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Abstract: In this paper, we continue the research on limit theorems for the Lerch zeta-
function L(\, a, 1/2+it) when the pair of parameters (\, «) are near to (0,0), (0,1/2),
(0,1), (1/2,0) and (1,0).
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1. INTRODUCTION
Denote by

1 T
(I)(.I') = E/ €_t2/2dt

the standard normal distribution function. As usual, let s = o + it be a complex variable.
For 0 < A <1and0< «a <1, the Lerch zeta-function is given by

OO e2ﬂ'i>\n
L\ a,s) =) ——— (0>1),
—~ (n+a)

and by analytic continuation elsewhere. For more information see [4].
In [3] we proved the following statement. Let £ be a positive fixed number, as small as we
want. Let

i) 1-T ' < <l—e ™8T o X=1 or [A—1/2/<T '
and
1-T""<a<l or |a—-1/2[<T '
ii) 1—e /el < )\ <]
and

1-T 1 <a<1l or |a—1/2/<T '~
If we assume i), then

1 log |L(\, o, 1/2 + it
(1) lim —meas< ¢ € [0,7]: og|L(\ o 1/2+ i)l <xp=(x).
T—oo T V2 1loglog T

If we assume ii), then

1 log |L(\, o0, 1/2 4 1t) — E(A\, a,t
(2) lim —meas<te[0,7]: og|L(\ e 1/2 + ) Ao )l <z =d(x),
T—oo T V2 loglog T
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where

it
2 3mi -t
E\ a,t)=— (%) exp {it + %Z —2mida + 27Tia} = f)\})l/Qit'

Similar limit theorems were obtained for arg L(A, a, 1/2 + it).

In this paper we prove limit theorems for the Lerch zeta-function L(\, a, 1/2 + it) when
the pair of parameters (A, a) are near to (0,0), (0,1/2), (0,1), (1/2,0) and (1,0). For a
clarity, we set up a table of 9 different pairs of (A, «):

(0,0) | (1/2,0) | (1,0)
(0,1/2) | (1/2,1/2) | (1,1/2)

01 | (/21 | (11
In [3] we investigated the limit laws when (A, ) are near to (1,1), (1,1/2), (1/2,1) and
(1/2,1/2). In this paper, we deal with 5 remaining cases from the table above.

When (A, ) are exactly (1,1), (1,1/2), (1/2,1) or (1/2,1/2) we have
(3) L(1,1,s) =((s), L(1,1/2,5) = (2° = 1)(s),
L2, 1, 8) = (1- 279)C(s), and L(1/2,1/2,5) = 2L(s, x),

where ((s) denotes the Riemann zeta-function, L(s, y) the Dirichlets L-function and y is a
Dirichlet character mod 4 with y(3) = —1. Only in these four cases (excluding periodicity
by A) the Lerch zeta-function has an Euler product. In the forties of the last century A.
Selberg proved the following limit theorem

lim %meas {t €[0,7]: log |6(1/2 + i) < x} = O(x)

T—oo V27t loglog T

The proof of the limit theorem for the Riemann zeta-function relies on the Euler product
and it is not clear whether limit theorems can be obtained for all Lerch zeta-functions, since
in general the Lerch zeta-function has no Euler product.

First we consider limit theorems for log |L(A, v, 1/2 + it)|. We use notation

vr(...) =T 'meas{t € [0,T]: ...},

where in place of dots we mean some condition satisfied by t. By e we always denote a
positive fixed number, which can be as small as we want.

If the parameter X\ is “very” close to 0 or 1 and « is “very” close to 0, then the Lerch
zeta-function becomes “very” large. From the approximation by a finite sum (see the
next section) we have that

—mt

e 1 1
et =+ —=+
1={AD2 VX Ve

uniformly for 0 < A, < 1, as t — oo, where {\} denotes the fractional part of the number

A. Accordingly we can remove these large terms and obtain central limit theorems when A
is “very” close to 0 or 1 and « is “very” close to 0. Let

it
27 mi . 1
A()\, a, t) = <7> exXp {Zt -+ Z — QWZA@}W.

|L(\, a, 1/2 +it)| = O (t'*)
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and

—mt

it
2 3mi
E\ at)=— <77r> exp {it + % — 2miAa + 27m'oz} i E)\})l/Q_it.

