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Abstract. We prove an analog of the Kolmogorov–Rogozin inequality for the
value concentration of completely additive functions defined on random
permutations.
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1. INTRODUCTION AND RESULT

Let Sn be the symmetric group of permutations σ acting on n ≥ 1 letters.
Each σ ∈ Sn has a unique representation (up to the order) by the product of
independent cycles κ

σ = κ1 · · ·κw, (1)

where w = w(σ) denotes the number of cycles. Set νn for the uniform prob-
ability measure on Sn. Denote by kj(σ) the number of cycles of length j in
(1), 1 ≤ j ≤ n, and let k̄(σ) = (k1(σ), . . . , kn(σ)) be the structure vector
of σ ∈ Sn. The evident relation 1k1(σ) + · · · + nkn(σ) = n shows that the
family of random variables (r. vs) {kj(σ), 1 ≤ j ≤ n} is dependent with re-
spect to νn. Its joint distribution can also be interpreted as the conditional
distribution of a set of independent Poisson random variables {ξj , 1 ≤ j ≤ n},
Eξj = 1/j, defined on some probability space. It is known [1] that

νn(k̄(σ) = k̄) = 1(1k1 + · · ·+ nkn = n)

n∏
j=1

1

jkjkj !

= P
(
(ξ1, . . . , ξn) = k̄ |1ξ1 + · · ·+ nξn = n

)
, k̄ ∈ Z+n

.
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Despite to this dependency, the theory of limit distributions as n→∞of the
decomposable mappings, called additive functions, is under progress (see [1],
[2], [10], [11], and the bibliography given in these papers).

We will examine the value concentration of a completely additive function
h : Sn → R, maybe, depending on n. By definition, it has the expression

h(σ) :=

n∑
j=1

a(j)kj(σ) (2)

with some a(j) ∈ R, 1 ≤ j ≤ n. The above mentioned number of cycles
w(σ) is the classical example. An interesting completely additive function
has appeared in the recent investigations [7] and [14] of distribution of the
number N(σ;x, y) of eigenvalues on the unit circumference between the points
e2πix and e2πiy, 0 ≤ x < y ≤ 1, of the permutation matrix associated to σ.
We have the relation

N(σ;x, y)− n(y − x) =
n∑
j=1

kj(σ)({xj} − {yj}) =: W (σ),

where {a} denotes the fractional part of a ∈ R. The function W (σ) is com-
pletely additive. Appropriately normalized, either of w(σ) or W (σ) obeys the
standard normal limit distribution with respect to νn as n → ∞. Neverthe-
less, the limit distribution for

n−αhα(σ) := n−α
n∑
j=1

jαkj(σ)

with α > 1 is proper and concentrated in the interval [0,1] and therefore it
is not infinitely divisible (see [10]). Note that h1(σ) ≡ n for all σ ∈ Sn.
Thus, for better understanding of our results, it is worth to bear in mind that
any function under investigation can have the ”deterministic” component as
λh1(σ) = λn with some λ ∈ R.

Our purpose is to obtain a Kolmogorov type estimate for the concentration

Qn(l) = sup
x∈R

νn(x ≤ h(σ) < x+ l), l ≥ 0.

General properties of the concentration functions and the estimates for sums
of independent r. vs are presented in [8]. We have been mainly influenced by
the investigation of I.Z. Ruzsa [13] in probabilistic number theory. We use
his ideas and arguments in the sequel.

Let x ∧ y = min(x, y). For a completely additive function h(σ) and λ ∈ R,
we set

Dn(l;λ) =

n∑
j=1

l2 ∧ (a(j)− λj)2

j
, Dn(l) = min

λ∈R
Dn(l;λ).
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Throughout the paper C,C1, . . . will denote absolute positive constants. The
main result of the paper is the following theorem.

Theorem. We have

Qn(l) ≤ Cl(Dn(l))−1/2.

Of course, if Dn(l) = o(l2) as n→∞, the trivial estimate Qn(l) ≤ 1 is better.
Observe that the Kolmogorov–Rogozin theorem (see [12] or Theorem 2.2.4 in
[8]) applied for the sum Sn := a(1)ξ1 + · · · + a(n)ξn, where ξj are the above
mentioned independent Poisson r. vs, yields the estimate

sup
x∈R

P (x ≤ Sn < x+ l) ≤ C1l(Dn(l; 0))−1/2.

Thus, with a successful choice of λ, our concentration estimate for h(σ) −
λh1(σ) is comparable with that for Sn.

2. PROOF OF THEOREM

We split the proof into several lemmas.

Lemma 1. Let f : Sn → C be a completely multiplicative function defined by

f(σ) =

n∏
j=1

b(j)kj(σ), 00 := 1

with b(j) ∈ C, |b(j)| ≤ 1 for each 1 ≤ j ≤ n. Then

1

n!

∣∣∣∣ ∑
σ∈Sn

f(σ)

∣∣∣∣ ≤ C2 exp

{
− 1

4
min
|u|≤π

n∑
j=1

1−<(b(j)eiuj)

j

}
.

