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We explore the asymptotic distributions of sequences of integer-valued additive functions

defined on the symmetric group endowed with the Ewens probability measure as the order

of the group increases. Applying the method of factorial moments, we establish necessary

and sufficient conditions for the weak convergence of distributions to discrete laws. More

attention is paid to the Poisson limit distribution. The particular case of the number-of-

cycles function is analysed in more detail. The results can be applied to statistics defined

on random permutation matrices.
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Secondary 05A16, 20P05

1. Introduction

We deal with asymptotic value distribution problems of mappings defined on the

symmetric group Sn as n → ∞. Let σ ∈ Sn be an arbitrary permutation and σ = κ1 · · · κw its

representation as the product of independent cycles κi, and let w := w(σ) be their number.

If kj(σ), 1 � j � n, denotes the number of cycles of length j in this decomposition, then

k̄(σ) :=
(
k1(σ), . . . , kn(σ)

)
is called the cycle structure vector. The Ewens probability measure on the subsets A ⊂ Sn
is defined by

νn(A) := νn,θ(A) =
1

θ(n)

∑
σ∈A

θw(σ),

where θ > 0 is a fixed parameter and θ(n) := θ(θ + 1) · · · (θ + n− 1). Set �(̄s) = 1s1 + · · · +

nsn if s̄ = (s1, . . . , sn) ∈ Z
n
+. An easy combinatorial argument gives the distribution of the
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cycle structure vector

νn
(
k̄(σ) = s̄

)
=

n!

θ(n)

n∏
j=1

(
θ

j

)sj 1

sj!
=: Pθ({s̄}) (1.1)

if s̄ ∈ �−1(n) ⊂ Z
n
+. The probability Pθ({s̄}) defines an induced measure on �−1(n) and is

called the Ewens Sampling Formula (henceforth denoted by ESF). If ξj , j � 1, denote

independent Poisson random variables given on some probability space {Ω,F , P } with

Eξj = θ/j and ξ̄ := (ξ1, . . . , ξn), then

νn
(
k̄(σ) = s̄

)
= P

(
ξ̄ = s̄| �(ξ̄) = n

)
, s̄ ∈ �−1(n). (1.2)

Under the probability measure νn, the quantities kj(σ), 1 � j � n, are dependent random

variables. We prefer to leave the elementary event σ in its notation, although this is in

contrast to other random variables defined as above on a non-specialized space {Ω,F , P }.
It is known (see [2, Theorem 7.7]) that the total variation distance

1

2

∑
s1 ,...,sr�0

|νn
(
k1(σ) = s1, . . . , kr(σ) = sr

)
− P (ξ1 = s1, . . . , ξr = sr

)
| = o(1) (1.3)

if and only if r = o(n). Here and in what follows, we assume that n → ∞. The book [2] is

a good reference for the listed and many more properties of the ESF.

In the present paper, we discuss the asymptotic value distribution of an additive

(completely additive) function h : Sn → R with respect to νn. Such a function is defined

via a real array {aj , j � 1}, by setting

h(σ) :=
∑
j�n

ajkj(σ). (1.4)

Taking arrays anj , 1 � j � n, n � 1, we obtain sequences of functions hn(σ). So, if anj = 1

for j ∈ Jn ⊂ {1, . . . , n} and anj = 0 otherwise, we have the number-of-cycles function

which includes the restricted to Jn cycle lengths only. In what follows, we denote it by

w(σ, Jn). Apart from the latter example, the additive functions are involved in many

combinatorial, algebraic and statistical problems. The function h(σ) defined via aj =

log j, j � n, approximates the logarithm of the group theoretical order of almost all

permutations σ ∈ Sn well (see [10] and [36] or [37]). Particular additive functions appear

in physical models via Hamiltonians in Bose gas theory (see [4]–[6] and the references

therein). They are indispensable in treating the random permutation matrix ensemble.

Let M := M(σ) :=
(
1{i = σ(j)}

)
, 1 � i, j � n and σ ∈ Sn, be such a matrix taken with the

weighted frequency νn({M}) = νn({σ}) = θw(σ)/θ(n), let

Zn(x; σ) := det
(
I − xM(σ)

)
=

∏
j�n

(1 − xj)kj (σ) (1.5)

be its characteristic polynomial, and let e2πiϕj (σ), where ϕj(σ) ∈ [0, 1) and j � n, be its

eigenvalues. The papers [12], [13], [34], [35], and [39], and some arXiv preprints (see,

for instance, [1] and the references therein), concern log |Zn(x; σ)|, � logZn(x; σ) or the
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trace-related statistics

Trf(σ) :=
∑
j�n

f
(
ϕj(σ)

)
=

∑
j�n

kj(σ)
∑

0�s�j−1

f

(
s

j

)
, (1.6)

where f : [0, 1] → R is a function. An indicator function f = 1A of an interval A ⊂ [0, 1]

or other integer-valued functions fall within the scope of the present paper.

So far, the general problem to find necessary and sufficient conditions under which the

distribution function

Tn(x) := νn
(
hn(σ) < x

)
weakly converges to a limit law is out of reach even for θ = 1. The case when the

sequence anj = aj , j � 1, i.e., does not depend on n, is easier. Then the answer is given

by an analogue of the three series theorem of Kolmogorov (see Theorem 8.25 in [2]).

If θ = 1 and hn(σ) = h(σ)/β(n), where the function h(σ) is fixed and β(n) > 0, β(n) → ∞
but β(un)/β(n) → 1 for every fixed 0 < u < 1 (slowly oscillating at infinity), necessary and

sufficient conditions were established in the second author’s paper [27], which contains an

extensive reference list of earlier papers by other authors. If β(n) is regularly varying at

infinity, the first results go back to [20]. The problem remains open if no a fortiori condition

on β(n) is taken. On the other hand, for partial sum processes defined by additive functions,

convergence of distributions in appropriate function spaces to infinitely divisible measures

implies slow oscillation of β(n). This further yields necessary and sufficient convergence

conditions even for generalized Ewens probability measures. For the latest account in this

direction, we refer to [8].

In the present paper, we focus on sequences of additive functions hn(σ) defined via

anj . Henceforth, we will often use the abbreviation aj = anj without the index n and take

aj = 0 if j > n. For θ = 1, the partial sums of such functions have been used to model

stochastic processes [22]. Recently, we succeeded in establishing necessary and sufficient

conditions for the weak law of large numbers if θ � 1 (see [17]). Some success in proving

general limit theorems has been achieved for the integer-valued functions hn(σ). The case

for θ = 1 was explored by the second author in [23]–[25]. For θ > 0, the first author in

[14] and [15] obtained an exhaustive result for the sequence w(σ, Jn). We now generalize

this line of research with the case aj ∈ Z+ for j � n and supply a few examples shedding

more light on the class of possible limit distribution for w(σ, Jn). On the other hand, one

of the purposes of the present paper is to demonstrate the factorial moment method.

