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a b s t r a c t

We deal with the random combinatorial structures called assemblies. Instead of the
traditional logarithmic condition which assures asymptotic regularity of the number
of components of a given order, we assume only lower and upper bounds of this
number. Using the author’s analytic approach, we generalize the independent process
approximation in the total variation distance of the component structure of an assembly. To
evaluate the influence of strongly dependent large components, we obtain estimates of the
appropriate conditional probabilities by unconditioned ones. The estimates are applied to
examine additive functions defined on a new class of structures, called weakly logarithmic.
Some analogs ofMajor’s and Feller’s theoremswhich concern almost sure behavior of sums
of independent random variables are proved.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with the value distribution problems of mappings defined on Abelian partitional complexes [6] or
assemblies [2] and begin with the definitions which can be found in the latter systematic study.

Let σ be a set of n ≥ 1 points, partitioned into subsets so that there are kj(σ ) > 0 subsets of size j, 1 ≤ j ≤ n. Set
k̄(σ ) :=


k1(σ ), . . . , kn(σ )


. If we define ℓ(s̄) := 1s1 + · · · + nsn for s̄ = (s1, . . . , sn) ∈ Zn

+
, then ℓ


k̄(σ )


= n. Assume that

in each subset of size j, 1 ≤ j ≤ n, by some rule one of mj, 0 < mj < ∞, possible structures can be chosen. For instance,
the latter might be a cycle, then mj = (j − 1)!. A subset with a structure is a component of σ , and the set σ itself is called
an assembly [2]. In the mentioned instance, σ was just a permutation. Using all possible partitions of σ and the same rule
to define a structure in a component, we get the class An of assemblies of size n. Let A0 be comprised of the empty set. The
union

A0 ∪ A1 ∪ · · · ∪ An ∪ · · ·

forms the whole class of assemblies. Its basic parameters appear in the conditions posed on the sequencemj, j ≥ 1.
There are

n!
n∏

j=1


1
j!

sj
1
sj!

ways to partition an n-set into subsets, so that k̄(σ ) = s̄ if ℓ(s̄) = n and s̄ ∈ Zn
+
. Hence, there are

Qn(s̄) := n!
n∏

j=1


mj

j!

sj
1
sj!
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assemblies with the component vector k̄(σ ) = s̄, and the total number of them in the class An equals

|An| =

−
ℓ(s̄)=n

Qn(s̄).

On the class An, one can define the uniform probability measure denoted by

νn(. . .) = |An|
−1

|{σ ∈ An: . . .}|.

From now on, σ ∈ An is an elementary event. Following the tradition of probabilistic number theory and in contrast to [2],
we prefer to write f (σ ) instead of f for an arbitrary random variable (r.v.) defined on An. The component vector k̄(σ ) has
the following distribution:

νn(k̄(σ ) = s̄) = 1{ℓ(s̄) = n}
n!

|An|

n∏
j=1

1
sj!


mj

j!

sj

,

where s̄ = (s1, . . . , sn) ∈ Zn
+
. This leads to the Conditioning Relation (see [2, page 48])

νn(k̄(σ ) = s̄) = P

ξ̄ = s̄|ℓ(ξ̄ ) = n), (1)

where ξ̄ := (ξ1, . . . , ξn) and ξj, 1 ≤ j ≤ n, are mutually independent Poisson r.vs defined on some probability space
{Ω,F , P} with Eξj = ujmj/j!. Here u > 0 is an arbitrary number.

Apart from permutations, very important examples of assemblies are mappings of a finite set into itself interpreted as
their functional digraphs. In this case, the components are just the components of the digraph. For mappings, we have
|An| = nn and

mj/j! = (1/j)
j−1−
s=0

js/s! ∼ ej/2j, j → ∞.

More examples can be found in [2].
Equality (1) is sometimes used in the following alternative definition of random assemblies. Such a structure σ of size

n is understood as an unordered collection of kj(σ ) components, defined on disjoint sets of j labelled points, such that the
probability distribution of k̄(σ ) is given by (1), where ξj, 1 ≤ j ≤ n, are arbitrary independent Poisson r.vs. In the particular
case of Eξj = θ/j, where θ > 0 is a constant, we arrive at random permutations σ taken with the probability

ν(θ)n


{σ }


= θ k1(σ )+···+kn(σ )/θ(θ + 1) · · · (θ + n − 1).

Then the quantity on the right-hand side of (1) is the Ewens Sampling Formula

P

{s̄}


= 1{ℓ(s̄) = n}
n∏

j=1


θ

j

sj
1
sj!
, s̄ ∈ Zn

+
,

playing a great role in various statistical applications. In what follows, we also call ν(θ)n the Ewens Probability Measure on
the symmetric group.

The so-called Logarithmic Condition (see [2]) in the case of assemblies requires that

mj/j! ∼ θyj/j

for some constants y > 0 and θ > 0 as j → ∞. Under this condition, it is natural and technically convenient to take u = y−1,
which yields the relation Eξj ∼ θ/j as j → ∞. The above presented examples of assemblies satisfy this condition, we may
call them logarithmic.

There are a few ways to induce new classes of assemblies, e.g., refinement and coloring which are mentioned in
[2, Section 2.4]. In the second approach, given a class of structures, one colors each ofmj components of size j ≥ 1with one of
nj ≥ 1 colors and getsmjnj new components. Collecting them into assemblies one defines a new class. Now, a requirement
of the asymptotic regularity formjnj as j → ∞ in the logarithmic condition becomes rather restrictive. This condition is not
satisfied in the problems for the assemblies missing some component sizes. For the recent development of a probabilistic
theory for such structures, see [16] and the references therein. Another path leading to non-logarithmic assemblies is
related to weighted probability measures. For this, we refer to the author’s papers [12,14] and Zacharovas’ dissertation [26]
containing generalizations of the Ewens probability in the symmetric group. Finally, the results (see [25,26,15])
on the value distribution of mappings defined on powers of permutations also concern the non-logarithmic structures.
Having all that in mind, we introduce a new class of assemblies.

