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On a certain class of infinite products with an application to
arithmetical semigroups
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1. From J. Knopfmacher’s monograph [3], Chapter 1, we quote the following

Definition. An additive arithmetical semigroup is a commutative semigroup G with
identity element 1 together with a subset 2 and a mapping 6: G - N, such that the
following conditions hold:

() every element a # 1 in G adruits a factorization into a finite product of elements of
2 which is unique, except for the order in which the factors occur,

(i) o(ab) =d(a) + d(b) for all aq,b € G,

(i) 6(p) e N for all p € 2,

(iv) n(n):=|{peP:6(p) =n}| < oo for all ne N.

We put
y():=|{ae G:5(a) =n}|.

Then obviously y(0) =1 and y(n) < oo for all n.-lMore exactly we have
WS T )y —)) (neN).
i=

G is countable, and the identity

e ¢)

1+ Zymer=T10-)™"
n=1 n=1
(which should be interpreted within Z [[t]]) holds true.
Very fundamental is Axiom A* (see [3], p. 7) which says that there are real numbers
A>0,9g>1,0=<v<1suchthat y(n)= Aq" + 0(q¢"") as n —» .
If G satisfies Axiom A* then the function

f@=1+ £ 302 (2l <1

') This work was done while the sccond author held a visiting professorship at the University of
~ Paderborn. Financial support has been provided by DFG.
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is holomorphic in the disc |z| < ¢ ™" up to a pole of order one in 1/q. f can be considered
as the zeta-function associated with (G, P, 9), and it has a Euler-product representation
(cf. [3], Chapter 2)

S =TT 0= (lz] < 1/q).

Chapter 8 of [3] deals with a theorem called the abstract prime number theorem: If the
additive arithmetical semigroup G satisfies Axiom A* then

(1) n(n)=g—+0<g;> as n — o
n n
is true for any a > 1.

The estimation of the remainder term in (1) has quite recently been improved by S. D.
Cohen [1] to 0(¢%") where max {1/2,v} < 0 < 1.

Knopfmacher’s arguments and Cohen’s as well are based on Lemma 8.5 in [3] which
states that f has no zeros on the circle |z| = 1/q. Its proof is modelled after the classic
proof by de la Vallée Poussin that Riemann’s zeta function { (s) satisfies { (1 + it) & O for
all te R.

Unfortunately the proof is incomplete since it only yields f(z) +£ 0 for |z] = 1/q,
z £ —1/q, and this gap leaves the lemma and the prime number theorem in suspense.

As a matter of fact there are examples of additive arithmetical semigroups satisfying
Axiom A¥ such that f(z) has a zero at z = — 1/q which affects the leading term in (1)
considerably. Therefore the abstract prime number theorem in its current version is false.

The aim of our paper is to remedy the situation. We shall prove a correct version of
the prime number theorem (the simplest case is formulated as a corollary to Theorem 1)
and a necessary conditon for the existence of a zero at — 1/q (Theorem 2). As a corollary
(Corollary 2) we obtain that the condition f(x) f(—x) = o(1/(1 — g"'*x)) as x — g~ /2,
0 < x < q~ Y2 ensures that f(—q~ ')+ 0. Our example f;(z) shows that this result is
sharp.

We depart from the original framework of additive arithmetical semigroups since it
turned out that the subject matter rather belongs to the elementary theory of holomor-
phic functions which are represented as infinite products of a certain type.

2. We start with a sequence {n(n)}, n € N, of real numbers with the following property:
There are constants C > 0 and g > 1 such that
(2) |n(n)] < Cq" for all n.
One can easily show that
(1 =27 —1<(qlz])" for |z] £1/q.

Therefore the infinite product

A

I“I (1 _ Zn)—n(n)

n=1
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converges for |z| < 1/q and yields there a holomorphic function f without zeros. The

logarithmic derivative of f is given by

9 = )
= drn(d)) z" '
1@ n§ﬁ£ w(d) 2

Furthermore, we have the power series expansion
f@=1+ 3% ymz" (z] <1/g).
n=1

By a straightforward calculation one can show

n(n)eZ for all néy(n)el for all n

/

and
n(n)20 forall n=1y(n)=n(n) forall n.