The approach proved to be useful in a series of number-theoretical papers by J. Šiaulys

[29]–[31]. The idea lies in analysis of the expressions of moments. Although involved,

they contain the key information useful in establishing necessary and sufficient conditions

for the convergence of distributions.

In what follows, let ⇒ stand for the weak convergence and let FY (x) be a distribution

function of a random variable Y concentrated on Z+ = N ∪ {0}. The mean value with

respect to νn of a function g(σ) defined on Sn will be denoted by Eng(σ). Set x(r) =

x(x− 1) · · · (x− r + 1), r � 1 for the falling factorial and x(0) = 1. Henceforth, unless

indicated otherwise, we take i, r, ri, j, ji ∈ N and j, ji � n. The first two theorems involve
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the quantity

Υn(l, m; h) :=

l∑
u=1

θu
∑

r1+···+ru=l
1�ri�m,i�u

(
l − 1

r1 − 1

)
· · ·

(
l − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju<n

aj1(r1) · · · aju(ru)
j1 · · · ju

(
1 − j1 + · · · + ju

n

)θ−1

,

which is an approximation of the lth factorial moment of an appropriately truncated

additive function obtained from h(σ).

Let ρn(m) be a generic error term, whose exact definition will vary but will satisfy the

relation

lim
m→∞

lim sup
n→∞

|ρn(m)| = 0.

Henceforth, the estimates O(·) and o(·) as n → ∞ will depend on θ and some other

quantities. To stress possible dependence on a parameter, say K , we will write OK(·) and

oK (·). The first result concerns necessary conditions for convergence.

Theorem 1.1. For θ � 1, let hn(σ) be a sequence of integer-valued additive functions defined

via aj = anj , and let Y be a random variable taking values in Z+ and such that EY α < ∞
for α � 2 + ε > 2. If Tn(x) ⇒ FY (x), then

lim
n→∞

∑
j<n

1{aj � −1}
j

(
1 − j

n

)θ−1

= 0 (1.7)

and

Υn(l, m; h) − EY(l) = ρn(m) (1.8)

for each fixed natural number l � α− 1 − ε.

We have to confess that the technical condition θ � 1 in Theorem 1.1 and in some sub-

sequent results concerning the necessity is undesirable. Sufficient convergence conditions

are given by the following result.

Theorem 1.2. Let θ > 0 and let hn(σ) be a sequence of integer-valued additive functions.

Assume that condition (1.7) is satisfied. If there exists a sequence Υ(l) such that

Υn(l, m; h) − Υ(l) = ρn(m) (1.9)

for every l ∈ N and

∞∑
l=0

Υ(l)2l

l!
< ∞,

then Tn(x) ⇒ FY (x) and EY(l) = Υ(l) for l � 1.
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The following corollary gives necessary and sufficient convergence conditions for more

specialized cases. Let Πμ(x) be the distribution function of the Poisson law with parameter

μ > 0.

Corollary 1.3. For θ � 1, let hn(σ) be a sequence of integer-valued additive functions. The

convergence Tn(x) ⇒ Πμ(x) holds if and only if condition (1.7) holds and

Υn(l, m; h) − μl = ρn(m) (1.10)

for every l ∈ N.

As the total variation estimate approximation (1.3) shows, the Poisson distribution

appears as a limit if the cycles of lengths up to r = o(n) are involved. By the next

corollary, we demonstrate that one can find aj = anj , n/2 < j � n, which defines a sequence

of additive functions obeying a Poisson limit law with a sufficiently small μ. Such a

phenomenon has been observed in [22] if θ = 1. The construction involves the following

strictly increasing in x ∈ [1/2, 1] function

tθ(x) := θ

∫ x

1/2

(1 − u)θ−1 du

u
.

We will prove that tθ(1) < 1 if θ � 1.

Corollary 1.4. Let θ � 1, μ � − log(1 − tθ(1)), and aj = anj ∈ Z+ be such that

lim
n→∞

∑
j�n/2

1{aj 
= 0}
j

= 0. (1.11)

The convergence Tn(x) ⇒ Πμ(x) holds if and only if

θ
∑

n/2<j<n

1{aj = k}
j

(
1 − j

n

)θ−1

= e−μ μ
k

k!
+ ok(1) (1.12)

for every k ∈ N.

If aj = anj remain bounded for the overwhelming proportion of j � n, we obtain

some results for θ < 1. Introduce the quantity Υn(l; h) := Υn(l,∞; h). As we will prove in

Lemma 3.4 below, it represents the main asymptotical term of the lth factorial moment

of h(σ), namely,

Enh(σ)(l) = Υn(l; h) + OK,l

(
1 + logl n

n1∧θ

)
,

where a ∧ b := min{a, b}, provided that aj ∈ Z+ and aj � K if j � n.

Theorem 1.5. Let θ > 0, aj = anj ∈ Z+, j � n, and, for some K ∈ N,

∑
j<n

1{aj � K}
j

(
1 − j

n

)θ−1

= oK (1). (1.13)



894 T. Bakšajeva and E. Manstavičius

The convergence Tn(x) ⇒ FY (x) holds if and only if there exists a sequence Υ(l) such that

lim
n→∞

Υn(l; h) = Υ(l) (1.14)

for every l ∈ N. If this condition holds, then EY(l) = Υ(l) for l � 1.

For the number-of-cycles function w(σ, Jn), condition (1.14) attains the simplest form.

Let the asterisk ∗ over a sum mean the conditions aj = anj = 1 and aji = 1, i � 1, or,

equivalently, for j, ji ∈ Jn. Set

Vn(x) := νn
(
w(σ, Jn) < x

)
and

υn(l) := Υn(l, w) = θl
∗∑

j1+···+jl<n

1

j1 · · · jl

(
1 − j1 + · · · + jl

n

)θ−1

, l � 1.

The next corollary of Theorem 1.5 has been proved in [14] and [15].

Corollary 1.6. Let θ > 0 and Jn ⊂ {1, . . . , n} be arbitrary. The distribution function Vn(x) ⇒
FY (x) if and only if there exists a sequence υ(l), l � 1, such that

lim
n→∞

υn(l) = υ(l) (1.15)

for every l ∈ N. If the latter condition is satisfied, then EY(l) = υ(l) for l � 1.