Definition. Let n ≥ 1, and let µn be a probability measure on An. The pair

An, µn


is called weakly logarithmic if there

exists a random vector ξ̄ = (ξ1, . . . , ξn), maybe depending on n, with mutually independent Poissonian coordinates such
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that

µn

k̄(σ ) = s̄


= P


ξ̄ = s̄|ℓ(ξ̄ ) = n


for each s̄ ∈ Zn

+
and

θ ′

j
≤ λj := Eξj ≤

θ ′′

j
(2)

uniformly in j ≥ 1 and n ≥ 1 for some positive constants θ ′ and θ ′′.
In our notation, the logarithmic assemblies are characterized by the condition λj ∼ θ/j as j → ∞, where θ > 0 is a

constant, and no dependence on n is allowed.
Themain result of this paper is the following total variation (TV) approximation. LetL(X) be the distribution of a random

variable X . Afterwards the index r, 1 ≤ r ≤ n, added to the vectors k̄(σ ) and ξ̄ will denote that only the first r coordinates
are taken. Let x+ = max{x, 0} for x ∈ R and let f (x) ≪ g(x) be the abbreviation of f (x) = O


g(x)


.

Theorem (TV Approximation). Let (An, µn) be weakly logarithmic. There exists a positive constant c1 = c1(θ ′, θ ′′) such that

ρTV

L

k̄r(σ )


,L(ξ̄r)


:=

−
s̄∈Zr

+


µn

k̄r(σ ) = s̄)− P(ξ̄r = s̄)


+

≪

 r
n

c1
(3)

uniformly in 1 ≤ r ≤ n. The constant in ≪ depends on θ ′ and θ ′′ only.

In fact, the estimate (3) is nontrivial if r ≤ c2n, where c2 > 0 is a sufficiently small constant depending on θ ′ and θ ′′. It
is known (see [2] and the references therein) that, for permutations taken with equal probabilities, the remainder term in
(3) is decreasing exponentially in the ratio n/r . On the other hand, for the permutations under the Ewens distribution with
θ ≠ 1, the error is of order r/n. The same bound holds for logarithmic assemblies satisfying the conditions

ϵj := θ−1jλj − 1 ≪ j−α, ϵj − ϵj+1 ≪ j1+α, α > 0,

and some mild condition on P(ξj = s) for j ≥ 1 and s ≥ 2. This and more involved results can be found in [2]. Considering
the non-logarithmic case, we have failed to obtain c1 = 1.

The main ingredient in the proof of the estimate (3) is Proposition 1. It concerns the asymptotic behavior of a ratio of the
coefficients of two power series having rather particular shapes.

Our next task concerns the estimates of conditional discrete probabilities by appropriate unconditional ones. The very
idea goes back to Ruzsa’s paper [21] in probabilistic number theory. In [10], we adopted it and obtained upper estimates of
the tail probabilities involving the cycle vector k̄(σ ) of a random permutation σ . In the joint paper with Babu [3], the idea
was extended to permutations taken with the Ewens probability and later, jointly with Norkūnienė [17], we adopted it for
logarithmic assemblies. We now develop the same principle for the weakly logarithmic assemblies.

The problem is to estimate P

ξ̄ ∈ A|ℓ(ξ̄ ) = n


in terms of P(ξ̄ ∈ B), where A ⊂ B ⊂ Zn

+
. As it has been shown

in [13] by examples, such universal estimates are impossible if A = B. Evidently, the problem is trivial if B = Zn
+
is allowed.

Seeking a convenient and non-trivial extension of Awe exploit geometric properties of the semi-lattice Zn
+
. For two vectors

s̄ = (s1, . . . , sn) and t̄ = (t1, . . . , tn), we set s̄ ⊥ t̄ if s1t1 +· · ·+ sntn = 0 and write s̄ ≤ t̄ if sj ≤ tj for each j ≤ n. Further, we
adopt the notation s̄ ‖ t̄ for the expression ‘‘s̄ exactly enters t̄ ’’ which means that s̄ ≤ t̄ and s̄ ⊥ t̄ − s̄. For arbitrary subset
U ⊂ Zn

+
, we define its extension

V = V (U) =

s̄ = t̄1 + t̄2 − t̄3: t̄1, t̄2, t̄3 ∈ U, t̄1 ⊥ (t̄2 − t̄3), t̄3 ‖ t̄2


. (4)

The use of triples of vectors from U is rather natural because, in general, U ⊄ U ± U if 0̄ ∉ U . The additional conditions in
(4) assure that V ⊂ Zn

+
and are motivated by the subsequent applications. Set also A = Zn

+
\ A and θ = min{1, θ ′

}.

Theorem (Upper Estimate). Let (An, µn) be weakly logarithmic and ξ̄ be the Poissonian random vector introduced in the
Definition. Then, for an arbitrary U ⊂ Zn

+
,

µn

k̄(σ ) ∈ V


= P


ξ̄ ∈ V |ℓ(ξ̄ ) = n


≪ Pθ (ξ̄ ∈ U)+ 1{θ < 1}n−θ ,

where the implicit constant depends on θ ′ and θ ′′ only.

The Upper Estimate becomes more transparent when applied to the value distributions of additive functions. We
demonstrate this in a fairly general context. Let (G,+) be an Abelian group and hj(s), j ∈ N, s ∈ Z+, be a two-dimensional
sequence in G satisfying the condition hj(0) = 0 for each j ≥ 1. Then we can define an additive function h:An → G by

h(σ ) =

−
j≤n

hj

kj(σ )


. (5)
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Corollary 1. Let (G,+) be an Abelian group and h:An → G be an additive function. Uniformly in A ⊂ G,

µn

h(σ ) ∉ A + A − A


≪ Pθ

−
j≤n

hj(ξj) ∉ A


+ 1{θ < 1}n−θ .

Corollary 2. Let h:An → R be an additive function. Uniformly in a ∈ R and u ≥ 0,

µn

|h(σ )− a| ≥ u


≪ Pθ

−
j≤n

hj(ξj)− a

 ≥ u/3


+ 1{θ < 1}n−θ .