Proof. This is the estimate (17) in the author’s paper [10].

Further we will apply it for the Fourier transform of the distribution νn(h(σ) <
x) (see inequality (11) below). In this case, b(j) = e2πia(j)t, t ∈ R. So, the
first task will be investigation of the trigonometrical polynomial

m(u, t) :=

n∑
j=1

1− cos 2π(a(j)t− uj)
j

.

Consider the values u(t) giving

min
−1/2≤u<1/2

m(u, t) = m(u(t), t), t ∈ [−1, 1].
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Dealing with the stationary points, we use a criteria for implicit functions
and observe that u(t) is well defined continuous function in some nontrivial
neighborhood of the point t = 0, u(0) = 0. Beyond it, if several values of
u(t) appear for a fixed t, we can choose the smallest of them and so obtain
the function u(t) defined on the whole interval [-1,1] and taking values in
[-1/2,1/2). It appears that u(t) is related to a homomorphism of the additive
groups R and R/Z = T. For convenience, we identify T with the interval
[0,1) and take addition modulo one. Observe that the group T is the complete
metric space with respect to the metric defined via the distance to the nearest
integer ||x|| = {x}∧(1−{x}) which is not a norm. Further, if−1/2 ≤ u(t) < 0,
we redefine this value to 1 + u(t) and so get the function u : [−1, 1] → T
preserving continuity at the point t = 0.

We now examine the approximate Cauchy equations with respect to ||u||.

Lemma 2. Let w : R→ T be the function satisfying

||w(x+ y)− w(x)− w(y)|| < ε (3)

for all x, y ∈ R and some 0 < ε < 1/6, then there exists a homomorphism
ϕ : R→ T such that

||w(x)− ϕ(x)|| ≤ ε

for all x ∈ R.

Proof. See [4] and [5], Thm 1. In the second paper [5], D. Cenzer also shows
that the bound 1/6 can not be substituted by 1/4.

Lemma 3. Let ϕ : R → T be a homomorphism. Assume that there is a
nonempty open set U ⊂ R and a 0 < δ < 1/2 such that

ϕ(U) ⊂ (−1/2 + δ, 1/2− δ) + Z,

then

ϕ(x) = λx mod 1 (4)

for some λ ∈ R.

Proof. This result belongs to J.G. Van der Corput [6], p. 64. The proof was
restated by K. Baron and P. Volkmann [3]. For an extensive bibliography
concerning the approximate Cauchy equations, see the survey [9].

In what follows we will use the following corollary of Lemmas 2 and 3.
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Lemma 4. Let v : [−1, 1]→ T be continuous at the point t = 0 and v(0) = 0.
Suppose that, for some 0 < η < 1/18,

||v(t1 + t2)− v(t1)− v(t2)|| ≤ η (5)

whenever t1, t2, t1 + t2 ∈ [−1, 1]. Then

||v(t)− λt|| ≤ 3η (6)

for some λ ∈ R and all t ∈ [−1, 1].

Proof. Define w : R→ T by

w(2k + t) = 2ku(1) + v(t) mod 1, t ∈ [−1, 1).

This function extends v(t) to the real line, except at t = 1, where w(1) =
2v(1) +v(−1) mod 1. The function z(t) := w(t)−v(1)t mod 1 is 2-periodical.
Hence estimating, as in (3) for all x, y ∈ R,

d := ||w(x+ y)− w(x)− w(y)|| = ||z(x+ y)− z(x)− z(y)||

we may confine ourselves to the values x, y ∈ [−1, 1). If also x+ y ∈ [−1, 1),
then by (5) d ≤ η. If x+ y ≥ 1, using (5) again, we obtain

d = ||2v(1) + v(x+ y − 2)− v(x)− v(y)||
≤ ||v(x+ y − 2)− v(x− 1)− v(y − 1)||+ ||v(x− 1) + v(1)− v(x)||
+ ||v(y − 1) + v(1)− v(y)|| ≤ 3η.

Similarly, d ≤ 3η in the case x+y < −1. Thus, w satisfies (3) with ε = 3η. By
Lemma 2 there exists a homomorphism ϕ : R→ T such that ||w(x)−ϕ(x)|| ≤
3η for all x ∈ R. By the continuity condition of the lemma, ||w(x)|| =
||v(x)|| ≤ η for all x belonging to some neighborhood U of the point x = 0.
Hence ||ϕ(x)|| ≤ η + ||w(x) − ϕ(x)|| ≤ 4η < 1/2 for x ∈ U . Lemma 3 now
gives the expression (4) of ϕ(x). Lemma 4 is proved.

We now return to the trigonometrical polynomials m(u, t) with u ∈ T and
t ∈ [−1, 1].

Lemma 5. For 0 ≤ x ≤ 1/2 and 0 ≤ Θ ≤ 10, we have

m(Θx, 0) ≤ m(x, 0) + C3.
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Proof. Let r := e−1/n and

Ψ(y) : =

∞∑
j=1

1− cos 2πjy

j
rj = log

|1− re2πiy|
1− r

=
1

2
log

(
1 +

4r

(1− r)2
sin2 πy

)
.