Here is a particular case.

Corollary 1.7. Let θ � 1 and Jn ⊂ {1, . . . , n} be arbitrary. The convergence Vn(x) ⇒ Πμ(x)

holds if and only if there exists a sequence r = r(n) = o(n) such that conditions

∗∑
j�r

θ

j
= μ+ o(1),

∗∑
r<j<n

1

j

(
1 − j

n

)θ−1

= o(1) (1.16)

are satisfied.

Corollary 1.7 demonstrates that a Poisson law can appear in the limit for w(σ, Jn) only

if the proportion of j ∈ Jn ∩ [εn, n] is negligible for each 0 < ε < 1. If θ = 1, this fact

has been observed in [25] even for bounded aj = anj where j � n. Non-degenerate limit

distributions concentrated on the finite set {0, 1, . . . , L− 1} where L � 2 are of particular

interest.

Corollary 1.8. Let θ > 0, Jn ⊂ {1, . . . , n}, and L ∈ N \ {1} be arbitrary. Assume that Y is

a random variable taking values in {0, 1, . . . , L− 1} and such that EY(l) = υ(l) if l � L− 1.

If

lim
n→∞

θl
∗∑

n/L<j1 ,...,jl<n

1{j1 + · · · + jl < n}
j1 · · · jl

(
1 − j1 + · · · + jl

n

)θ−1

= υ(l) (1.17)
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for each l � L− 1 and

∗∑
j�n/L

1

j
= oL(1), (1.18)

then Vn(x) ⇒ FY (x).

Conversely, if θ � 1 and Vn(x) ⇒ FY (x), then conditions (1.17) and (1.18) are satisfied.

The rest of the paper is organized as follows. Section 2 contains examples and some

observations on the results formulated above. Using the opportunity, we include an

addendum to the first author’s papers [14] and [15] concerning the class of possible limit

laws for w(σ, Jn). This was stimulated by Lugo’s Conjecture stated in [19] and disproved

below. Section 3 contains formulae of factorial moments and required lower estimates of

some frequencies. The proofs of Theorems 1.1 and 1.2 are presented in Sections 4 and 5.

The last section deals with the case of bounded aj , including the function w(σ, Jn).

2. Examples and a discussion of limit laws

Example for Corollary 1.4. Let tθ(x) be the function defined above, θ � 1, and

0 < μ � − log(1 − tθ(1)).

Introduce the sequence 1/2 = d0 < d1 < · · · by

tθ(dk) = e−μ
k∑
l=1

μl

l!
, k = 1, 2, . . . ,

and set aj = k if ndk−1 < j � ndk and aj = 0 otherwise. We claim that the additive function

hn(σ) defined via such aj satisfies condition (1.12).

First, check that the function tθ(x) is strictly increasing in x and tθ(1) < 1. Indeed,

the latter is evident if 1 � θ � 1/ log 2. Otherwise, tθ(1) � t1/ log 2(1) for θ � 1/ log 2. The

properties observed ensure that the sequence dk is correctly defined. Approximating the

sum by the Riemann integral, we have

∑
n/2<j<n

θ1{aj = k}
j

(
1 − j

n

)θ−1

=
∑

ndk−1<j<ndk

θ1{aj = k}
j

(
1 − j

n

)θ−1

= tθ(dk) − tθ(dk−1) + ok(1) = e−μ μ
k

k!
+ ok(1).

The claim is established.

Bounded aj = anj . Let K, k � 1 be integers, 0 � aj � K if n/(k + 1) < j � n/k and aj = 0

elsewhere. For an additive function hn defined via such aj , we have Υn(l, K; h) = 0 if

l > kK . Indeed, by analysing the expression of Υn(l, K; h), we see that the non-zero

summands correspond to the indices ri � K , i � u � k, satisfying r1 + · · · + ru = l. The
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latter is impossible if l > kK . Consequently, if a limit law exists for such a function hn, it

should be concentrated on a finite set.

On the other hand, we have failed to answer the following question.

Problem 1. Is it possible to construct an additive function obeying a Poisson limit law

using unbounded aj = anj such that aj = 0 for all but j ∈ (n/(k + 1), n/k] where k � 2?

M. Lugo’s Conjecture [19]. By definition, a random variable qΠ is called (k, λ) quasi-

Poisson if it has the distribution

P (qΠ = i) =

k∑
j=i

(
j

i

)
(−1)j−1λj , i = 0, 1, . . . k,

where 0 < λ � 1. The factorial moment EqΠ(l) = λl if l � k and EqΠ(l) = 0 if l > k. If

θ = 1, it is easy to define a subset Jn so that w(σ, Jn) obeys the quasi-Poisson limit law.

In fact this and some other results from [18] were included in Theorem 1.3 of the second

author’s paper [24]. Lugo wrote on page 13 of [19]: ‘in the case of the Ewens distribution,

the following conjecture seems reasonable’.

Conjecture 2.1 ([19]). The expected number of cycles of length in [γn, δn] of a permutation

of {1, . . . , n} chosen from the Ewens distribution approaches

λ =

∫ δ

γ

(1 − x)θ−1 dx

x

as n → ∞. Furthermore, in the case where 1/(k + 1) � γ < δ < 1/k for some positive integer

k, the distribution of the number of cycles converges in distribution to quasi-Poisson (k, λ).

The factor θ is missing in the formula for λ and the second claim of the conjecture is

false if θ 
= 1. Here is a counter-example.

Examine w(σ, Jn), where Jn = {j : n/3 < j � n/2}. A routine approximation of sums by

the Riemann integrals yields the asymptotic formulas for the first two factorial moments

via the quantities

υn(1) =
∑

n/3<j�n/2

θ

j

(
1 − j

n

)θ−1

+ o(1)

= θ

∫ 1/2

1/3

(1 − u)θ−1 du

u
+ o(1) =: λ+ o(1)

and

υn(2) = θ2
∑

n/3<i,j�n/2

1

ij

(
1 − i+ j

n

)θ−1

+ o(1)

= θ2

∫ 1/2

1/3

∫ 1/2

1/3

(1 − u− v)θ−1 du dv

uv
+ o(1).
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Hence

υn(1)2 − υn(2)

= θ2

∫ 1/2

1/3

∫ 1/2

1/3

(
(1 − u)θ−1(1 − v)θ−1 − (1 − u− v)θ−1

)du dv
uv

+ o(1) � c0 > 0

if θ > 1, c0 is sufficiently small, and n is sufficiently large. If θ < 1, the difference

υn(1)2 − υn(2) < −c0 < 0 for sufficiently large n. Observing also that υn(l) = 0 if l � 3,

by Corollary 1.6, we see that the function w(σ, Jn) obeys a limit distribution but it is not

the (2, λ) quasi-Poisson.

