between the coefficients of the series in (8) done in the next two sections has
independent interest.
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2. The first analytic formula

Letf(k), k ≥ 1 be complex numbers, depending, maybe, onnor other parameters. Denote

F (z) = exp
{ ∞∑
k=1

f(k)zk

k

}
=:

∞∑
n=0

Mnz
n, |z| < 1. (9)

We will obtain asymptotic expressions ofMn in terms off(k). Since the values off(k),
whenk > n, make no influence ontoMn, we assume them equal to one. The remainder in
the formula obtained in this section will involve the quantity

ρ(n, p) =
(∑
k≤n

|f(k)− 1|p
k

)1/p

wherep > 1. Put

L(z) =
∑
k≤n

f(k)− 1
k

zk, z = reiτ := e−1/n+iτ , τ ∈ R.

Let

Ij(n) =
1

2πi

∫
|z|=r

(L(z)− L(1))j

(1− z)zn+1
dz, j = 0, 1, . . . .

Calculating the coefficients of the integrand, we haveI0(n) = 1, I1(n) = 0, and

I2(n) = −
∑

1≤k,l≤n
k+l>n

(f(k)− 1)(f(l)− 1)
kl

.

We have the following result.

Theorem 3. Letp > 1. There exists sufficiently smallδ = δ(p) such that, if

ρ := ρ(n, p) ≤ δ , (10)

then

Mn = exp{L(1)}
(

1 +
N−1∑
j=2

Ij(n)
j!

+O
(
ρN + n−c

))
for eachN ≥ 2 with some constantc = c(p) > 0. The constant in the symbolO also
depends onp only.

The proof of Theorem 3 goes along the lines drawn up by A.Maˇciulis in the paper [13].
At first we prove few auxilliary results. The following estimate of the norm of a polynomial
is perhaps known, but we have failed to find it in the literature.
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Lemma 1. Let r = e−1/n, s > max{2, p/(p− 1)}, andp > 1. For each polynomial

P (z) =
n∑
k=1

akz
k, ak ∈ C ,

we have

‖P (z)‖s :=
(∫ 2π

0

|P (reiτ )|s dτ
)1/s

≤ C(s, p)n1−1/s

( n∑
k=1

|ak|p
k

)1/p

=: C(s, p)n1−1/sQ .

The constantC(s, p) depends only ons andp.

Proof: The main idea takes its backgroud in the G.Hal´asz’ paper [6]. Letα = min{2, p},
β = α/(α− 1), andz = reiτ . Observe that

n∑
k=1

|ak|α ≤ nQα, |P (z)| ≤ nQ .

Define

Ωj = {τ ∈ [0, 2π] : |P (zeiτ )| > 2−jnQ}, j = 0, 1, . . . , j0 .

Hence using the partition

[0, 2π] = ([0, 2π] \ Ωj0)
j0⋃
j=1

(Ωj \ Ωj−1) ,

we have∫ 2π

0

|P (reiτ )|s dτ ≤ nsQs
(

2π2−j0s + 2s
j0∑
j=1

2−jsµΩj

)
,

whereµΩ stands for the Lebesgue measure of the setΩ. We see that the assertion of Lemma
1 will follow from the estimate

µΩj ¿ n−1j2βj (11)

with β < s. Here and in what follows the constant in the symbol¿ depends at most ons
andp.

In order to prove (11) whenj ≥ 1, we choose the pointsτl, l = 1, . . . , nj by induction.
Let

τ1 = inf Ωj , τl+1 = inf{τ ∈ Ωj : τ ≥ τl + 1/n} .

