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Ramūnas Garunkštis and Andrius Grigutis

Vilnius University

Naugarduko 24, LT-03225 Vilnius, Lithuania

E-mail: ramunas.garunkstis@mif.vu.lt

E-mail(corresp.): andrius.grigutis@mif.stud.vu.lt

Received August 29, 2011; revised January 3, 2012; published online April 1, 2012

Abstract. We investigate the distribution of zeros of the Lerch transcendent func-
tion Φ(q, s, α) =

∑∞
n=0 q

n(n+α)−s. We find an upper and lower estimates of zeros of
the function Φ(q, s, α) in any rectangle {s : σ1 < Re s < σ2 ≤ 1.73 . . . , 0 < Im s ≤ T}.
Further we are interested in a computer calculations concerning the zeros of Φ(q, s, α)
in {s : Re s > 1, 0 < Im s ≤ 1000}.
Keywords: polylogarithm, Lerch transcendent, zero distribution.
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1 Introduction

Let s = σ + it denotes a complex variable. The Lerch transcendent function is
the analytic continuation of the series

Φ(q, s, α) =

∞∑
n=0

qn(n+ α)−s,

which converges for any real number α > 0 if q and s are complex numbers with
either |q| < 1, or |q| = 1 and σ > 1. Here we consider Φ(q, s, α) as a function
of s with the parameters q ∈ C, 0 < |q| ≤ 1, and 0 < α ≤ 1. Special cases
include the Riemann zeta-function ζ(s) = Φ(1, s, 1), the Hurwitz zeta-function
ζ(s, α) = Φ(1, s, α), the polylogarithm function Lis(q) = qΦ(q, s, 1), and the
Lerch zeta-function L(λ, α, s) = Φ(exp(2πiλ), s, α).

The Riemann zeta-function has no zeros in the right-half-plane σ ≥ 1. In
the left-half-plane σ ≤ 0 it has only trivial zeros at even negative integers. The
famous Riemann hypothesis (RH) asserts that the remaining, nontrivial, zeros
lie on the critical line σ = 1/2.

The Hurwitz zeta-function ζ(s, α) has infinitely many zeros in 1 < σ < 1+α
if α is transcendental or rational �= 1/2, 1 (Davenport and Heilbronn [2]). This
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246 R. Garunkštis and A. Grigutis

result was extended by Cassels [1] for α algebraic irrational. Let 1/2 < σ1 <
σ2 < 1. Then Voronin [16] (for rational α �= 1/2, 1) and Gonek [10] (for
transcendental α) proved that the number of zeros of ζ(s, α) in the rectangle
σ1 < σ < σ2, 0 < t < T is approximately equal to T for sufficiently large T .
Gonek [11] also showed that for certain values of α the proportion of zeros of
ζ(s, α) on σ = 1/2 is definitely less than 1. In the complex s-plane trajectories
of zeros ρ = ρ(α) of the Hurwitz zeta function were considered in [8] and [9].
Based on these trajectories, the classification of nontrivial zeros of the Riemann
zeta function were introduced. For the zero distribution of the Lerch zeta-
function see [4, 5, 6, 7, 12].

Fornberg and Kölbig [3] investigated trajectories of zeros ρ = ρ(q) of the
polylogarithm function Lis(q) for real q with |q| < 1. They found that some
trajectories tend towards the zeros of ζ(s) as q → −1, and approach these zeros
closely as q → 1− δ for small but finite δ > 0. However, the later trajectories
appear to descend to the point s = 1 as δ → 0. Both, for q → −1 and q → 1,
there are trajectories which do not tend towards zeros of ζ(s).

Next we consider the zeros of Φ(q, s, α) for 0 < α < 1 and q ∈ C, 0 < |q| < 1.
Let NΦ(σ1, σ2, T ) = NΦ(σ1, σ2, T, q, α) denote the number of zeros of Φ(q, s, α)
in the region {s : σ1 < Re s < σ2, 0 < Im s ≤ T}. Let σ0 = σ0(q, α) be a real
number defined by the equality

∞∑
n=1

|q|n
(n/α+ 1)σ0

= 1.

It is easy to see that σ0 ≤ c = 1.73 . . . , where ζ(c) =
∑∞

n=1 n
−c = 2, and that

σ0 can take any value between −∞ and c.

Theorem 1. Let q ∈ C, 0 < |q| < 1. Let 0 < α < 1 be a transcendental
number. Then we have that, for any fixed strip σ1 < σ < σ2 ≤ σ0,

T � NΦ(σ1, σ2, T )� T

and Φ(q, s, α) has no zeros for σ > σ0.

The theorem is proved in Section 3.