The example presented in [13] shows that even for permutations the constant 1/3 in the last estimate cannot be
substituted by 1 − ε or by 5/7.

As in the case of logarithmic assemblies, the TV Approximation and the Upper Estimate can be used to prove general limit
theorems for additive functions defined onAn. One candealwith the one-dimensional case (see, for instance, [2, Section 8.5])
or examine weak convergence of random combinatorial processes (see [3,4,11], and [2, Section 8.1]). This approach can
be applied to examine strong convergence of sums of r.vs defined on An. Extending [19], we now obtain an analog of
the functional law of iterated logarithm. It can be compared with Major’s [9] result for independent r.vs, generalizing the
celebrated Strassen’s theorem.

It is worth stressing that we deal with random variables which are defined on a sequence of probability spaces, not on a
fixed space. This raises the first obstacle to be overcome; therefore, we adopt some basic definitions.

Let (S, d) be a separable metric space. Assume that X, X1, X2, . . . , Xn are S-valued random variables all defined on the
probability space {Ωn,Fn, Pn}. Denote by d(Y , A) := inf{d(Y , Z): Z ∈ A}, A ⊂ S, Y ∈ S, the distance from Y to A. We say
that Xm converges to X{Pn}-almost surely ({Pn}-a.s.), if for each ε > 0

lim
n1→∞

lim sup
n→∞

Pn


max
n1≤m≤n

d(Xm, X) ≥ ε


= 0.

If Pn = P does not depend on n, our definition agrees with that of the classical almost sure convergence (see [20, Chapter X]).
A compact set A ⊂ S is called a cluster for the sequence Xm if, for each ε > 0 and each Y ∈ A,

lim
n1→∞

lim sup
n→∞

Pn


max
n1≤m≤n

d(Xm, A) ≥ ε


= 0

and

lim
n1→∞

lim inf
n→∞

Pn


min
n1≤m≤n

d(Xm, Y ) < ε


= 1.

We denote the last two relations, by

Xm ⇒ A ({Pn}-a.s.).

Let C[0, 1] be the Banach space of continuous functions on the interval [0, 1] with the supremum distance ρ(·, ·). The
set of absolutely continuous functions g such that g(0) = 0 and∫ 1

0


g ′(t)

2
dt ≤ 1

is called the Strassen set K . We shall show that it is the cluster set of some combinatorial processes constructed using partial
sums

h(σ ,m) :=

−
j≤m

hj

kj(σ )


,

where hj(s) ∈ R and 1 ≤ m ≤ n. Set aj = hj(1),

A(m) :=

m−
j=1

aj(1 − e−λj), B2(m) :=

m−
j=1

a2j e
−λj

1 − e−λj


,

and β(m) = B(m)
√
2LLB(m), where Lx := logmax{x, e}, x ∈ R, and 1 ≤ m ≤ n. We denote by um(σ , t) the polygonal line

joining the points

(0, 0),

B2(i), h(σ , i)− A(i)


, 1 ≤ i ≤ m,

and set

Um(σ , t) = β(m)−1um

σ , B2(m)t


, σ ∈ An, 0 ≤ t ≤ 1,

for 1 ≤ m ≤ n.
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In the next two theorems and their corollaries, applying the definition of weakly logarithmic structures (see Definition),
we assume that the involved independent Poisson r.vs ξj, j ≥ 1, do not depend on n. The first result generalizes the cases
examined in [10,18,19].

Theorem 1. Let (An, µn) be weakly logarithmic. If B(n) → ∞ and

aj = o


B(j)
√
LLB(j)


, j → ∞, (6)

then

Um(σ , ·) ⇒ K ({µn}-a.s.). (7)

Applying continuous functionals defined on the space C[0, 1], we derive partial cases of the last theorem.

Corollary 3. Let the conditions of Theorem 1 be satisfied. The following relations hold {µn}-a.s.:
(i) Um(σ , 1) ⇒ [−1, 1];
(ii)


Um(σ , 1/2),Um(σ , 1)


⇒ {(u, v) ∈ R2

: u2
+ (v − u)2 ≤ 1/2};

(iii) if Um′(σ , 1/2) ⇒
√
2/2 for some subsequence m′

→ ∞, then Um′(σ , ·) ⇒ g1, where

g1(t) =


t
√
2 if 0 ≤ t ≤ 1/2,

√
2/2 if 1/2 ≤ t ≤ 1;

(iv) if Um′(σ , 1/2) ⇒ 1/2 and Um′(σ , 1) ⇒ 0 for some subsequence m′
→ ∞, then Um′(σ , ·) ⇒ g2, where

g2(t) =


t if 0 ≤ t ≤ 1/2,
1 − t if 1/2 ≤ t ≤ 1.

Using other more sophisticated functionals (see, e.g., [7, Chapter I]), one can proceed in a similar manner. Claim (i)
includes the assertion that

|h(σ ,m)− A(m)| ≤ (1 + ε)βm

holds uniformly in m, n1 ≤ m ≤ n, for asymptotically almost all σ ∈ An as n and n1 tend to infinity. Moreover, it shows
that the upper bound is sharp apart from the term εβ(m). An idea how to improve this error goes back to Feller’s paper [5].
It has been exploited by the author in the case of a special additive function defined on permutations. Recently, this was
extended for the logarithmic assemblies [17]. We now formulate a more general result.

We say that an increasing sequence ψm,m ≥ 1, belongs to the upper class Ψ+ (respectively, the lower class Ψ−) if

lim
n1→∞

lim sup
n→∞

µn


max

n1≤m≤n
ψ−1

m |h(σ ,m)− A(m)| ≥ 1


= 0, (8)
lim

n1→∞
lim inf
n→∞

µn


max

n1≤m≤n
ψ−1

m |h(σ ,m)− A(m)| ≥


= 1


.

Theorem 2. Let (An, µn) be weakly logarithmic and B(n) → ∞. Assume that a positive sequence φn → ∞ is such that

aj = O


B(j)
φ3
j


, j ≥ 1. (9)

If the series

∞−
j=1

a2j φj

jB2(j)
e−φ2j /2 (10)

converges, then B(m)φm ∈ Ψ+. If the series (10) diverges, then B(m)φm ∈ Ψ−.