Problem 2. Let L be the class of possible limit distributions for w(σ, Jn), for arbitrary

Jn ⊂ {1, . . . , n}, under the Ewens probability measure νn. Find a description of L.

We now present some related examples based on Corollary 1.6.

Bernoulli distribution Be(p), where p is the parameter p ∈ (0, 1). We claim that Be(p) ∈ L
if p � tθ(1), where tθ(x) is the previously defined function on [1/2, 1] and θ � 1. The

construction is based on the factorial moments. For Be(p), they are υ(1) = p and υ(l) = 0

if l � 2. It suffices, therefore, to find an α such that tθ(α) = p and to define Jn = {j � n :

n/2 < j � αn}. By a simple approximation of the sum by the integral, we verify condition

(1.15) and find that υn(1) = p+ o(1).

Binomial distribution Bi(M, p), where M ∈ N and p ∈ (0, 1). Now, the factorial moments

are equal to M(l)p
l if l = 1, 2, . . . ,M and to zero if l = M + 1,M + 2, . . . . For simplicity,

we confine ourselves to a particular case of θ = 1 and M = 2. We claim that Bi(2, p) ∈ L
if

0 < p � (1/2) log 3 = 0.405 . . . .

The idea to construct such an example has been shown in [33]. Let us take two temporary

parameters 0 < α � log 2 and 0 < β � log(3/2). Define the sequence of sets of natural

numbers

Jn = N ∩
(
(n/3, (n/3)eα] ∪ (2n/3, (2n/3)eβ]

)
.

The factorial moments of the additive function w(σ, Jn) are approximated by

υn(1) =
∑
j∈Jn

1

j
= α+ β + o(1) � log 3 + o(1),

υn(2) =
∑
i,j∈Jn

1{i+ j � n} 1

ij
=

( ∑
n/3<j�(n/3)eα

1

j

)2

= α2 + o(1),

and υn(l) = 0 if l � 3. To get the binomial distribution, we have to require that

2α2 = (α+ β)2.
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Hence

α = (
√

2 + 1)β.

Given p � (1/2) log 3, we can choose β and, consequently, α so that

2p = α+ β = (
√

2 + 2)β � log 3.

Now, taking β = (2 −
√

2)p and α = p
√

2, due to the condition on p, we are done.

The laws outside L. It is easy to see that υn(l) � υn(1)l if θ � 1. Consequently, the inequality

should be preserved by the laws in L. In fact this observation is due to J. Šiaulys and

G. Stepanauskas [32]. Distributions such as the geometric with a parameter p ∈ (0, 1) or

a mixed Poisson distribution FY (x) = Π(x; β, λ, τ) defined by the factorial moments

EY(l) = βλl + (1 − β)τl , l = 1, 2, . . . ,

where 0 < β < 1, λ, τ > 0, and λ 
= τ, do not belong to L if θ � 1.

3. Lemmas

In this section we present exact expressions of the factorial moments of a completely

additive function h(σ) defined via aj ∈ R. Particular attention is devoted to the case of

bounded aj and approximations. Denote

ψn(m) =
n!

θ(n)

θ(m)

m!
=

n∏
k=m+1

(
1 +

θ − 1

k

)−1

,

where 0 � m � n. It is well known that

θ(m)

m!
=
mθ−1

Γ(θ)

(
1 + O

(
1

m

))
, m � 1,

where Γ(u) is Euler’s gamma function. Hence

ψn(m) =

(
m

n

)θ−1(
1 + O

(
1

m

))
, 1 � m � n. (3.1)

Henceforth, we will use the inequalities

ψn(n− i− j) � ψn(n− i)ψn(n− j) if θ � 1

and

ψn(n− i− j) � ψn(n− i)ψn(n− j) if θ � 1,

valid for 0 � i, j � n.

It is worth recalling Watterson’s formula.

Lemma 3.1. For (j1, . . . , jr) ∈ Z
r
+, l = 1j1 + · · · + rjr and 1 � r � n,

En

{ r∏
i=1

ki(ji)(σ)

}
= ψn(n− l)1{l � n}

r∏
i=1

(
θ

i

)ji

. (3.2)
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Proof. See (5.6) on page 96 of [2].

The next lemma somewhat extends the previous formula.

Lemma 3.2. Let θ > 0. For a completely additive function h(σ) and every k ∈ N, we have

Enh(σ)(k) = γn(k)

:=

k∑
u=1

θu
∑

r1+···+ru=k

(
k − 1

r1 − 1

)
· · ·

(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju�n

aj1(r1) · · · aju(ru)
j1 · · · ju

ψn
(
n− (j1 + · · · + ju)

)
. (3.3)

Proof. We first derive a recurrence relation for

βn(k) :=
(
θ(n)/n!

)
γn(k),

where βn(0) = θ(n)/n! if n � 0 and β0(k) = 0 if k � 1. At this stage, it suffices to apply

the formal power series algebra (see [11], Chapter III). Let z and w be formal variables,

ϕ0(z) := 1, and

ϕn(z) :=
θ(n)

n!
Enz

h(σ) =
∑
k�0

βn(k)

k!
zk.

Thus, βn(k)/k! = [zk]ϕn(z), the kth power series coefficient (in fact, of a polynomial). The

application of formal derivatives simplifies the notation and allows us to use the classical

rules of differentiation. For this reason, we also write βn(k) = ϕ(k)
n (z)|z=1.

Grouping over the classes of σ with the common cycle vector and using Cauchy’s

formula for the cardinality of a class, we have

ϕn(z) =
∑
�(k̄)=n

n∏
j=1

(
θzaj

j

)kj 1

kj!
.

This leads to the formal power series equations∑
n�0

ϕn(z)w
n = exp

{
θ

∑
j�1

zaj

j
wj

}

and ∑
n�0

ϕ′
n(z)w

n = θ
∑
m�0

ϕm(z)wm ·
∑
j�1

ajz
aj−1

j
wj

= θ
∑
n�0

(∑
j�n

ϕn−j(z)
ajz

aj−1

j

)
wn.

Hence

ϕ′
n(z) = θ

∑
j�n

ϕn−j(z)
ajz

aj−1

j
. (3.4)
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Taking the (k − 1)th-order derivatives with respect to z, we arrive at

ϕ(k)
n (z) = θ

∑
j�n

k−1∑
l=0

(
k − 1

l

)
aj(l+1)z

aj−l−1

j
ϕ

(k−1−l)
n−j (z).