Wiener and Wintner [17, Section 4] pointed to a possible relationship be-
tween the behaviour of the zeros in the right-half-plane σ > 1 of the polyloga-
rithm function and the Riemann Hypothesis. They proved that the Riemann
Hypothesis is true if there exists a number 0 < ε < 1 such that

∑∞
n=1 q

nn−s �= 0
for σ > 1 and 1− ε < q < 1. However, Montgomery [13] pointed that the poly-
logarithm function Lis

(
e−1/N

)
has zeros in the region σ > 1 for all sufficiently

large integers N , making Wiener and Winter theorem vacuous. Theorem 1
shows that the Lerch transcendent function Φ(q, s, α) also has zeros in the re-
gion σ > 1 for 0.92 < q < 1 and transcendental α, 1/2 < α < 1. In the next
section, we try to find explicit zeros in σ > 1. We see that it is relatively easy
to find zeros if α �= 1. In the case α = 1 the zeros in the right half-lane, σ > 1
currently are out of reach.
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Zeros of the Lerch Transcendent Function 247

2 Calculations

The calculations of this section were done with programme MATHEMATICA.
To calculate the number N of zeros of Φ(q, s, α) inside the contour Γ we have
used the well known formula

N =
1

2πi

∫
Γ

(Φ(q, s, α))′s
Φ(q, s, α)

ds.

If the interior of the contour Γ contains one zero ρ, then we find this zero using
the following expression

ρ =
1

2πi

∫
Γ

s
(Φ(q, s, α))′s
Φ(q, s, α)

ds.

The zero ρ can be adjusted by MATHEMATICA command FindRoot.

Let R = {s : Re s > 1, 0 < Im s ≤ 1000}. In Table 1, we present the
number of zeros of function Φ(q, s, α) for chosen q and α in the region R. For
example, we see that Φ(0.99, s, 0.9) has 34 zeros in R. In Table 1, the last
column describes zeros of the Hurwitz zeta-function, and the last row describes
zeros of the polylogarithm function. In view of Montgomery’s result [13] we
expect that Φ(q, s, 1) has zeros in σ > 1 for q ≥ 0.9. If so, then Table 1 possibly
indicates the different behaviour of zeros of Φ(q, s, α) in σ > 1 dependently on
α = 1 or α �= 1.

Table 1. Number of zeros of the function Φ(q, s, α) in the region R.

α \ q 0.9 0.95 0.99 1

0.9 2 8 34 40

0.95 4 10 37 46

0.99 14 27 41 45

1 0 0 0 0

In Table 2, we present zeros of functions Φ(0.9, s, 0.9), Φ(0.9, s, 0.95),
Φ(0.9, s, 0.99). In this table numbers were rounded up to two decimal places.

3 Proof of Theorem 1

First we formulate theorems of Kronecker and Rouché (see Tichmarsh [15,
Section 8.3] and Tichmarsh [14, Section 3.42]).

Lemma 1 [Kronecker’s theorem]. Let a1, a2, . . . , aN be linearly independent
real numbers, i.e. numbers such that relation λ1a1+ · · ·+λNaN = 0 is possible
only if λ1 = · · · = λN = 0. Let b1, . . . , bN be any real numbers, and ε a given
positive number. Then we can find a number t and integers x1, . . . , xN such
that |tan − bn − xn| < ε, n = 1, . . . , N .

Math. Model. Anal., 17(2):245–250, 2012.
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248 R. Garunkštis and A. Grigutis

Table 2. Coordinates of zeros of the function Φ(q, s, α) in the region R.

Φ(0.9, s, 0.9) Φ(0.9, s, 0.95) Φ(0.9, s, 0.99)

1 1.02 + 550.55i 1.07 + 108.39i 1.05 + 480.29i
2 1.02 + 609.75i 1.01 + 135.21i 1.11 + 525.79i
3 – 1.09 + 169.68i 1.08 + 588.57i
4 – 1.07 + 196.67i 1.06 + 616.03i
5 – – 1.11 + 651.27i
6 – – 1.11 + 696.71i
7 – – 1.13 + 724.38i
8 – – 1.05 + 759.64i
9 – – 1.15 + 787.05i

10 – – 1.02 + 805.00i
11 – – 1.12 + 849.96i
12 – – 1.17 + 895.31i
13 – – 1.09 + 958.10i
14 – – 1.00 + 985.50i

Lemma 2 [Rouché’s theorem]. Suppose that f(s) and g(s) are analytic
functions inside and on a regular closed curve γ, and that |f(s)| > |g(s)| for
all s ∈ γ. Then f(s) + g(s) and f(s) have the same number of zeros inside γ.

The next lemma will be useful in the proof of Theorem 1.