Since the series
∞−
j=1

a2j
j

(LLB(j))1/2

B2(j)(LB(j))1+x

converges for x = ε and diverges for x = −ε, the last theorem implies (i) in Corollary 3 under a bit stronger condition.
Let us illustrate Theorem 2. For brevity, set L1u = Lu and Lku = L(Lk−1u) if k ≥ 2. Denote γ 2

2m(±ε) := 2(1 ± ε)L2B(m),

γ 2
3m(±ε)/2 := L2B(m)+

3
2
(1 ± ε)L3B(m),
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and

γ 2
sm(±ε)/2 := L2B(m)+

3
2
L3B(m)+ L4B(m)+ · · · + (1 ± ε)LsB(m)

for s ≥ 4.

Corollary 4. Under the conditions of Theorem 2, we have

B(m)γsm(ε) ∈ Ψ+

and

B(m)γsm(−ε) ∈ Ψ−

for each s ≥ 2.

What do we obtain for the sequence of additive functions

s(σ ,m) :=

−
j≤m

1{kj(σ ) ≥ 1}

counting the number of components with different sizes 1 ≤ j ≤ m ≤ n? Assume that (An, µn) is weakly logarithmic and,
in addition,−

j≤m

λj = ~ logm + O(1),

where θ ′
≤ ~ ≤ θ ′′ is a constant. For our example, aj ≡ 1 and A(m) = B2(m) + O(1) = ~ logm + O(1) as m → ∞.

Consequently, we may assert by Theorem 1 that, ‘‘for almost all σ ∈ An’’, the Strassen set K is the cluster of the sequence
of functions

s

σ , (~/2)tLm


− (~/2)tLm


/

2~LmL3m, n1 ≤ m ≤ n, 0 ≤ t ≤ 1,

as n → ∞ and n1 → ∞. Similar claims hold for the projections or other functionals as indicated in Corollary 3.
Let us pay more attention to Corollary 4. Define

δ2sm(±ε)/2 := L3m +
3
2
L4m + L5m + · · · + (1 ± ε)Lsm, s ≥ 3.

Returning to the expanded notation, we obtain

lim
n1→∞

lim sup
n→∞

µn


max

n1≤m≤n

|s(σ ,m)− ~Lm|

δsm(+ε)
√
~Lm

≥ 1


= 0 (11)

and

lim
n1→∞

lim inf
n→∞

µn


max

n1≤m≤n

|s(σ ,m)− ~Lm|

δsm(−ε)
√
~Lm

≥ 1


= 1 (12)

for every 0 < ε < 1. This can be reversed.
Introduce the ordered statistics

1 ≤ j1(σ ) < · · · < js(σ ), s := s(σ , n),
of different component sizes appearing in a random σ ∈ An. Denote

η2sm(±ε)/2 := L2m +
3
2
L3m + L4m + · · · + (1 ± ε)Lsm

for s ≥ 2. Using s

σ , jm(σ )


= m, we obtain from (11) and (12)

lim
n1→∞

lim sup
n→∞

µn


max

n1≤m≤s

|~Ljm(σ )− m|

ηsm(+ε)
√
m

≥ 1


= 0

and

lim
n1→∞

lim inf
n→∞

µn


max

n1≤m≤s

|~Ljm(σ )− m|

ηsm(−ε)
√
m

≥ 1


= 1

for every 0 < ε < 1. Consequently, asymptotically for almost all σ ∈ An,
|~Ljm(σ )− m| ≤ ηsm(+ε)

√
m

uniformly inm ∈ [n1, s(σ , n)] if n → ∞ and n1 → ∞ arbitrarily slowly. This is sharp in the described sense.
The main argument in deriving Theorems 1 and 2 is the same; therefore, we will omit the proofs of the second result and

its corollaries. The technical details in the case of logarithmic assemblies can be found in [17]. Finally, we observe that by
substituting r.vs ξj, 1 ≤ j ≤ n, by appropriate independent geometrically distributed and negative binomial r.vs, one can
similarly extend the logarithmic classes of additive arithmetical semigroups and weighted multisets (see [2]).
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2. Proof of the TV Approximation

We apply the analytic method developed in our papers (see [12,14], and the references therein). Initially, the approach
was used to obtain asymptotic formulas for some Fourier transforms of distributions. That led to general one-dimensional
limit theorems, including the optimal remainder term estimates. In this regard, apart from the above mentioned, the works
by Zacharovas [24–26] were noticeable. On the other hand, the investigations carried out by Arratia et al. (see [1,2], and the
references therein) have shown that the deeper TV approximation can be obtained by other analytic means.

Both approaches are based on the expression of the TV distance in terms of the local probabilities including large
deviations for very special r.vs (see Lemma 1). In contrast to the previous investigations, we are not seeking the asymptotic
formulae for each of these probabilities but examine their ratios. Thisway,we succeed in avoiding the regularity assumptions
which used to be posed on the generating series of assemblies (see [22,23,8]). The comparative analysis already proved to
be useful in the author’s recent papers (see [15,16]).

The first lemma reduces the problem to a one-dimensional case. For s̄ = (s1, . . . , sn), set ℓij(s̄) = (i + 1)si+1 + · · · + jsj
if 0 ≤ i < j ≤ n. Moreover, let ℓr(s̄) := ℓ0r(s̄), where 1 ≤ r ≤ n. Then ℓn(s̄) = ℓ(s̄).