Counsider the cases:

2) 0<)\§W and 1_—T(10g1T)1+€§a§1’
b) 0<)\§W and |O£—1/2|SWJ
c) 0<)\§W and O<QSW’

1
d) |)\_1/2‘§W and O<QSW,
Yy 1T 0o
£) 1—e T/leT < X\ <1 and 0<QSW-

Theorem 1. If we assume a) or b) then

log |L(\, o, 1/2 4+ it) — A(X\, o, 1) o
V2 1loglog T

(4) lim vp

T—o00

= d(z).
If we assume c) then

oy _ 1/2+it
log [L(\, o, 1/2 +it) = A\ a,t) = 1/l 2] ) B(z).
2-1loglog T

lim vp
T—o0

If we assume d) or e) then
<1Og |L(\, a,1/2 +it) — 1/al/?+

V2 toglog T

lim vp

T—oo

< x) = O(x).
If we assume f) then

AN -1 1/2+it
b vy <log|L(/\,oz,1/2+zt) E(\0) — 1/al/2] m) _ o)

V2 toglog T

For cases from a) to f), similar theorems can be formulated for arg L(\, o, 1/2 4 it). We
formulate only one example below.

T—o0

Theorem 2. If we assume a), then

arg(L(A, o, 1/2 4 it) — A(A, a, 1)) <z |=o(x)
V2 Tloglog T |

As an interesting fact we note that L(0,a,1/2 4+ it) = L(1,,1/2 + it), but limit laws
differs when A tends to 0 and 1, compare equalities and .

The limit laws (1) and (2)) remains true if in the conditions i) and ii) we replace T~'¢ by
1/T(log T)'*¢. Theorems are proved in the next section.

lim vy
T—o00
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2. PROOFs
First we formulate several lemmas and later derive theorems.
Lemma 3. For (A, «) equal to (0,1), (0,1/2), we have that
zlgrolo vr <log|\ﬁ%zt)| < a:) = d(z).

Proof. Since L(0, o, s) = L(1, , s), the proof follows from Lemma 2.1 in [3].

O

Similarly as in [I], Lemmal3|can be extended to arg L(\, o, 1/2+it). The following lemma
will be needed also for Theorem [I

Lemma 4. If a sequence of distribution functions F,(x) converges weakly to continuous
distribution function F(x), then this convergence is uniform in r, —oo < x < Q.

Proof. The proof of lemma can be found in Petrov [5]. O

We consider how close are two Lerch zeta-functions if their parameters are also close.
Recall that

it
2 37
E\ a,t) = — (%T) exp {it + % — 2mida + 27rioz}

—mnt

(=P

it
2 LT . 1
A()\, Oé,t) = <7> exXp {Zt -+ Z — 271'1)\0[}m.

Lemma 5. Let 0 < A\, Mo, a1, a0 < 1. Let T — 0o and max {|\; — Ao, |a; — an|} < T73/4.
Then

and

L()\la aq, 1/2 + ZT) — E()\1’ a1, T) — A<)\17 i, T) _ 041*1/277;'1—'
— L(X2,02,1/2+iT) + E(Ag, 00, T) + AAg, 02, T) + ay 277
< T (M = Aol + |y — ag]) + TV,
Proof. The Lerch zeta-function can be approximated by a finite sum. We have (see Garunkstis
[2]) that
627ri/\n
(5) Lo, 1/2+it)= Y.

(n + o) /2 +it
0<n</t/27

o it . i . e 2mian e—7rt+m'/2+27ria
+ (7> exp {lt + T 27”)\04} ( Z (n—+ >\)1/2—it o (1— {)\})1/2-#)

0<n<y/t/27

+O0(t™
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uniformly in A and o, 0 < A\, < 1. Thus
L\, a1,1/2+iT) — E(M, a1, T) — A, 00, T) — al—l/Q—iT
— L(Aa, a0, 1/2 4 iT) + E(As, 02, T) + AAg, 0, T) + 0y /27

(6) < Z 627Ti)\1n(n + a2)1/2+iT _ e27ri/\2n(n + a1)1/2+iT
et (fn+ ax){n T az)) Voo
Z 6—27ri(a1n+a1)\1)<n + )\Q)I/Q—iT _ e—2wi(a2n+a2)\2)(n + )\1)1/2—7:T
+ -
o (0 + M) (0 + Ag) 2T

+O(T V4 .= A+ B+ O(T™ V4.
We consider the first sum in formula @

‘ . . o — o\ /2T
A= Z (n + 041)71/272T€27r1)\1n (1 - eQﬂ'Z’n(Agf)\l) (1 + n1+ a22) )