We now introduce an assumption (V) which corresponds to Axiom A*:
(V): There is some R > 1/q such that f can be analytically continued on the disc |z| < R
to a meromorphic function (which we still denote by f) which has exactly one pole of order 1

at 1/q.
If (V) holds we get

1@ = +90)

where g is holomorphic for |z| < R and B + 0. If
g(2) = ZO ¢, 2" (lz| <R)

then ¢, < r™"forallr,0 <r <R, and
Y™ = Aq" + c,, where A:= — Bq.

Conversely such an asymptotic formula for y(n) implies (V).

Theorem 1. Let (2) and (V) be fulfilled. Put
o(n):=q~" 3 dn(d).

din
Then the following two assertions hold:
(1) If f has no zeros of modulus 1/q then for every r, 1/q < r < R, one has

l
o) =1— 3 (gb)™" + 0((qr)™"),

j=1
where b;(1 < j < I = I(r)) are the zeros of f with 1/q < |b;| < r, counted according to their

multiplicities.
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(i) If n(n) = 0 for all n, and if f has zeros of modulus 1/q then f has exactly one zero
in the disc |z} < R. It is located at — 1/q and has order 1. Furthermore, in this case one has

any=1—-(=1)"+0(gr)"") forevery r,1/qg <r <R.

Proof. Lete, 0 <¢ < R — 1/g, be given. Then there is some r, R — ¢ < r < R, such
that f(z) £ 0 for |z] = 1.

Let a;(1 £j £ k) denote the zeros of f with |a;| = 1/q and b;(1 = j = | = [(r)) those
with 1/g <|b;| < r, all listed according to their multiplicities. We observe that the zeros
of f lie symmetrically to the real line.

The residue theorem gives

1 f'(z) dz koo Lo
— —=>dnd)—-q"+ X a;"+ b;".
21iyzi=, f(2) 2" d% ) - j; ! j; !

Therefore
k 1
o()=1~ % (qa)™" = £ (gb)™" + 0(an™").

In the first case (k = 0) all is done since there are no a;’s, and r may be chosen arbitrarily
near to R.

Let us turn to the second case (k = 1). We put ¢:= lrgi_r<11 |b;| if there are zeros b;, and
=J=

exp (—2mia;) where 0 <a; <1

¢:= r otherwise. Furthermore, put ga; =:e(— ;) (=
e(«;)) = 0. Then we get

and observe that f(q~'e(—«;)) = 0 implies f(q~*

k
om=1—k+ 3 (1—e(na)) +0(q07").

j=1

Dirichlet’s approximation theorem shows that the sum on the right hand side may
become arbitrarily small in absolute value for arbitrarily large n. Since ¢ (n) = 0 for all n, k

must be 1. Thus [ has just one zero of modulus 1/g. This zero must be real and equals
—1/q. Thus

o(m)=1—(=1)"+0(q0™").

Assume now there exist zeros b;. Let b; (1 < j £ m < 1) denote those zeros with modulus
0. Put

{min [b;l, if m<l
r, otherwise .

Further, put b; = ge(— ;) for 1 = j < m. Then we have

o) = 1= (=17 = @)™ £ e(nf) + 0((ae) ™).

and therefore

6(2n) = —(q0)”*" <m + il (e(nf;) - 1)> +0((qe)™*").

)
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Dirichlet’s approximation theorem will again produce a contradiction since ¢ (2n) is
always = 0. Thus we get

o) =1—-(=1)"+0(qn™").

But r may be chosen arbitrarily close to R.
This ends the proof of Theorem 1.
Mobius’s inversion formula gives

1
3) n(n) = 2 u(n/d)q' o (d).

din

We use

n

2 =10+ 0"
and obtain a simple form of the abstract prime number theorem.