By virtue of

n∑
j=1

1− rj

j
+
∑
j>n

rj

j
≤ 1 +

∫ ∞
n

rx

x
dx < 1 + e−1, n ≥ 1,

we have |m(y, 0)−Ψ(y)| < 3. Thus it remains to check if Ψ(θx) ≤ Ψ(x) +C4

in the region assumed in the lemma. We have

C(Θ) := max
0≤x≤1/2

sin2 πΘx

sin2 πx
≤ C5

for 0 ≤ Θ ≤ 10. Hence

Ψ(Θx) ≤ 1

2
log

(
1 +

4rC(Θ)

(1− r)2
sin2 πx

)
≤ Ψ(x) +

1

2
log(max(1, C5)),

as desired. Lemma 5 is proved.

Lemma 6. Let M be a constant such that, for a continuous at the point t = 0
function u : [−1, 1]→ T, u(0) = 0, we have

m(u(t), t) ≤M (7)

for all t ∈ [−1, 1]. Then, for some λ ∈ R,

m(λt, t) ≤ 20M + 2C3, t ∈ [−1, 1] (8)

and

Dn(1, λ) ≤ (10M + C3)C6. (9)

Remark. Since for u(t) one could imagine the above mentioned function,
realizing the minimum of m(u, t), we have not used another notation.

Proof. Set

α = sup{||u(t1 + t2)− u(t1)− u(t2)|| : t1, t2, t1 + t2 ∈ [−1, 1]}.
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If α = 0, then by Lemma 4, ||u(t) − λt|| = 0 and inequality (8) follows from
(7). If α > 0, we chose t1, t2, t1 + t2 ∈ [−1, 1] so that

β := ||u(t1 + t2)− u(t1)− u(t2)|| ≥ 9

10
α.

For arbitrary t ∈ [−1, 1], by Lemma 4 with η = α, we have β1 := ||u(t) −
λt|| ≤ 9α ≤ 10β. Since the first inequality is trivial for α ≥ 1/18, applying
Lemma 4 we have avoided the condition on α. Now, by virtue of Lemma 5,
m(β1, 0) ≤ m(β, 0) + C3. The inequality

1− cos(x1 + · · ·+ xk) ≤ k
(
(1− cosx1) + · · ·+ (1− cosxk)

)
(10)

and (7) yield

m(β, 0) ≤ 3

(
m(u(t1 + t2), t1 + t2) +m(u(t1), t1) +m(u(t2), t2)

)
≤ 9M.

Again by (10), we obtain bound (8):

m(λt, t) ≤ 2m(u(t), t) + 2m(β1, 0) ≤ 2M + 2m(β, 0) + 2C3 ≤ 20M + 2C3.

Integrating the trigonometrical polynomial m(λt, t) over the interval [0, 1] and
using the inequality 1− (sinx)/x ≥ c1 min{1, x2}, where x ∈ R and c1 > 0 is
an absolute constant, we obtain assertion (9). Lemma 6 is proved.

Lemma 7. If X ⊂ [−1, 1] is a set of positive Lebesgue measure, symmetric
to the origin and containing it, then we have

Xr := {x1 + · · ·+ xr : x1, . . . , xr ∈ X} ⊃ [−1, 1]

provided that r = [12/meas(X)].

Proof. See [13].

Proof of Theorem. For l > 0, it suffices to deal with Qn(1) only and then
apply the result for h(σ)/l. By Lemma 2.2.1 of [8] and our Lemma 1, we have

Qn(1) ≤ C7

n!

∫ 1

−1

∣∣∣∣ ∑
σ∈Sn

e2πith(σ)
∣∣∣∣dt ≤ C8

∫ 1

−1
exp

{
− 1

4
min
u∈T

m(u, t)

}
dt. (11)

Set

Xk = {t ∈ [−1, 1] : min
u∈T

m(u, t) ≤ k}, k = 1, 2, . . . .
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These sets are nonempty measurable, symmetric with respect to the origin,
and having the Lebesgue measure µk := meas(Xk) > 0. Applying Lemma
7 for X = Xk we have that the set sum Xr covers the interval [-1,1] if
r = [12/µk]. In other words, this means that each t ∈ [−1, 1] has an expression
t = t1 + · · · + tr such that m(um, tm) ≤ k with some um ∈ T, 1 ≤ m ≤ r.
Hence using (10) we obtain

m(u, t) ≤ kr2

for any t ∈ [−1, 1] and u = u1 + · · · + ur mod 1, u ∈ T. The same holds for
the function u(t) discussed above. Thus, by Lemma 6,

Dn(1, λ) ≤ C6(10kr2 + C3) ≤ C9kµ
−2
k

for some λ ∈ R, or equivalently,

µk ≤ C10(k/Dn(1))1/2.

This and (11) imply

Qn(1) ≤ C8

∑
k≥1

e−k/4µk+1 ≤ C11(Dn(1))−1/2.

Theorem is proved.
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10. Manstavičius, E. (1996). Additive and multiplicative functions on random permutations.
Lithuanian Math. J. 36, 4, 400–408.
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