ThenµΩj ≤ nj/n, and it remains to prove the estimate
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nj ¿ j2βj . (12)

We can suppose thatnj ≥ 3. If zl = exp{−i argP (reiτl)}, then

2−jnQnj ≤
nj∑
l=1

zlP (reiτl) =
n∑
k=1

akr
k

nj∑
l=1

zle
ikτl ≤

≤
( n∑
k=1

|ak|α
)1/α( ∞∑

k=1

rk
∣∣∣∣ nj∑
l=1

zle
ikτl

∣∣∣∣β)1/β

≤

≤ n1/αQ

(
nβ−2
j

∞∑
k=1

rk
∣∣∣∣ nj∑
l=1

zle
ikτl

∣∣∣∣2)1/β

. (13)

The double sum on the right hand side equals

Σ :=
nj∑
l=1

nj∑
m=1

zlz̄m

∞∑
k=1

rkeik(τl−τm) ≤

≤ 3
nj∑
l=1

∞∑
k=1

rk + 4
nj∑

l,m=1
1/n≤τl−τm≤π

∣∣∣∣ ∞∑
k=1

rkeik(τl−τm)

∣∣∣∣ .
Observing thatτm+k − τm ≥ k/n, we proceed

Σ¿ nnj + nj

nj−1∑
k=1

max
k/n≤τ≤π

|1− reiτ |−1 ¿ nnj lognj .

The last estimate and (13) implynl lognj ¿ 2jβ . Hence we obtain (12).
Lemma 1 is proved.

Let τ0 = min{e1/ρ,
√
n}/n and

l = {z : |z| = r := e−1/n}, l0 = {z ∈ l : |τ | := | arg z| ≤ τ0} ,

l1 = {z ∈ l : τ0 < |τ | ≤ π} .

The constants in the symbolsO or¿ will depend at most onp provided thatδ is chosen
smaller than some constant depending onp.

Lemma 2. Letp > 1, 1/p+ 1/q = 1. ThenL(z)− L(1)¿ ρ log1/q(2 + |τ |n) and, for
|τ | ≤ τ0,

exp{L(z)− L(1)} =
N−1∑
j=0

(
L(z)− L(1)

)j
j!

+O

(
|L(z)− L(1)|N

N !

)
.
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Proof: We start with the inequalities

|L(z)− L(1)| ≤
∑
k≤n

|f(k)− 1|
k

rk|eikτ − 1|+ 1
n

∑
k≤n
|f(k)− 1|

≤ ρ(n)
(

Ψn(τ)1/q + 1
)
, (14)

where

Ψn(τ) =
∞∑
k=1

rkq|eikτ − 1|q
k

.

Expanding into the Fourier series (see [11] or [8], Exercise 34), we have

|1− eix|q = a(q) +
∞∑

m=−∞
m6=0

am(q)eimx,

a(q) = −
∞∑

m=−∞
m6=0

am(q) =
2qΓ((1 + q)/2)√
πΓ((2 + q)/2)

,

for x ∈ R, q ≥ 1 with am(q) ∈ R, am(q)¿ |m|−2. Hence as in [12], we obtain

Ψn(τ) = a(q) log
|1− zq|
1− rq +

∞∑
m=−∞
m6=0

am(q) log
|1− zq|
|1− rqeimτ |

≤ a(q) log
|1− zq|
1− rq +O(1) .

Inserting this estimate into (14) and analyzing the logarithmic function, we obtain the first
assertion of Lemma 2.

By virtue of log1/q(2 + |τ |n)¿ ρ−1/q when|τ | ≤ τ0, the second estimate follows from
the first one.

Lemma 2 is proved.

Proof: [Proof of Theorem 3] According to Cauchy’s formula,

Mn =
1

2πin

∫
|z|=r

F ′(z)
zn

dz .

We recall thatf(k) = 1 whenk > n. Using the notations, we obtain

Mn =
exp{L(1)}

2πin

∫
|z|=r

exp{L(z)− L(1)}
(1− z)zn

∞∑
k=1

f(k)zk−1 dz

=
exp{L(1)}

2πin

∫
|z|=r

exp{L(z)− L(1)}
(1− z)zn

(
1

1− z + L′(z)
)
dz . (15)
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Whenz ∈ l1, we have|1 − z| À |τ |, and by Lemma 1,exp{L(z) − L(1)} ¿ (n|τ |)ρ.
Thus,

J1 :=
1
n

∫
z∈l1

exp{L(z)− L(1)}
(1− z)2zn

dz ¿ (nτ0)ρ−1 ¿ n(δ−1)/2 + e−1/ρ . (16)