Lemma 1. We have

ρTV

L

k̄r(σ )


,L(ξ̄r)


= ρTV


L

ξ̄r |ℓ(ξ̄ ) = n


,L

ξ̄r


=

−
m∈Z+

P

ℓr(ξ̄ ) = m

 
1 −

P

ℓrn(ξ̄ ) = n − m


P

ℓ(ξ̄ ) = n

 
+

. (13)

Proof. See [2, p. 69]. �

Consequently, the ratio of probabilities on the right-hand side of (13) is now the main objective. The limiting behavior of
the probabilities can be rather complicated for weakly logarithmic assemblies but, as we will show in the sequel, the ratio
of probabilities in (13) is regular. Since

P

ℓrn(ξ̄ ) = m


=

1
2π i

∫
|z|=1

1
zm+1

exp

−
r<j≤n

λj(z j − 1)


dz, (14)

one can apply the analytic technique (see [12] or [14]) which has been elaborated to compare the Taylor coefficients of two
power series. Namely, if dj ∈ R+ and fj ∈ C, 1 ≤ j ≤ n, are two sequences (either of them may depend on n or on other
parameters) and

D(z) := exp

−
j≤n

dj
j
z j


=:

∞−
s=0

Dszs,

F(z) := exp

−
j≤n

fj
j
z j


=:

∞−
s=0

Fszs,

then, under certain conditions, we have obtained asymptotic formulas for Fn/Dn as n → ∞. As in [12], we now also assume
the inequalities

d′
≤ dj ≤ d′′ (15)

for all 1 ≤ j ≤ n and some positive constants d′
≤ d′′. In our case, fj are very special; therefore, we can simplify the previous

argument and get rid of (2.4) in [12]. The goal now is to find the ratio Fm/Dn preserving some uniformity.
Set, for brevity,

er = exp


−

−
j≤r

dj
j


.

Proposition 1. Assume that the sequence dj, 1 ≤ j ≤ n, satisfies Condition (15). Given r, 0 ≤ r ≤ n, set fj = dj if r < j ≤ n
and fj = 0 if j ≤ r. Let 0 ≤ η ≤ 1/2 and 1/n ≤ δ ≤ 1/2 be arbitrary. Then there exist positive constants c = c(d′) and
c3 = c3(d′, d′′) such that

Fm/(erDn)− 1 ≪ ηδ−1
+ δc +


(r/n)1{r ≥ 1}


δ−1−c3

uniformly in (r,m) such that

0 ≤ r ≤ δn, n(1 − η) ≤ m ≤ n. (16)

Here and in the proof of this claim, the constant in ≪ depends on d′ and d′′ only.
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Let us start with a sketch of the proof and the following notation. Let K , 1 ≤ δn < K ≤ n, K > r , be a parameter to be
chosen later. For a fixed 0 < α < 1, we introduce the functions

q(z) :=

−
r<j≤n

djz j−1, G1(z) = exp


α
−
r<j≤K

dj
j
z j

,

G2(z) = exp


−α

−
K<j≤n

dj
j
z j

, G3(z) = Fα(z)− G1(z).

We denote by [zk]U(z) the kth Taylor coefficient of an analytic at zero function U(z). Observe that

[zk]G3(z) ≤ [zk]Fα(z), k ≥ 0. (17)

Set further T = (δn)−1,

∆ = {z = eit : T < |t| ≤ π}, ∆0 = {z = eit : |t| ≤ T }.

Seeking Fm, we use the following identity

Fm =
1

2π im

∫
|z|=1

F ′(z)
zm

dz

=
1

2π im

∫
∆0

+

∫
∆


F ′(z)


1 − G2(z)


zm

dz +
1

2π im

∫
|z|=1

F ′(z)G2(z)
zm

dz =: J0 + J1 + J2. (18)

In what follows, we estimate the integrals J1 and J2 and, changing the integrand, reduce J0 to the main term of an asymptotic
formula for Dn. This yields the desired expression for the ratio Fm/Dn in the needed region form. Lemmas 6 and 7 formalizes
all this.

The estimates of J1 and J2 are rather involved. The first two lemmas below just hide somepart of the technical calculations.
The integral J2 is estimated in Lemma4. Apart fromLemma2, hereweuse an elementary argument. Estimating J1 in Lemma5,
we apply Lemmas 2 and 3 together with Parseval’s equality for power series. This is a rather fruitful idea going back to the
earlier author’s papers (see references in [14]). It allows obtaining an estimate on a large arc without any extension of
the series outside the convergence disk. We hope that the following diagram of inter-relations in our proofs will enhance
readability. If we use the notation a ∝ {b, c} to indicate that the proof of Lemma a requires Lemmas b and c , then

7 ∝ {2, 6}, 6 ∝ {4, 5}, 5 ∝ {2, 3}, 4 ∝ {2}.

It remains to prove the listed lemmas.

Lemma 2. We have

D(1)n−1
≪ Dn ≪ D(1)n−1

for all n ≥ 1.

Proof. This is Lemma 3.1 from [12]. �

Lemma 3. Let δn ≥ 1. Then

max
T≤|t|≤π

|F(eit)| ≪ erD(1)δd
′

uniformly in 0 ≤ r ≤ δn.

Proof. By definition,

|F(eit)|
D(1)

= er
|F(eit)|
F(1)

= er exp

−
r<j≤n

dj(cos tj − 1)
j



≤ er exp


d′
−
δn<j≤n

cos tj − 1
j


(19)

uniformly in 0 ≤ r ≤ δn. We now use the relation

S(x, t) :=

−
j≤x

cos tj − 1
j

= logmin

1,

2π
x|t|


+ O(1),
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valid for all x ≥ 1 and |t| ≤ π . It shows that S(δn, t) ≪ 1 for T = (δn)−1
≤ |t| ≤ π . Hence, for such t ,

S(n, t)− S(δn, t) ≤ S(n, T )+ O(1) = log δ + O(1).

This yields the desired claim. �

Lemma 4. If 0 < α < 1 and δn ≥ 1, then

J2 ≪ Dner(K/n)αd
′

uniformly in n/2 ≤ m ≤ n.

Proof. For brevity, let

us := [zs]G1(z), vl := [z l]F 1−α(z), s, l ≥ 0.

Since

F ′(z)G2(z) = q(z)G1(z)F 1−α(z),

by Cauchy’s formula, we have

J2 =
1

2π im

∫
|z|=1

q(z)G1(z)F 1−α(z)
dz
zm

=
1
m

−
r<j≤m

dj
−

s+l=m−j

usvl.

Hence, by condition (15),

J2 ≤
2d′′

n

−
s≤n

us

−
l≤n

vl ≤
2d′′

n
F 1−α(1)G1(1)

=
2d′′F(1)

n
exp


−α

−
K<j≤n

dj
j


≪ Dner(K/n)αd

′

.

