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Let X 1 . . . .  , X  n be independent random variables (r.v.), EX k = 0, k = 1, n, and Sn=XI+X2+ ..+Xn. F o r p / >  2 

estimates are known for EISnlP , giving the exact order of  growth with respect to n (of. [ 1], [2], and also [3], [4] ,  or [5] ). 
We set 

n n 

k ~ l  k ~ l  

Then, not paying attention to constants, the corresponding result can be written in the form 

e' (p) D, (n) < E I S. ,1 ~< e" (p) D, (n), 

where c'(p) and c"(p) are certain positive quantities depending on p. Here of  course it is required that E I Xk I p < Qo, k = 1, n. 

When 0 < p < 2 one has 

kffil k ~ t  

(1) 

(2) 

(cf. [6]) under the assumption of  finiteness of  the corresponding moments. It is easy to see that neither of  the quantities 
on the fight gives the exact order with respect to n. Using both inequalities, we can get a satisfactory upper estimate, how- 
ever estimation below with the help of  the inequalities of  [7] (cf. also [5D, as was done in [2], meets with considerable 
difficulty. 

The goal of  the present paper is to offer another method for estimating below for p > 0. We recount it, getting an 
optimal estimate of  E I S n IP in the sense of  the dependence on n, when 0 < p < 2. The original idea of  the method arose 

in probabilistic number theory for getting a lower estimate in the familiar Kubilyus Inequality for additive arithmetic 
functions [8]. 

Let Fk(U) be the distribution function of  the r.v. X k, k = 1, n. In what follows, a tilde over a r.v. or a distribution 

function will denote symmetrization. Let us assume that El S~l p<oo for k = 1, n. For  t > /0  we set 

n An(p,t)=(~ f .,ar,(.)):+ Y, f t.l'd~',(.) 
k ~ l  l u l < t  k=l [u[~t 

and 

A, (p)=infAn (p, t). 
t ~ 0  

THEOREM 1. Let X 1 , ..., X n be independent random variables EX k = 0 and E I Xk I p < oo for 1 ~< p < 2 and k = 1, n.  

Then there exist positive quantities c (p) and c 2 (p), depending only on p, such that 

cl (p) A, (p) <EIS ,  I p < c~ (p) A, (p). (3) 
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Proof. It is known [6] that for a r.v. X for 1 ~< p < 2, EX = 0 and E I x I P < ~  

1 El f(iP<EiX',v<~Eif(l v (4) 
2 ' ' 

k =  1, n we s e t X  k = i f l X k l  < and 0 i f  >it .  Let " " ' For any t i> 0 and = Xk=X~--Xk . Now, using (1) and 

(2), we have 

n n 

I ," +2.- ,e  x; 
k = l  k = t  

for any t ~ 0. Whence follows the right inequality of  (3). 

We now see that there exists a quantity t n = tn(p) >t 0 such that 

El S. !P ~>ct (p) A. (p, t,). 

We shall repeatedly refer to the inequal i ty  

E!X+yi t ,>~EIXI  p, p ) l ,  (5) 

which holds for independent r.v. X and Y, for which El Xi p< m, E I gl~< ~ and EY=0(c f .  [9] ). I f  EISntP = 0, then 

(5) implies EIXki p = 0, so An(P) = An(P, 0) = 0 and the theorem is-proved. I f  EISnlP ~ 0, we set Wg=2P__2*iE[S . ?', Y~= 

W2IXk, k =  1, n---~ 5 ~ = Y x + . . . Y ,  . Let Vk(U ) = Fk(U,I,n) be the distribution function of  the r.v. Yk' k = 1, n. We have 

that E i S~ :P = 2 - p - x ,  so Markov's inequaFty gives a lower estimate of  the concentration function 

supP{S 'e[y ,  y+ 11}>/I -P{I  S'~I>1 1/2} >1 I/2. 
y 

The latter in conjunction with Theorem 3 of  [5] implies the inequality 

n n 

k = l  l U l < I  k = i  ~ u i ~ > l  

where A is an absolute positive constant. 