Similarly using Cauchy’s inequality, Lemma 1 withs satisfying its condition andt > 1
such that1/s+ 1/t = 1, we obtain

J2 :=
1
n

∫
z∈l1

exp{L(z)− L(1)}
(1− z)zn L′(z) dz

¿ 1
n

(∫
z∈l1

∣∣∣∣exp{L(z)− L(1)}
1− z

∣∣∣∣t |dz|)1/t

‖L′(z)‖s

¿ n−1+ρτ
ρ−1/s
0 · ρn1−1/s ¿ n−1/2s + e−1/sρ (17)

provided thatδ ≤ 1/2s.
We now consider the integral in (15) whenz ∈ l0. Applying Lemma 1, we have

J0 :=
1

2πin

∫
l0

1
(1− z)2zn

N−1∑
j=0

(
L(z)− L(1)

)j
j!

dz

+
1

2πin

∫
l0

L′(z)
(1− z)zn

N−2∑
j=0

(
L(z)− L(1)

)j
j!

dz +R

=: J01 + J02 +R , (18)

where

R ¿ 1
nN !

∫
l0

|L(z)− L(1)|N
|1− z|2 |dz|

+
1

n(N − 1)!

∫
l0

|L(z)− L(1)|N−1

|1− z| |L′(z)| |dz| =: R′ +R′′ .

It follows from Lemma 2 that

R′ ¿ nρN

N !

∫ τ0

0

logN/q(2 + nτ)
(1 + nτ)2

dτ ¿ ρN . (19)

As estimatingJ2, we obtain

R′′ ¿ ρN−1

(N − 1)!

(∫ τ0

0

logt(N−1)/q(2 + nτ)
(1 + nτ)t

dτ

)1/t

‖L′(z)‖s ¿ ρN . (20)

We extend the integralsJ01 andJ02 over the regionl1. While

1
nj!

∫
l1

|L(z)− L(1)|j
|1− z|2 |dz| ¿ ρj(nτ0)−1/2 ¿ ρj(n−1/4 + e−1/2ρ)
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and

1
nj!

∫
l1

|L(z)− L(1)|j
|1− z| |L′(z)| |dz|

¿ 1
nj!

(∫
l1

|L(z)− L(1)|jt
|1− z|t |dz|

)1/t

‖L′(z)‖s

¿ ρj+1(nτ0)−(t−1)/2 ¿ ρj+1(n−c1 + e−c1/ρ)

with c1 = c1(p) > 0, we obtain from (18), (19), and (20)

J0 :=
1

2πin

∫
l

1
(1− z)2zn

N−1∑
j=0

(
L(z)− L(1)

)j
j!

dz

+
1

2πin

∫
l

L′(z)
(1− z)zn

N−2∑
j=0

(
L(z)− L(1)

)j
j!

dz +O
(
n−c2 + ρN

)
=

N−1∑
j=1

Ij
j!

+O
(
n−c2 + ρN

)
,

wherec2 = c2(p) > 0. Inserting the estimates (16), (17), and the last one into (15), we end
the proof of Theorem 3.

3. The second analytic formula

Now we will compensate the shortage of Theorem 3 appearing in the case when the quantity
ρ(p) is large. We will derive another asymptotic formula with the remainder estimate in
terms of

µ2
n :=

1
n

n∑
k=1

|f(k)− 1|2

and

E(u) := exp
{

2
n∑
k=1

|f(k)−1|>u

|f(k)− 1|
k

}

with u ≥ 0. All other previous notation remain the same.

Theorem 4. We have

Mn = exp{L(1)}
(
1 +O

(
(µn + n−1)1/2E(3/8)

)
.

The constant in the symbolO is absolute.
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The proof goes along the similar lines as that of Theorem 3, though we need auxilliary
results. Some of the ideas of the proof have been previously used in the papers [7] and [11].

Lemma 3. We have

‖L′(z)‖2 ≤
√

2πnµn .

Proof: Apply the Parseval equality.