This is a relation between two polynomials, thus we may take z = 1 to obtain

βn(k) = θ

k−1∑
r=1

(
k − 1

r − 1

)∑
j�n

aj(r)

j
βn−j(k − r) + θ

∑
j�n

aj(k)

j

θ(n−j)

(n− j)!
. (3.5)

We now apply mathematical induction to prove that

βn(k) =

k∑
u=1

θu
∑

r1+···+ru=k

(
k − 1

r1 − 1

)
· · ·

(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju�n

aj1(r1) · · · aju(ru)
j1 · · · ju

θ(n−j1−···−ju)

(n− j1 − · · · − ju)!
. (3.6)

A direct application of (3.4) yields

βn(1) = θ
∑
j�n

aj

j

θ(n−j)

(n− j)!
.

Assume that the induction hypothesis (3.6) holds for βn−j(k − r) if k − r � 1. Applying

this formula, we use summation indices r2, . . . and j2, . . . leaving r1 and j1 for the

summation in (3.5) with respect to r and j. So, using the assumption in (3.5), we obtain

βn(k) = θ

k−1∑
r1=1

(
k − 1

r1 − 1

) ∑
j1�n

aj1(r1)

j1

×
k−r1+1∑
u=2

θu−1
∑

r2+···+ru=k−r1

(
k − r1 − 1

r2 − 1

)
· · ·

(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j2+···+ju�n−j1

aj2(r2) · · · aj(ru)
j2 · · · ju

θ(n−j1−···−ju)

(n− j1 − · · · − ju)!
+ θ

n∑
j=1

aj(k)

j

θ(n−j)

(n− j)!
.

Interchanging the order of summation, we arrive at

βn(k) =

k∑
u=2

θu
∑

r1+···+ru=k

(
k − 1

r1 − 1

)
· · ·

(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju�n

aj1(r1) · · · aju(ru)
j1 · · · ju

θ(n−j1−···−ju)

(n− j1 − · · · − ju)!
+ θ

n∑
j=1

aj(k)

j

θ(n−j)

(n− j)!
.

The last sum equals the summand corresponding to u = 1 in the previous sum over u.

Joining them together, we obtain (3.6). Further, dividing it by θ(n)/n!, we complete the

proof of this lemma.
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Corollary 3.3. Assume that aj ∈ {0, 1} if j � n and let the asterisk ∗ over a sum stand for

the condition aj = 1. Then

Enh(σ)(k) = γn(k) = θk
∗∑

j1�n

1

j1
· · ·

∗∑
jk�n

1{j1 + · · · + jk � n}
jk

ψn
(
n− (j1 + · · · + jk)

)
.

Henceforth, the symbol � is used as an analogue of O(·) and a � b means that a � b

and b � a.

Lemma 3.4. If aj ∈ Z+ ∩ [0, m] for j � n, then

γn(k) =

k∑
u=1

θu
∑

r1+···+ru=k

(
k − 1

r1 − 1

)
· · ·

(
k − r1 − · · · − ru−1 − 1

ru − 1

)

×
∑

j1+···+ju<n

aj1(r1) · · · aju(ru)
j1 · · · ju

(
1 − j1 + · · · + ju

n

)θ−1

+ Om,k

(
1 + logk n

n1∧θ

)
. (3.7)

Proof. It suffices to deal with the case of θ 
= 1 and n sufficiently large. Set Δn(k) for the

difference of γn(k) in (3.3) and the main term in its approximation (3.7). Using (3.3) and

the given bound of aj , we have

Δn(k) �
k∑
u=1

Cu(k, m)
∑

j1 ,...,ju<n

1{j1 + · · · + ju < n}
j1 · · · ju

1

n− (j1 + · · · + ju)

×
(

1 − j1 + · · · + ju

n

)θ−1

+ n1−θ
k∑
u=1

Cu(k, m)
∑

j1 ,...,ju�n

1{j1 + · · · + ju = n}
j1 · · · ju

.

Here

Cu(k, m) :=
∑

r1+···+ru=k
1�ri�m,i�u

(
k − 1

r1 − 1

)
· · ·

(
k − r1 − · · · − ru−1 − 1

ru − 1

)
�m,k 1

if 1 � u � k. Using the latter, we see that a typical sum to be estimated is

∑
j1<n

1

j1
· · ·

∑
ju<n

1{j1 + · · · + ju < n}
ju

(
n− (j1 + · · · + ju)

)(
1 − j1 + · · · + ju

n

)θ−1

+ n1−θ
∑
j1�n

1

j1
· · ·

∑
ju�n

1{j1 + · · · + ju = n}
ju

=: Rnu + rnu, (3.8)
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where 1 � u � k. Now, in the sums of the second remainder term, at least one ji � n/u,

1 � i � u. Hence, estimating one of the u sums trivially, we obtain

rnu � u log(u+ 1)

nθ

∑
j1�n

1

j1
· · ·

∑
ju−1�n

1{j1 + · · · + ju−1 � n− n/u}
ju−1

� u log(u+ 1)

nθ

(∑
j�n

1

j

)u−1

�k

logu−1 n

nθ

for 1 � u � k.

For brevity, introduce temporarily the notation J = j1 + · · · + ju and j = ju+1. We will

apply the mathematical induction for either of the sums in the splitting

Rn,u+1 �
∑
j1<n

1

j1
· · ·

∑
ju<n

1{J < n}
ju

∑
j�(n−J)/2

1

j

1

(n− J) − j

+
∑
j1<n

1

j1
· · ·

∑
ju<n

1{J < n}
ju

∑
(n−J)/2<j<n−J

1

j

1

(n− J) − j

(
1 − J + j

n

)θ−1

=: R′
n,u+1 + R′′

n,u+1.

Now,

R′
n1 + R′′

n1 =
∑
j�n/2

1

j

1

n− j
+

∑
n/2<j<n

1

j

1

n− j

(
1 − j

n

)θ−1

� log n

n
+

1

nθ

∑
n/2<j<n

(n− j)θ−2 � log n

n
+

1

n1∧θ � log n

n1∧θ .

Assuming that R′
nu �u (logu n)/n, we have

R′
n,u+1 � R′

nu log n �u (logu+1 n)/n

in either of the cases θ < 1 or θ > 1. Further, if θ > 1, then (1 − (J + j)/n)θ−1 � 1. An

easy estimation of the innermost sum now implies

R′′
n,u+1 � R′

nu log n �u (logu+1 n)/n.