Corollary 1. Let (G, P, §) be an additive arithmetical semigroup satisfying Axiom A*.
Then there exist some 0, max {1/2, v} < 0 < 1, such that either

w) =L+ 0(g"

or
m() = (1= (= 1)+ 0(g")

holds. The first alternative takes place if and-only if the associated zeta-function has no
zero on the circle |z| = 1/q. ‘

Remarks. 1) Theorem 1 and Formula (3) give of course a more exact prime number
theorem than Corollary 1 with a remainder term of order O(g®") where 6 = v + ¢ for
every 0 < ¢ <1 — v, and the constant in O(.) may depend on e.

2) It is clear how a prime number theorem with remainder term O(q%") implies
Axiom A* with v > 6. In [2] a new Axiom A* has been introduced which is equivalent
to an exact formula for n(n).

3. Here we consider some examples. To begin with we observe that

ogf(z) = ¥ (S dn(@) = (2] < 1/g)

n=1 djn h

n(n)z" + h(z),
1

]
M 8

n

where h is holomorphic for |z| < R:= q~ /2.
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Now, put
ny (n):= [¢"/n]

n,(n):=[¢q"/n — b"/n] where q"/* < b <q,
[24"/n] 1f nis odd,
ny(n):=

0 if niseven.

(Additive arithmetical semigroups with prescribed n(n) can easily be constructed.)
For the corresponding zeta functions f, f, and f;, respectively, we find

fi2) = —1— H,(),

fz (z) =

(2),

+ qz
H3(Z)9

f3(@) =

where H;(z) is holomorphic and #0 for [z] < R (j =1, 2, 3).
f, and f2 are examples for the first case in Theorem 1, whereas f; is an example for the
second case.

Remark. We observe that H,(z) has the form

14 gz*\Y* .
H3(Z)=<1_q22) H,(z),

where f, (z) is holomorphic and different from zero in the closed disc |z| < ¢~ '/%.

4. A necessary condition for the zeta function f (z) having a zero at — g~ ' is given in

Theorem 2. Assume (2) and (V) with R = q~ "2, and let n(n)e Ny for all n. Then, if
f(=q~ 1) =0, we have

) f(=x)>1/0 —q'?x) for x - q~'?, 0<x<gq '2.

Proof. For |z| < 1/q we have

f@f(=2)=4g(2) [z

[o'e] 1 n\ n(n)
g(2):= II ( ”n) .

n=1 1 - Z
neven

Since g is holomorphic for |z| g 1/q and g(0) = 1 we have the power series expansion

where

g(z) = g 2" (lz] < 1/q).

() *
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Because of

{ 42" o
(4 Y
k=0

1—-2z

and n (n) € N, all factors in the infinite product for g have coefficients from N,,. Therefore
the c,’s are also elements of N,. In particular they are all nonnegative.
The function

F(z):=

is holomorphic for |z| < R.
Further the function f (z%) is holomorphic and # O for |z| < q 2. Since R = q~ /% the
function g is holomorphic for |z] < g~/ because of

f@f(—2) _F@)F(-2)
/@) f@

Therefore the power series expansion of g introduced above holds still true for
|z| < g~ 2. Thus we obtain

g(z) =

g(x)=1 for 0<x<q V2,
which implies

fERf(=x)2f(x*) for 0=x<q "2
Since f (z%) has a pole of order one at g~ /> we see

f(xH)>1/1 —q'%x) for 0<x<q V2.

This ends the proof of Theorem 2.

Corollary 2. Under the assumptions of Theorem 2 the following holds: If
FOf (=0 =o0(ift —g"?x) asx g%, 0<x< q ',
then f has no zeros on the circle |z| = 1/q.
Remark. The above example f;(z) shows that Corollary 2 is sharp, for

1 +qz®
1 —gqz?

L@ f3(=2)= FI3(z)I-I3(—z)

where H, (z) is holomorphic and =0 for |z| < 4~ V2.
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