We set ~k = ~'k; if I~'kl < 1, and ~k = O, if !Yk I ~> 1. 

we get from (1) and (6), 

Let r/k = Y k -  ~k' k = I, n .  Noting that E~k = 0, k = 1, n, 

for any K~ {k, 1 ~<k~<n} . 

inequality for the number 02" elements o f  the set L: 

E ! ~ ~ I p~< (2A)p (7) 
k ~ K  

Let L={k,  l<k<~n, P {~kr and L={k,  l<.k<~n}\L. From (6) follows the following 

We note further that from (4) we have the inequality 

ILI<~8A ~. (8) 

n 

k = t  

which with (5) implies 

k ~ L  Ice~. 

This allows us to estimate E I ~ ~ p ~ In fact, in view of  (7), we have 
k e Z  

I p ~ t ~ 2~p -1AP = ca (P). 

Here and below cj(P), j = 3, 4 . . . .  denote positive quantities depending only on p. Any of  them can be calculated explicitly. 

For  the quantity on the left in (10) we apply the idea of  the siev__e, arising from the above-mentioned problem of  proba- 
bilistic number theory [8]. First we define the events. For  j E L we set 
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aj={~s:~O} fl {~q,=0, Vi~Z, i# j}- - -{~,#0} NAj. 

Let • ) be the indicator of the event given in parentheses, Noting that the events Aj for distinct j ~ L are disjoint, we 
deduce from (10) that 

= X E(I~I,I(x(Aj))= X EI~i,I'P(aD~> I"I P(~,=O} X el~l,l'. 
je~ JG~ tEs jes 

But in view of  (6) and the inequality ln(l - x) ~ - 2 x ,  0 ~ x < 1/2, 

$O 

~, Ei~.si" <-c3(P):A'=e,(P) �9 (I I) 
je~. 

For k E L one gets an analogous estimate even more easily. From (9) and (7) we have 

k E L  ke .L  k e L  

E~k = 0, k = l~'n, s o f r o m  (5) follows the inequality E Ink lP  ~ c3(p) for any k E L. Now (8) and (11) give the But 

estimate 
n ( 1 2) E I-~I,.< 8a,~3 (p) + ~,(p) =c., (p). 

We turn to the variables ~'k" From (6) and (12) we conclude 

k = l  l u l < l  k = l  !u~>l  

But since 
/7. (p) = W~-p A. (p, tFn) = (2P+aEIS,, i p)-I A~ (p, W.), 

one has from the last inequality that the assertion of Theorem I follows with ca (p)= 2-P -I c~ ~ (p). 

We study the case 0 < p < 1. It is now natural to set that the medians of  the summable r.v. are equal to zero. Let 

#X be the median o f  the r.v.X. One has the following 

THEOREM 2. Let X t . . . . .  X n be independent random variables, ~X~=0,EI X~lP<~for  k = 1, n and 0 < p < 1. 

Then there exists a positive quantity c(p), depending only on p, such that 

c (p) A. (p) .< El S. : .< 2A. (p). 

The proof of  Theorem 2 coincides word for word with the proof of  Theorem 1, only instead of  (4) and (5) one uses 
special cases of  the following simple lemma. 

LEMMA. Let X and Y be independent random variables, E IX IP < 0% E I Y I P < 0% where 0 < p < 1, and #Y = 0. 

If  A is the event defined by the random variable X, then 

E(J XI 'z  (A)) <~ 2E( I X + YIP z (A)). 

Proof of  the Lemma. For  a r.v. Z for which El ZI p < oo, Markov's inequality gives 

P ( t Z !/> (2El Z [p)llr } <~ 1/2. 
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Consequently, I ~ Z I~< (2E t Z [.)l /v , and for any real x we have 

IxlP=l~(x + Y)l"<~2Elx + YI ". 

Hence 
c o  

1 t, 1 E (rx+ri, z<A))--f dF,,r f .f !,,I e(l rl, 
A - - ~  A 

The lemma is proved. 

We omit the rest of the details of the proof of Theorem 2. We note only that the estimation below by this method 
is carried out by word for word repetition of arguments. In addition one should enlarge the integrals in the definition of 
An(P, t) to the corresponding moments andl pass to nonsymrnetrized random variables. 
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