If θ < 1, then

R′′
n,u+1 �

∑
j1<n

1

j1
· · ·

∑
ju<n

1{J < n}
ju(n− J)

×
∑

(n−J)/2<j<n−J

(
1 − J + j

n

)θ−1
1

(n− J) − j

� 1

nθ−1

∑
j1<n

1

j1
· · ·

∑
ju<n

1{J < n}
jk(n− J)

∑
1�s<n

sθ−2

�u

1

nθ−1

logu n

n
=

logu n

nθ

since the last inner sum is bounded and the remaining iterated sum was estimated before.
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Collecting all the estimates, we return to (3.8) and conclude that

Rnu + rnu �u (logu n)n−(θ∧1)

for sufficiently large n. Inserting this into the expression Δn(k), we finish the proof of the

lemma.

In a similar way, we can handle the growth of the factorial moments υn(l) corresponding

to the function w(σ, Jn) as l → ∞.

Lemma 3.5. Let Jn ⊂ {1, . . . , n} be arbitrary. If θ � 1, then υn(l) � υn(1)l for every n, l ∈ N.

If θ < 1, then there exists a positive constant C depending on θ only such that

υn(l) � Cl
(
υn(1) + 1

)l
for every l ∈ N.

Proof. The proof of the first assertion is straightforward. In the case θ < 1, we apply the

induction. Examine the innermost sum on the right-hand side of the inequality

υn(l + 1) � θl
∑

j1 ,...,jl∈Jn

1{S < n}
j1 · · · jl

∑
j∈Jn

1{j < n− S}
j

(
1 − S + j

n

)θ−1

, (3.9)

where pro tem S := j1 + · · · + jl and j := jl+1. The summands over j � (n− S)/2 contrib-

ute no more than

21−θ(1 − S/n)θ−1υn(1)

and

∑
j∈Jn

1{(n− S)/2 < j < n− S}
j

(
1 − S + j

n

)θ−1

� 2

nθ−1(n− S)

∑
j∈Jn

1{(n− S)/2 < j < n− S}(n− S − j)θ−1

� 2

nθ−1(n− S)

∑
k<(n−S )/2

kθ−1 � C1

(
1 − S

n

)θ−1

.

The last two estimates and (3.9) yield

υn(l + 1) � (2 ∨ C1)
(
υn(1) + 1

)
υn(l).

Consequently, the desired assertion holds with C = 2 ∨ C1 := max{2, C1}.

Let us introduce the concentration function

Qn(u) = sup
x∈R

νn(|h(σ) − x| < u), u � 0, x ∈ R,
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and

Dn(u; λ) =
∑
j�n

u2 ∧ (aj − λj)2

j
, Dn(u) = min

λ∈R

Dn(u; λ).

Lemma 3.6. We have

Qn(u) � uDn(u)
−1/2 (3.10)

for every θ > 0.

Proof. See [15].

The last lemma is used to obtain lower estimates of the required frequencies below. Let

J ⊂ {j : j � n} be an arbitrary non-empty set, possibly depending on n, and J = {j : j �
n} \ J .

Lemma 3.7. Let θ � 1, K > 0, and J be such that∑
j∈J

1

j
� K < ∞. (3.11)

Denote

μn(K) = inf
J
νn

(
kj(σ) = 0 ∀ j ∈ J

)
,

where the infimum is taken over J satisfying (3.11). For a sufficiently large n0(K), there

exists a positive constant c(K), depending at most on θ and K , such that μn(K) � c(K) if

n � n0(K).

Moreover, for any I ⊂ J ∩ [1, n− n0(K)] and

S̃n :=
⋃
j∈I
S jn :=

⋃
j∈I

{σ ∈ Sn : kj(σ) = 1, ki(σ) = 0 ∀i ∈ J \ {j}},

we have that

νn(S̃n) � c(K)
∑
j∈I

1

j
ψn(n− j) �

∑
j∈I

1

j

(
1 − j

n

)θ−1

(3.12)

provided that n � 2n0(K).

Proof. The first claim is Corollary 1.3 of Theorem 1.2 (see [16]). The second claim is

proved in [17].

The next observation presents the possibility of applying the previous lemma of the

sieve type.
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Lemma 3.8. Assume that hn(σ) is defined via aj = anj ∈ Z and Tn(x) ⇒ F(x). Then

∑
j�n

1{aj 
= 0}
j

� 1 (3.13)

provided that θ � 1 or θ < 1 and

∑
j�n

1{|aj | � K}
j

� K1 (3.14)

for some positive constants K and K1. Now, the constant in (3.13) depends also on F , K ,

and K1.

Proof. Since the limit law has an atom, we obtain a lower estimate of the concentration

function Qn(u) � c > 0 for every u > 0 if n is sufficiently large. Now applying Lemma 3.6,

we have Dn(u, λ) � c−2u2 for some λ = λn ∈ R. This, if u → 0, yields the estimate

∑
j�n

1{aj 
= λj}
j

� 1. (3.15)

In fact, λ ∈ Z. Indeed, if ‖ · ‖ denotes the distance to the nearest integer, we have

1 � Dn(1, λ) �
∑
j�n

‖λj‖2

j

and, further, λ =: λ̃+ δ, where λ̃ = λ̃n ∈ Z and δ = δn = O(n−1). Now the inequality

(x+ y)2 � 2x2 + 2y2, x, y ∈ R, implies

Dn(u, λ̃) � 2Dn(u, λ) + 2
∑
j�n

u2 ∧ (δj)2

j
� u2.

Consequently, we may proceed with λ ∈ Z.

If θ � 1 then, denoting J := {j � n : aj 
= λj} and

hn(σ) = λ�(k̄(σ)) +
∑
j∈J

(aj − λj)kj(σ) =: λn+ h̃n(σ),

by Lemma 3.7, for sufficiently large n,

νn(hn(σ) = λn) = νn(h̃n(σ) = 0) � νn
(
kj(σ) = 0 ∀ j ∈ J

)
� c1 > 0.

Hence, if λn → ∞ for some subsequence of n → ∞, at least c1 of the probability distribution

mass of hn(σ) disappears at infinity. This contradicts the assumption of the theorem. Hence

λ = λn � n−1, and thus λ = 0 eventually. Now, the estimate Dn(1, 0) � 1 contains (3.13).

Assume that θ < 1 is arbitrary and |aj | � K for the most part of j � n in the sense

of (3.14). Now, manipulating the latter and the estimate (3.15), we obtain the bound

λ � K/n, which implies that λ = 0 eventually.