Lemma 4. We have

exp{|L(z)− L(1)|} ¿u E(u)
∣∣∣∣1− z1− r

∣∣∣∣4u/π
for z = reiτ and eachu ≥ 0.

Proof: Observe that

n∑
k=1

|rkeiτk − 1|
k

¿ 1 +
n∑
k=1

|eiτk − 1|
k

and apply the Fourier expansions used in the proof of Lemma 2 withq = 1. So we deduce

|L(z)− L(1)| ¿ 4u
π

log
|1− z|
1− r + logE(u) + u

for u ≥ 0. Hence follows the desired estimate.
Lemma 4 is proved.

Proof of Theorem 4: We start with the formula (15). Now it is easier, than in the proof of
Theorem 3, to estimate the integral

J3 :=
1
n

∫
|z|=r

| exp{L(z)− L(1)}|
|1− z| |L′(z)| |dz|

¿ 1
n
‖L′(z)‖2

(∫
|z|=r

| exp{L(z)− L(1)}|2
|1− z|2 |dz|

)1/2

.

We obtain from Lemma 3 and Lemma 4 withu = 3/8

J3 ¿ E(3/8)µn

(
n−1+3/π

∫
|z|=r

|1− z|3/π−2 |dz|
)1/2

¿ E(3/8)µn .
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Let now l3 = {z ∈ l : |τ | ≤ K/n}, K = min{µ−1
n , n}, andl4 = l \ l3. By Lemma 4

with u = π/8, we have

J4 :=
1
n

∫
l4

1 + | exp{L(z)− L(1)}|
|1− z|2 |dz|

¿ 1
K

+ E(π/8)n−1/2

∫
l4

|1− z|−3/2|dz| ¿ E(3/8)K−1/2 .

Similar by applying|L(z)− L(1)| ≤ nµn|1− z|, we obtain

J5 :=
1
n

∫
l3

|L(z)− L(1)| exp{|L(z)− L(1)|}
|1− z|2 |dz|

¿ E(3/8)µn
∫
l3

|1− z|−1/2|dz| ¿ E(3/8)µn
√
K .

Inserting these obtained estimates into (15) and recalling the choice ofK, we have

Mn = exp{L(1)}
(
1 +O(J3 + J4 + J5)

)
exp{L(1)}

(
1 +O

(
(µn + n−1)1/2E(3/8)

)
.

Theorem 4 is proved.

4. Estimation of the convergence rate

Proof of Theorem 1: We use a generalization of the Esseen inequality (see [17], Theorem
2, Chapter 5.2). Let

ϕn(t) :=
exp{−itA(n)}

n!

∑
σ∈Sn

exp{ithn(σ)}, t ∈ R .

We have

R′n ¿
1
T

+
∫
|t|≤T

∣∣ϕn(t)− e−t2/2(1 +
t2Dn

2
)
∣∣dt
|t| (21)

whereT > 0.
In order to obtain asymptotic formulas forϕn(t), we takef(k) = exp{itĥn(k)}, 1 ≤

k ≤ n and apply Theorem 3 withp = 3, N = 3 and Theorem 4. Nowρ ≤ |t|L1/3
n . Put

T1 = δL
−1/3
n , whereδ > 0 is sufficiently small to guarantee the validity of the formula in

Theorem 3 in the region|t| ≤ T1. Observe that the condition (3) implies

1 =
n∑
k=1

ĥ2
n(k)
k
≤ L2/3

n

( n∑
k=1

1
k

)1/3
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and henceLn À (logn)−1/2. We can also suppose thatLn = o(1). We obtain from
Theorem 3

ϕn(t) = exp{− t
2

2
+

Θ
6
|t|3Ln}

(
1−

− 1
2

n∑
k,l=1
k+l>n

(
exp{itĥn(k)} − 1

)(
exp{itĥn(l)} − 1

)
kl

+O(|t|3Ln)
)

(22)

in the regionLn ≤ |t| ≤ T1 with |Θ| ≤ 1.
Analysis of the double sum, saySn(t), in (22) requires more calculations. Let

ak =
∑

n−k<l≤n

1
l
, Σ(s) =

n∑
k=1

ask
k
.