1<n<VT

< Y (nta) (1 — exp{2min(s — M)} exp { (% + iT) log (1 + Zf(f) })

1<n<VT

By Taylor expansion of functions e” and log x we obtain

Tloy —
A<< Z (n+oz1)_1/2<n|)\2—)\1\+M+T|)\2—)\1||a2—a1|).
n 4+ Qo
1<n<VT
The bounds
Z n? <« T34, Z n3? < 0o and Z n~1? < T4
1<n<VT 1<n<yV/T 1<n<VT
leads to

A TNy — M|+ Tlag — on| + T4 Ao — M||oe — .
Similarly, we derive that the second sum in formula @ is
B <T**ay — o] + T)ha — M| + T4 aghy — ag]
+ T4 g — Ail|ae — au| + Tlads — anhi||Aa — M.
The lemma is proved. O

Proof of Theorem [1]

We proof only the case a), where (A, «), depending on T, is close to (0,1). Remaining
cases are analogous. Recall that L(0,1,1/2 +it) = ((1/2 +it).
If |C(1/2 +it)| # 0, then
log |[L(\, a, 1/2 +it) — AN, o, t)]
|IL(\, o, 1/2 4+ dt) — AN — [¢(1/2 + zt)|>
C(L2+ i) |

= log|¢(1/2 + it)| + log (1 +
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From the last equality we see that log | L(\, «, 1/24it) —A(\, a, t)| is “near” to log |((1/2+1it)|
if [¢(1/2 + it)] is not very “small”. We expect that there are “not many” ¢ for which
|C(1/2 + it)| is very “small”. For this reason we choose some monotone function K(7'),
which satisfies the following conditions:

K(T)— 400 as T — 400 and K(T)< +/loglogT.

Accordingly, we divide the interval [0,7] in to two intervals: [0,7/K(T)) and [T'/K(T),T].
The second interval we divide in to two subsets

T = {t e [T/K(T),T] : 1?5%‘ < —K(T)}

and
Ir={te[T/K(T),T):t& Jr}.

By Lemma (4] (recall that ®(x) denotes the standard normal distribution function) we see
that

1 _, log|C(1/2+4t)] 5
TmeaS{JT} =vr ( V2 Togloa T < K(T)) +o(1)

—& (~K(T)) + o(1) = o(L),

as T — oo.
For t € I, we have

log [L(\, a, 1/2 + it) — A(\, a, t)|

. e IL(A, @, 1/2 + it) — A(N) — ¢(1/2 + it)]
= log |¢(1/2 + it)| 4 log (HO( 1C(1/2 + it)]| ))

Since t € I, by Lemma 5| we see that

L\, @, 1/2 + it) — A(\) — ¢(1/2 + it)|
C(1/2 + it)]
< exp (K(T)\/log log T) ’L(/\, a,1/2 4 it) — A(\) — ¢(1/2 + it)’

< exp (K(T)\/loglog T <exp (— i) (1= {A) Y24+ TA+Tla—1]+ <@>1/4)

K(T) T

loglog T\ '/*
< logT<exp (—T/loglogT) + (logT) "= + (%) ) < o(1).

And finally, for t € Iy, we have

log |[L(\, o, 1/2 4+ it) — A\, o, )| =log|C(1/2 + it)| + o(1).
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Now we can finish the proof. As T'— oo, we obtain that

. <log L /24 it) — AN t)] _ x)

log |[L(A\ o, 1/2 +it) — AN, a, t)]
log |[L(\, o, 1/2 +it) — A\, o, 1)
log |[L(\, o, 1/2 +it) — A(X\, o, t)|
2-tloglog T

log |¢(1/2 + t)| +o(l)<a}+0 <lmeas{t c JT}) +0o(1)
V2T loglog T T
B <1og 1C(1/2 +it)]
= up

O

Proof of Theorem [2]is similar to the proof of Theorem[I] Note that Lemma[3]and proof of
Theorem 1| can be rewritten for arg L(\, v, 1/2 + it) (see the note after the proof of Lemma

)

<z}

1
= Tmeas{t € [0,T/K(T))

1
+ ?meas{t €lr: < x}

<} +o(l)

1
+ ?meas{t € Jr:

1
= Tmeas{t €lr:

<z+ 0(1)) +o(1) =@ (x) + o(1).

O
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