In the last step, we used Lemma 2.
The lemma is proved. �

Lemma 5. Let 0 < α < 1 be arbitrary and δn ≥ 1. Then

J1 ≪
ernDn

K
δd

′(1−α)

uniformly in n/2 ≤ m ≤ n and 0 ≤ r ≤ δn.

Proof. Recalling the previous notation, we can rewrite

J1 =
1

2π im

∫
∆

q(z)F 1−α(z)G3(z)
dz
zm
.

Hence, by Lemma 3,

J1 ≪ n−1 max
z∈∆

|F(z)|1−α
∫

|z|=1
|q(z)| |G3(z)| |dz|

≪ n−1erD(1)δd′1−α∫
|z|=1

|q(z)|2|dz|

1/2∫
|z|=1

|G3(z)|2|dz|

1/2

.

By Parseval’s equality,∫
|z|=1

|q(z)|2|dz| = 2π
−
r<j≤n

d2j ≤ 2π(d′′)2n

and, recalling (17),∫
|z|=1

|G3(z)|2|dz| ≤ 2π
−
l>K


[z l]G3(z)

2
≤

2π
K 2

∞−
l=1

l2

[z l]Fα(z)

2
=

1
K 2

∫
|z|=1

|(Fα(z))′|2|dz|
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=
α2

K 2

∫
|z|=1

|Fα(z)|2|q(z)|2|dz|

≪
(erD(1))2α

K 2

∫
|z|=1

|q(z)|2|dz| ≪
(erD(1))2αn

K 2
.

Collecting the last three estimates, by Lemma 2, we obtain the desired estimate of J1.
Lemma 5 is proved. �

At this stage, we have the following estimate.

Lemma 6. If condition (15) is satisfied and δn ≥ 1, then there exists a positive constant c = c(d′) such that

Fm = J0 + O

erDnδ

c (20)

uniformly in 0 ≤ r ≤ δn and n/2 ≤ m ≤ n. Moreover,

Dn =
1

2π in

∫
∆0

D′(z)

1 − G2(z)

dz
zn

+ O

Dnδ

c. (21)

Proof. It suffices to apply Lemmas 4 and 5 with K = δc(α)n, where

c(α) = min

1, d′(1 − α)/(αd′

+ 1)

,

and optimize the function d′αc(α)with respect to α ∈ (0, 1). Its maximum is attained at α = α0 :=
√

1 + d′ − 1

/d′. This

yields

c(α0) = min{1,
√
1 + d′ − 1}.

Hence, if d′
≤ 3, then (20) holds with c = d′α0c(α0) = (

√
1 + d′ − 1)2. If d′ > 3, then the choice α = α1 := (d′

− 1)/2d′

gives c(α1) = 1. Consequently, (20) holds with c = d′α1 = (d′
− 1)/2.

To obtain (21), use (20) with r = 0 and m = n.
The lemma is proved. �

Lemma 7. If 0 ≤ η ≤ 1/2 and 1/n ≤ δ ≤ 1/2 are arbitrary, then

J0/erDn − 1 ≪ ηδ−1
+ δc + (r/n)1{r ≥ 1}δ−1−c3 , c3 := cd′′/d′,

uniformly in n(1 − η) ≤ m ≤ n and 0 ≤ r ≤ δn. The constant c has been defined in the proof of Lemma 6.

Proof. If z ∈ ∆0 and r ≥ 1, then

F ′(z) = erD(z) exp


−

−
j≤r

dj
j
(z j − 1)


q(z)

= erD(z)

1 + O

 r
δn

−
j≤n

−

−
j≤r


djz j−1

= erD′(z)

1 + O


r/δn


+ O


rerD(1)


and

z−m
= z−n1 + O(ηδ−1)


.

Moreover, recalling the choice K = δc(α0)n if d′
≤ 3, we have

1 − G2(z) ≪ exp

d′′α0c(α0) log(1/δ)


= exp


cd′′/d′ log(1/δ)


= δ−c3 .

If d′ > 3, then K = δn and c = d′α1, therefore the last estimate holds again.
Consequently, by virtue ofm−1

= n−1

1 + O(η)


, from Lemma 2 and Eq. (21), we obtain

J0 =
er

2π in


1 + O

 r
n

+ η
 1
δ

∫
∆0

D′(z)

1 − G2(z)

dz
zn

+ O

erDn(r/n)δ−1−c3


= erDn


1 + O


r/n + η


δ−11 + O(δc)


+ O


erDn(r/n)δ−1−c3


.

This implies the desired estimate for r ≥ 1. If r < 1, the terms having the fraction r/n do not appear.
The lemma is proved. �
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Proof of Proposition 1. Apply (20) and the last lemma. �

Proof of TV Approximation. We now apply Lemma 1 and Proposition 1with dj = λj. condition (15) for weakly logarithmic
assemblies is satisfied with d′

= θ ′ and d′′
= θ ′′. We may leave the previous meaning of the constants c and c3. From (14)

and Proposition 1 with η = (r/n)1/2, and δ = (r/n)x, where 0 < x < min

1/2, 1/(1 + c3)


is a fixed number, we obtain

P

ℓrn(ξ̄ ) = n − m


P

ℓ(ξ̄ ) = n

 − 1 ≪ (r/n)1/2−x
+ (r/n)cx + (r/n)1−(1+c3)x

≪ (r/n)c1 , c1 = c1(θ ′, θ ′′) > 0,

uniformly in 0 ≤ m ≤
√
rn provided that 1 ≤ r ≤ 2−1/xn =: c2n.

The summands overm >
√
rn in (13) contribute not more than

(rn)−1/2Eℓr(ξ̄ ) = (rn)−1/2
−
j≤r

jλj ≤ θ ′′(r/n)1/2.