The lemma is proved.
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Remark. If all aj ∈ Z, j � 1, do not depend on n, then the additive function possesses a

limit distribution, i.e., νn(h(σ) < x) ⇒ F(x), if and only if the series∑
j�1

1{aj 
= 0}
j

converges. The fact is well known [2, Theorem 8.25], since the three series in an analogue

of Kolmogorov’s theorem for the integer-valued functions reduce to this one. The last

lemma gives a very short proof of the necessity.

4. Proof of Theorem 1.1

First, we observe that, if the limit random variable is concentrated on Z+, we may confine

ourselves to non-negative additive functions. Set a+ for the non-negative part of a ∈ R.

Let h(+)
n (σ) be the additive function defined as in (1.4) via a+

j , where j � n, and

T (+)
n (x) := νn

(
h(+)
n (σ) < x

)
.

Proposition 4.1. If θ � 1, then the convergence Tn(x) ⇒ F(x) is equivalent to T (+)
n (x) ⇒

F(x) together with condition (1.7).

Proof. Assume that Tn(x) ⇒ FY (x). Then, by Lemma 3.8, condition (3.13) holds. Set

I := {j � n− n0 : aj � −1} ⊂ J := {j � n, aj 
= 0},

where n � n0 and n0 ∈ N, depending on F , is sufficiently large. Define, as in Lemma 3.7,

Sjn = {σ ∈ Sn : kj(σ) = 1, ki(σ) = 0 ∀i ∈ J \ {j}}

and observe that hn(σ) = aj � −1 for all σ ∈ Sjn with j ∈ I . From Lemma 3.7 and the

above assumption we have

o(1) = νn
(
hn(σ) � −1

)
� νn

(⋃
j∈I
S jn

)
�

∑
j∈I

1

j

(
1 − j

n

)θ−1

.

The sum can also be extended over n− n0 � j � n. This proves the necessity of (1.7).

Further, having (1.7), we claim that T (+)
n (x) ⇒ FY (x) is equivalent to Tn(x) ⇒ FY (x).

Indeed,

νn
(
hn(σ) 
= h(+)

n (σ)
)

�
∑
j�n
aj�−1

νn
(
kj(σ) � 1

)

�
∑
j�n
aj�−1

Enkj(σ) =
∑
j�n
aj�−1

θ

j
ψn(n− j) = o(1).

We have used a particular case of formula (3.2).

Proposition 4.1 is proved.
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Proof of Theorem 1.1. We have from Lemma 3.8 that the sum (3.13) is bounded by a

constant CF . Further, by Proposition 4.1, we see that condition (1.7) is satisfied, and we

may assume that hn(σ) ∈ Z+. In what follows, the constants involved in the estimates can

depend on F .

For an integer m � 1, we set aj(m) = aj if aj � m and aj(m) = m otherwise, and introduce

the truncated functions

hn(σ;m) :=
∑
j�n

aj(m)kj(σ).

By Lemmas 3.2 and 3.4, we have

Enhn(σ, m)(l) = Υn(l, m; h) + om,l(1).

So, the goal lies in proving that

lim
m→∞

lim sup
n→∞

Enhn(σ, m)(l) = lim
m→∞

lim inf
n→∞

Enhn(σ, m)(l) = EY(l) =: Υ(l) (4.1)

for each natural number l � α− 1 − ε.

Set Jn := {j � n : aj 
= 0}, and then

Enhn(σ, m)(l) � mlEnw(σ, Jn)(l) = ml(υn(l) + ol(1))

� ml(υn(1)l + ol(1)) �l,F m
l (4.2)

by virtue of bound (3.13), where the hidden constant depends on l and the limit distribution

F .

We now split

Enhn(σ, m)(l) = En(l, m)′ + E ′′
n (l, m) + E ′′′

n (l, m), (4.3)

where

E ′
n(l, m) =

m−1∑
b=l

b(l)νn
(
hn(σ) = b

)
,

E ′′
n (l, m) =

M∑
b=m

b(l)νn
(
hn(σ, m) = b

)
,

E ′′′
n (l, m) =

∑
b>M

b(l)νn
(
hn(σ, m) = b

)
,

and M = M(m) > m is a natural number to be chosen later.

If l � α, then

lim
n→∞

E ′
n(l, m) =

m−1∑
b=l

b(l)P (Y = b) = Υ(l) −
∑
b�m

b(l)P (Y = b)

for each fixed m and, by virtue of EY α < ∞,

lim
m→∞

∑
b�m

b(l)P (Y = b) � lim
m→∞

∑
b�m

blP (Y = b) = 0.
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In other words,

lim
m→∞

lim
n→∞

E
′
n(l, m) = Υ(l) (4.4)

for each l � α.

Similarly, if l � α− 1 − ε,

E ′′
n (l, m) �

M∑
b=m

blνn
(
hn(σ) � b

)
=

M∑
b=m

blP (Y � b) + om(1)

� EY α

∞∑
b=m

1

b1+ε
+ om(1) = ρn(m). (4.5)

Finally, we have from (4.2)

E ′′′
n (l, m) =

1

θ(n)

∑
σ∈Sn

θw(σ)1{hn(σ, m) > M}hn(σ, m)(l) · hn(σ, m) − l

hn(σ, m) − l

� 1

M − l
Enhn(σ, m)(l+1) �l

ml+1

M − l
�l

1

m

for the choice M = ml+2 provided that m > 2l. Collecting (4.4), (4.5), and the last estimate,

from the splitting (4.3), we obtain claim (4.1).

The theorem is proved.

5. Proof of Theorem 1.2

As we have seen in the proof of Proposition 4.1, condition (1.7) allows us to deal with

non-negative functions only. By the condition of the theorem and Lemma 3.4,

Enhn(σ, m)(l) = Υn(l, m; h) + om,l(1) = Υ(l) + ρn(m).

Let L ∈ N be a fixed number, and examine the expansion of the characteristic function

Ene
ithn(σ,m) =

L∑
l=0

Enhn(σ, m)(l)
l!

(eit − 1)l + O

(
Enhn(σ, m)(l)

(L+ 1)!
|eit − 1|L+1

)
,

where t ∈ R and the constant in O(·) is absolute. We further have

Ene
ithn(σ,m) =

L∑
l=1

Υ(l)

l!
(eit − 1)l + O

(
2LΥ(L+ 1)

(L+ 1)!

)
+ ρm(n)

uniformly in t ∈ R. In other words,

lim
m→∞

lim sup
n→∞

∣∣∣∣Ene
ith(σ;m) −

L∑
l=0

Υ(l)

l!
(eit − 1)l

∣∣∣∣ � 2LΥ(L+ 1)

(L+ 1)!

for every L � 1.