Lemma 3. Let q ∈ C, 0 < |q| < 1, and 0 < α < 1 be a transcendental number.
Let σ′ be a real number. Let a(n) be a sequence of complex numbers such that
|a(n)| = 1. Let Φa(q, s, α) =

∑∞
n=0 a(n)q

n(n+ α)−s. Then for any ε > 0 there
exist τ ∈ R such that ∣∣Φ(q, s+ iτ, α)− Φa(q, s, α)

∣∣ < ε

for Re s ≥ σ′.

Proof. The Dirichlet series of the Lerch transcendent function converges ab-
solutely for any s if |q| < 1. Therefore, for given σ′ there is a positive integer N
such that, for any real number u and σ ≥ σ′,∣∣∣∣ ∞∑

n=N+1

qn

(n+ α)s+iu
−

∞∑
n=N+1

qna(n)

(n+ α)s

∣∣∣∣ ≤ 2
∞∑

n=N+1

|q|n
(n+ α)σ

<
ε

2
. (3.1)

Let A =
∑N

n=0 |q|n/(n+ α)σ
′
. There is a sequence of real numbers b(n) such

that e−2πib(n) = a(n). The numbers log(n + α) are linearly independent over
Q since α is the transcendental number. By Kronecker’s theorem (Lemma 1),
there exist a real number τ and integers xn such that∣∣∣∣τ log(n+ α)

2π
− b(n)− xn

∣∣∣∣ < ε

8πA
.
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Zeros of the Lerch Transcendent Function 249

In view of the inequality |ez − 1| ≤ 2|z|, where |z| < 1, we obtain∣∣(n+ α)−iτ − a(n)
∣∣ = ∣∣e−2πi(τ log(n+α)/2π−b(n)−xn) − 1

∣∣ < ε

2A
.

By above we see that there is τ such that, for Re s ≥ σ′,∣∣∣∣ N∑
n=0

qn

(n+ α)s+iτ
−

N∑
n=0

qna(n)

(n+ α)s

∣∣∣∣ ≤ N∑
n=0

|q|n
(n+ α)σ′

∣∣(n+ α)−iτ − a(n)
∣∣ < ε

2
.

This and inequality (3.1) in view of triangle inequality, prove Lemma 3. �	

Proof of Theorem 1. For fixed q and α the function Φ(q, s, α) is bounded in
any right half-plane, of complex numbers. This together with Theorem 9.62 of
Titchmarsh [14] give the bound

NΦ(σ1, σ2, T )� T.

Further, if the strip σ1 < σ < σ2 contains a zero of Φ(q, s, α) then, arguing
as in Lemma 1 of [4], we get the bound

NΦ(σ1, σ2, T )� T.

Next we will show that the function Φ(q, s, α) has a zero in the strip σ1 <
σ < σ2. We consider an auxiliary function Φa(q, σ, α) =

∑∞
n=0a(n)q

n(n+α)−σ.
For fixed σ, q and α, let V be a set of values taken by Φa(q, σ, α) for independent
a(0), a(1), . . . , where a(n) ∈ C and |a(n)| = 1. If σ < σ0, then by Tichmarsh
[15, Section 11.5, p. 297] we see that

V =

{
z : |z| ≤

∞∑
n=0

|q|n(n+ α)−σ

}
.

Thus for σ1 < σ′ < σ2, q, and α there is a sequence a(1), a(2), . . . , such that
Φa(q, σ

′, α) = 0.
Let 0 < ε′ < min(σ′−σ1, σ2−σ′) be such that Φa(q, s, α) �= 0 for |s−σ′| = ε′.

Let
ε = min

|s−σ′|=ε′

∣∣Φa(q, s, α)
∣∣.

By Lemma 3 there is a real shift τ such that∣∣Φ(q, s+ iτ, α)− Φa(q, s, α)
∣∣ < ε

for Re s ≥ σ1. Hence Rouché’s theorem gives that Φ(q, s, α) has a zero in the
disk |s − σ′ − iτ | < ε′, which is contained in the strip σ1 < σ < σ2. By this
Theorem 1 is proved. �	

4 Conclusions

Let 0 < q < 1 and 1/2 < α ≤ 1. We expect that the Lerch transcendent
function Φ(q, s, α) has zeros in Re s > 1, if q is sufficiently near to 1. For
α = 1 this is due to Montgomery [13]. Here we prove the case when α is a
transcendental number. However, computer calculations indicate the different
behaviour of zeros of Φ(q, s, α) in Re s > 1 dependently on α = 1 or α �= 1.

Math. Model. Anal., 17(2):245–250, 2012.
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[12] A. Laurinčikas and R. Garunkštis. The Lerch Zeta-Function. Kluwer Academic
Publishers, 2002.

[13] H.L. Montgomery. Zeros of approximations to the zeta function. In Stud. Pure
Math., pp. 497–506. Birkhäuser, Basel, 1983.
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