Hence, by (13), we obtain

ρTV

L

k̄r(σ )


,L(ξ̄r)


≪ (r/n)c1 ,

where 1 ≤ r ≤ c2n. Since the claim of the TV Approximation is trivial for c2n < r ≤ n, we have finished its proof. �

3. Proof of Theorem 1 and its corollaries

Set Zn
+
(m) = {s̄ ∈ Zn

+
: ℓ(s̄) = m} where 0 ≤ m ≤ n. For arbitrary distributions pj(k), 1 ≤ j ≤ n, on Z+ we define the

product measure on Zn
+
by

P({k̄}) =

∏
j≤n

pj(kj), k̄ = (k1, . . . , kn) ∈ Zn
+
.

Denote for brevity Pn = P(Zn
+
(n)). Let V = V (U) be the extension of an arbitrary subset U ⊂ Zn

+
defined in (4).

Lemma 8. Suppose n ≥ 1 and assume that there exist positive constants c4, c5, C1, C2 such that
(i) pj(0) ≥ c4 for all 1 ≤ j ≤ n;

(ii) P

Zn

+
(m)


≤ C1


n

m+1

1−θ

Pn for 0 ≤ m ≤ n − 1 and for some 0 < θ ≤ 1;

(iii) Pn ≥ c5n−1;
(iv) for 1 ≤ m ≤ n,−

k ≥ 1, j ≤ n
kj = m

pj(k)
pj(0)

≤
C2

m
.

Then

P

V | Zn

+
(m)


≤ CPθ (U)+ C1C2θ

−1n−θ1{θ < 1},

where

C := max


32
c24
,
C2

c5
+

4C1

c4
+

C1C2

θ


.

Proof. See [3], Appendix. �

Proof of Upper Estimate. It suffices to check conditions (i)–(iv) of the last lemma for the Poissonian probabilities pj(k)with
parameters λj. By virtue of condition (2), (i) and (iv) are trivial. Further, we find

P

Zn

+
(m)


= P


m−
j=1

jξj = m, ξm+1 = 0, . . . , ξn = 0



= exp


−

n−
j=1

λj

 −
ℓm(k̄)=m

m∏
j=1

λ
kj
j

kj!

= exp


−

n−
j=1

λj


[zm] exp

−
j≤m

λjz j

, 0 ≤ m ≤ n.
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Hence, applying Lemma 2, we obtain

P

Zn

+
(m)


≍

1
m + 1

exp


−

n−
j=m+1

λj


for 0 ≤ m ≤ n, where a ≍ bmeans a ≪ b ≪ a. This and condition (2) implies (ii) and (iii).

The theorem is proved. �

Proof of Corollary 1. Apply the Upper Estimate to

U =

t̄ ∈ Zn

+
:H(t̄) ∈ A


,

where H(t̄) :=
∑

j≤n hj(tj), and check that

V (U) ⊂

s̄ ∈ Zn

+
: H(s̄) ∈ A + A − A


.

Now

µn

h(σ ) ∉ A + A − A


= P


H(ξ̄ ) ∉ A + A − A|ℓ(ξ̄ ) = n


≤ P


ξ̄ ∉ V (U)|ℓ(ξ̄ ) = n


≪ Pθ


ξ̄ ∉ U


+ 1{θ ′ < 1}n−θ ′

= Pθ

H(ξ̄ ) ∉ A


+ 1{θ ′ < 1}n−θ ′

.

Corollary 1 is proved. �

Proof of Corollary 2. Apply the previous corollary to G = R and A = {t : |t − a| ≤ u/3}. �

4. Proof of Theorem 1

We adopt the argument used in the case of permutations [10] and for the logarithmic assemblies [19].
Let Z1, Z2, . . . , Zn be independent random variables defined on some probability space {Ω,F , P}, with EZj = 0, EZ2

j <
∞, j = 1, 2, . . . , and

Sm =

m−
j=1

Zj, D2
m =

m−
j=1

EZ2
j .

We define the polygonal lines sn(·): [0,D2
n] → R by

sn(t) = Sm
D2
m+1 − t

D2
m+1 − D2

m
+ Sm+1

t − D2
m

D2
m+1 − D2

m

if D2
m ≤ t < D2

m+1 and 0 ≤ m ≤ n − 1. Set also

Sn(t) =
sn(D2

nt)
2D2

nLLD2
n

for 0 ≤ t ≤ 1 and n ∈ N.

Lemma 9. Let D(n) → ∞ as n → ∞. Assume that there exists a sequence

Mn = o


Dn

√
LLDn


such that

P

|Zn| ≤ Mn


= 1

for each n ≥ 1. Then

Sn(·) ⇒ K (P-a.s.).

Proof. This is Major’s Theorem [9]. �
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Wewill apply Lemma 9 to Zj = aj

ηj − (1− e−λj)


, where ηj := 1{ξj ≥ 1} and 1 ≤ j ≤ n. Then D2

n = B2(n) and condition
(6) will be at our disposal. To simplify the calculations, we introduce another sequence of additive functions

h̃(σ ,m) :=

m−
j=1

aj1{kj(σ ) ≥ 1}, m ≤ n.

Let ũm(σ , t) andUm(σ , t) be the combinatorial processes defined as um(σ , t) andUm(σ , t) using h̃(σ ,m) instead of h(σ ,m).
Set also Ym = a1η1 + · · · + amηm for 1 ≤ m ≤ n.

Lemma 10. For an arbitrary ε > 0,

lim
n1→∞

lim sup
n→∞

µn


max

n1≤m≤n
ρ
Um(σ , ·),Um(σ , ·)


≥ ε


= 0. (22)

Proof. If j and j′ are the consecutive numbers from the set I := {j ≤ m: aj ≠ 0}, then, by virtue of the definition of um(σ , t),

max

|Um(σ , t)− Um(σ , t)| :

B2(j)
B2(m)

≤ t ≤
B2(j′)
B2(m)


≤ β−1(m)max


|h̃(σ , j)− h(σ , j)|, |h̃(σ , j′)− h(σ , j′)|


.