Using the relation

∑
k≤n/2

ask
k
→
∫ 1/2

0

(− log(1− x))s

x
dx <∞, s > 0 ,

we obtainΣ(s)¿s 1 for each fixeds > 0. Now as in [13], we have

Sn(t) = it
n∑
k=1

exp{itĥn(k)} − 1
k

∑
n−k<l≤n

ĥn(l)
l

+ O

(
|t|3L2/3

n

n∑
k=1

|ĥn(k)|
k

a
1/3
k

)
=

= −t2Dn +O

(
|t|3

n∑
k=1

ĥ2
n(k)
k

∑
n−k<l≤n

|ĥn(l)|
l

)
+ O

(
|t|3LnΣ(1/2)2/3

)
= −t2Dn +O(|t|3Ln) .

Inserting the last formula into (22), we obtain

ϕn(t) = e−t
2/2(1 + t2Dn/2) +O

(
|t|3e−t2/4Ln

)
(23)

in the regionLn ≤ |t| ≤ T1.
Let |t| ≤ (64Ln)−1 =: T , then rough estimation of the terms in the formula obtained in

Theorem 4 yields

ϕn(t)¿ exp
{
− t2

2
+
|t|3Ln

6
+ 2(

8
3

)2|t|3Ln
}
≤ e−t2/4 . (24)

It follows from (6) that
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ϕn(t)− 1¿ |t|
(

1
n!

∑
σ∈Sn

(
hn(σ)−A(n)

)2)1/2

¿ |t| . (25)

Splitting the region|t| ≤ T of integration in (21) into intervals|t| ≤ Ln, Ln ≤ |t| ≤ T1,
T1 ≤ |t| ≤ T and using (25), (23), and (24) respectively, we obtain the desired estimate.

Theorem 1 is proved.

Proof of Corollary: The first estimate follows from Theorem 1 and the inequality

Dn ≤ L1/3
n

n∑
k=1

|ĥn(k)|
k

a
2/3
k ≤ L2/3

n Σ(2/3) ≤ L2/3
n

by the estimate above.
To prove the second assertion of Corollary, we construct the following example. Let

d(1) = 1,

d(k) =

{
log−2/5 k, 2 ≤ k ≤ n/2,

1, n/2 < k ≤ n,

then
n∑
k=1

d3(k)
k

= c+ o(1), β2
n :=

n∑
k=1

d2(k)
k

= 5 log4/5 n+O(1) .

If ĥ(k) := d(k)/βn, thenLn ∼ 5−3/2c log−6/5 n and

Dn ≥
1
β2
n

( ∑
n/2<k≤n

1
k

)2

≥ (log 2)2

2β2
n

≥ c1L2/3
n

with c1 > 0 providedn is sufficiently large. Thus, for the sequence of CD additive functions
defined byh(κ) = ĥ(l(κ)), Theorem 1 yieldsRn À L

2/3
n .

Proof of Theorem 2: As earlier, we may assume thatLn = o(1). Then alsoDn = o(1).
The estimates (24) and (25) but (23) remain valid.

Using the condition (7) instead of (3), we derive from Theorem 3

ϕn(t) = e−t
2/2 +O

(
|t|3e−t2/4Ln

)
(26)

in the regionLn ≤ |t| ≤ T1.
Now the traditional form of the Esseen inequality yields

Rn ¿
1
T

+
∫
|t|≤T

∣∣ϕn(t)− e−t2/2
∣∣dt
|t|
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whereT = (64Ln)−1. Using the formulae (25), (24), and (26) in the regions|t| ≤ Ln,
T1 ≤ |t| ≤ T , andLn ≤ |t| ≤ T1, respectively, we obtain the desired estimate.

Theorem 2 is proved.
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12. Mačiulis, A., “The mean values of multiplicative functions defined on a semigroup,” In:New Trends in

Probab. and Statistics, vol. 2. Analytic and Probabilistic Methods in Number Theory, F.Schweiger and
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