By the given conditions,

lim sup
n→∞

∑
j�n
aj>m

θ

j

(
1 − j

n

)θ−1

� 1

m
lim
r→∞

lim sup
n→∞

∑
j�n

θaj(r)

j

(
1 − j

n

)θ−1

=
Υ(1)

m
.
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Hence

En|eith(σ;m) − eithn(σ)| � νn(h(σ) 
= h(σ;m)) �
∑
j�n
aj>m

νn(kj(σ) � 1)

�
∑
j�n
aj>m

Enkj(σ) =
∑
j�n
aj>m

θ

j
ψn(n− j) = ρm(n).

The last two approximations imply

lim
m→∞

lim sup
n→∞

∣∣∣∣Ene
ithn(σ) −

L∑
l=0

Υ(l)(eit − 1)l

l!

∣∣∣∣ � 2LΥ(L+ 1)

(L+ 1)!
.

It remains to take L → ∞.

The theorem is proved.

Proof of Corollary 1.4. In the sufficiency part, it suffices to rewrite the factorial moments

as follows:

Υn(l, m; h) = θ
∑

n/2<j<n

aj(l)(m)

j

(
1 − j

n

)θ−1

=

m∑
k=1

k(l)

∑
n/2<j<n

θ1{aj = k}
j

(
1 − j

n

)θ−1

.

Here we have to check if the inner sums can approach the Poisson probabilities. Since

their sum over k � 0 tends to tθ(1) � 1 − e−μ, this is possible. We may continue and get

Υn(l, m; h) =

m∑
k=1

k(l)

(
e−μ μ

k

k!
+ ok(1)

)
= e−μ

m∑
k=1

k(l)
μk

k!
+ om(1).

Hence

Υn(l, m; h) − μl = ρn(m),

as desired.

To prove the necessity, we demonstrate another path. Recall that the function

ϕn(z) = (θ(n)/n!)Enz
h(σ), |z| � 1,

satisfies (3.4). If aj = 0 for j � n/2, then ϕn−j(z) = θ(n−j)/(n− j)! and, consequently, we

obtain

eμ(z−1) + o(1) = Enz
hn(σ) = 1 + θ

∑
n/2<j�n

zaj − 1

j
ψn(n− j)

= 1 + θ
∑
k�1

(zk − 1)
∑

n/2<j�n

1{aj = k}
j

(
1 − j

n

)θ−1

+ o(1)

uniformly in |z| � 1. Applying Cauchy’s formula on the circle |z| = 1, we complete the

proof of the corollary.
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6. The cases with bounded aj

Proof of Theorem 1.5. Condition (1.13) allows us to explore the case with 0 � aj � K ,

j � n, only.

Sufficiency. If Jn := {j � n : aj 
= 0}, then

Enhn(σ)(l) � Kl
Enw(σ, Jn)(l) � KlCl

(
υn(1) + 1

)l � Cl
2

by Lemma 3.5 for every l � 1. Further, it suffices to apply Theorem 1.2.

Necessity. By Lemma 3.8, we obtain from the convergence Tn(x) ⇒ FY (x) the bound

(3.13) which, in turn, yields Υn(1) � K . Indeed, to check this, it suffices to observe that

the summands over n/2 < j < n contribute only a bounded quantity. As we have seen, in

the sufficiency part,

sup
n�1

Enhn(σ)(l) � Kl

for every fixed l � 1. Now, the weak convergence of distributions also implies the

convergence of moments. Namely, we have Υn(l) = EY(l) + ol(1) where l � 1.

The theorem is proved.

Proof of Corollary 1.7. Only necessity requires some argument. By Theorem 1.3,

convergence of distributions implies the relations υn(l) → μl where l � 1. Omitting non-

negative sums in the difference below, we obtain

o(1) = υn(1)l − υn(l)

� θl
∗∑

j1 ,...,jl�n

1{j1 + · · · + jl > n}
j1 · · · jl

(
1 − j1

n

)θ−1

· · ·
(

1 − jl

n

)θ−1

�
(
θl

∗∑
n/l<j�n

1

j

(
1 − j

n

)θ−1)l

for every l � 1. This yields the second of the conditions in (1.16). Using the latter and

checking that the factor (1 − j/n)θ−1 = 1 + o(1) uniformly in j � r = o(n), we can rewrite

the relation υn(1) = μ+ o(1) as is given in the first of relations in (1.16).

Proof of Corollary 1.8. Sufficiency. Since (1.17) and (1.18) imply the sufficient condition

(1.15) in Corollary 1.7, we are done.

Necessity. In the case discussed, the Lth factorial moment Enhn(σ)(L) converges to zero.

Hence the relevant formula yields

o(1) = Enw(σ, Jn)(L) � θl
∗∑

j1 ,...jL�n/L

1

j1 · · · jL
ψn

(
n− (j1 + · · · + jL)

)

�
(
θ

∗∑
j�n/L

1

j
ψn(n− j)

)L
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for θ � 1. This is equivalent to (1.18). It also allows us to reduce the problem to the

sequence of additive functions with aj = 0 if j � n/L. Then the necessary condition (1.15)

reduces to (1.17).

The corollary is proved.

Concluding remark. Most of the results presented above can be obtained for the general-

ized Ewens probability measure

νn,Θ(A) :=
1

Θn

∑
σ∈A

θ
w(σ)
j ,

where 0 < c3 � θjq
−j � C3 < ∞ if j � n, q � 1 is a fixed constant, and Θn is an appropriate

normalization. In some cases, unfortunately, we have to assume that c3 = 1. An analytic

technique to deal with the value distribution of mappings defined on Sn with respect to

νn,Θ was proposed by the second author [21]. Later it was extended (see, for example,

[26] and [38]) for θjq
−j satisfying some averaged conditions. The asymptotic distributions

under the generalized Ewens measure of hn(σ) were treated in [26]. The second author’s

paper [28] provides an approximation in the total variation distance of the truncated cycle

vector by an appropriate vector with independent coordinates which is a basic tool for a

probabilistic approach. The latter was applied in [8] to prove a functional limit theorem.

The recent papers [3], [7], [9] discuss cases with different behaviour of θj , e.g., θj = ej
γ

,

j � n, where 0 < γ < 1. Hopefully, the described method of factorial moments will be of

use in these cases too.
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[30] Šiaulys, J. (1998) Convergence to the Poisson law III: Method of moments. Lith. Math. J. 38

374–390.
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