Hence

µn


max

n1≤m≤n
ρ
Um(σ , ·),Um(σ , ·)


≥ ε


≤ µn


max

n1≤m≤n
max
j∈I

|h̃(σ , j)− h(σ , j)| ≥ εβ(n1)


≤ µn


n−

j=1

|hj(kj(σ ))− aj · 1{kj(σ ) ≥ 1}| ≥ εβ(n1)



≪ Pθ


n−
j=1

|hj(ξj)− aj · 1{ηj ≥ 1}| ≥ (ε/3)β(n1)


+ o(1).

In the last step, we applied Corollary 2. In its turn, if K > 2 is arbitrary, the probability appearing on the right-hand side can
be majorized by

P

∃j ≤ K : ξj ≥ K


+ P


∃j > K : ξj ≥ 2


+ P

−
j≤K


|hj(ξj)| + |aj|ηj


≥ (ε/3)β(n1), 2 ≤ ξj ≤ K , ∀j ≤ K


.

Since β(n1) → ∞ as n1 → ∞, the last probability is negligible. The first two of them do not exceed−
j≤K

−
k≥K

e−λjλkj

k!
+

−
j≥K

−
k≥2

e−λjλkj

k!
≪ K−1.

Collecting the estimates, since K is arbitrary, we obtain the desired claim of Lemma 10.
In the sequel, we use only the functions h̃(σ ,m) and the processesUm(σ , t)writing them without the ‘‘tilde’’. �

Lemma 11. Let 1 ≤ k ≤ n, 0 < bn ≤ bn−1 ≤ · · · ≤ b1, and ε > 0 be arbitrary. For h = h̃, if n → ∞, we have

µn


max
k≤m≤n

bm|h(σ ,m)− A(m)| ≥ ε


≪ Pθ

max
k≤m≤n

bm|Ym − A(m)| ≥ ε/3


+ o(1)

≤ 32θε−2θ


b2kB

2(k)+

−
k≤j≤n

b2j a
2
j e

−λj(1 − e−λj)

θ
+ o(1).

Proof. The first estimate follows from Corollary 1 applied to G = Rn−r+1,

A =


(sr , . . . , sn) ∈ Rn−r+1: max

r≤m≤n
|sm − A(m)| < ε/3


,

and

h(σ ) =

h(σ , r), . . . , h(σ , n)


.

The second inequality in Lemma 11 is just a partial case of Theorem 13 in Chapter III of [20].
The lemma is proved. �
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Let r, n1 ≤ r ≤ n, be a parameter, q := max{j ∈ I : j ≤ r}, and

u(r)m (σ , t) =


um(σ , t) if t ≤ B2(q),
um(σ , B2(q)) if t > B2(q).

Denote U (r)m (σ , t) := u(r)m

σ , B2(m)t


/β(m). Similarly, let

s(r)m (t) =


sm(t) if t ≤ B2(q),
sm

B2(q)


if t > B2(q)

and S(r)m (t) = s(r)m

tB(m)


/β(m).

Lemma 12. There exists a sequence r = r(n), n1 ≤ r = o(n), such that, for every ε > 0,

lim
n1→∞

lim sup
n→∞

P


max
n1≤m≤n

ρ

Sm(·), S(r)m (·)


≥ ε


= 0 (23)

and

lim
n1→∞

lim sup
n→∞

µn


max

n1≤m≤n
ρ

Um(σ , ·),U (r)m (σ , ·)


≥ ε


= 0.

Proof. If Pn1,n(ε) denotes the probability in (23) and n1 ≤ r ≤ n, then

Pn1,n(ε) = P

max
r≤m≤n

ρ

Sm(·), S(r)m (·)


≥ ε


= P


max
r≤m≤n

1
β(m)

sup

|sm(t)− sm(B2(q))|: B2(q) ≤ t ≤ B2(m)


≥ ε


≤ P


max
r<m≤n

β−1(m)|(Ym − A(m))− (Yr − A(r))| ≥ ε


≤ ε−2 B
2(n)− B2(r)
β2(r)

by the already mentioned Theorem 13 [20, Chapter III].
The same argument and Lemma 11 (applied in the case aj ≡ 0 if j ≤ r) lead to the estimate

µn


max

n1≤m≤n
ρ

Um(σ , ·),U (r)m (σ , ·)


≥ ε


≤ µn


max
r<m≤n

β−1(m)|(h(σ ,m)− A(q))− (h(σ , r)− A(r))| ≥ ε


≪ Pθ

max
r<m≤n

β−1(m)|(Ym − A(m))− (Yr − A(r))| ≥ (1/3)ε


+ o(1)

≪


B2(n)− B2(r)

β2(r)

θ
+ o(1)

as n → ∞.
By condition (4), if r is sufficiently large, r ≤ j ≤ n, and δ, 0 < δ < 1, is arbitrary, then |aj| ≤ δB(n)/

√
LLB(n). Hence,

taking r = δn and applying condition (15), we obtain

B2(n)− B2(r) ≪ δ2 log
1
δ

B2(n)
LLB(n)

.

We now choose δ = δn = o(1) as n → ∞ so that δ ≥ 1/
√
n. This implies B2(n) − B2(r) = o(β2(r)). Having in mind the

above estimates, we see that, with such an r , the probabilities in Lemma 12 vanish as n → ∞ and n1 → ∞.
The lemma is proved. �

Proof of Theorem 1. By virtue of the definition of strong convergence and Lemma 12, it suffices to prove that

lim
n1→∞

lim sup
n→∞

µn


max

n1≤m≤n
ρ

U r
m(σ , ·),K


≥ ε


= 0

and

lim
n1→∞

lim inf
n→∞

µn


min

n1≤m≤n
ρ

U r
m(σ , ·), g


< ε


= 1
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for each function g ∈ K and ε > 0. Since here r = r(n) → ∞ and r = o(n), we can apply TV Approximation and substitute
the frequencies by the appropriate probabilities for independent r.vs. Consequently, our task reduces to the proof of

lim
n1→∞

lim sup
n→∞

P


max
n1≤m≤n

ρ

Srm(·),K


≥ ε


= 0

and

lim
n1→∞

lim inf
n→∞

P


min
n1≤m≤n

ρ

Srm(·), g


< ε


= 1.

Checking that the last relations follow from Lemmas 9 and 12, we complete the proof of Theorem 1. �
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