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Abstract: In this paper, we continue the research on limit theorems for the Lerch zeta-
function L(λ, α, 1/2+it) when the pair of parameters (λ, α) are near to (0, 0), (0, 1/2),
(0, 1), (1/2, 0) and (1, 0).
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1. Introduction

Denote by

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt

the standard normal distribution function. As usual, let s = σ + it be a complex variable.
For 0 ≤ λ ≤ 1 and 0 < α ≤ 1, the Lerch zeta-function is given by

L(λ, α, s) =
∞∑
n=0

e2πiλn

(n+ α)s
(σ > 1),

and by analytic continuation elsewhere. For more information see [4].
In [3] we proved the following statement. Let ε be a positive fixed number, as small as we

want. Let

i) 1− T−1−ε < λ < 1− e−T/ log T or λ = 1 or |λ− 1/2| < T−1−ε

and
1− T−1−ε < α ≤ 1 or |α− 1/2| < T−1−ε;

ii) 1− e−T/ log T ≤ λ < 1

and
1− T−1−ε < α ≤ 1 or |α− 1/2| < T−1−ε.

If we assume i), then

lim
T→∞

1

T
meas

{
t ∈ [0, T ] :

log |L(λ, α, 1/2 + it)|√
2−1 log log T

< x

}
= Φ(x).(1)

If we assume ii), then

lim
T→∞

1

T
meas

{
t ∈ [0, T ] :

log |L(λ, α, 1/2 + it)− E(λ, α, t)|√
2−1 log log T

< x

}
= Φ(x),(2)

1
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where

E(λ, α, t) = −

(
2π

t

)it

exp

{
it+

3πi

4
− 2πiλα + 2πiα

}
e−πt

(1− {λ})1/2−it .

Similar limit theorems were obtained for argL(λ, α, 1/2 + it).
In this paper we prove limit theorems for the Lerch zeta-function L(λ, α, 1/2 + it) when

the pair of parameters (λ, α) are near to (0, 0), (0, 1/2), (0, 1), (1/2, 0) and (1, 0). For a
clarity, we set up a table of 9 different pairs of (λ, α):

(0,0) (1/2,0) (1,0)
(0,1/2) (1/2,1/2) (1,1/2)
(0,1) (1/2,1) (1,1)

In [3] we investigated the limit laws when (λ, α) are near to (1, 1), (1, 1/2), (1/2, 1) and
(1/2, 1/2). In this paper, we deal with 5 remaining cases from the table above.

When (λ, α) are exactly (1, 1), (1, 1/2), (1/2, 1) or (1/2, 1/2) we have

L(1, 1, s) = ζ(s), L(1, 1/2, s) = (2s − 1)ζ(s),(3)

L(1/2, 1, s) = (1− 21−s)ζ(s), and L(1/2, 1/2, s) = 2sL(s, χ),

where ζ(s) denotes the Riemann zeta-function, L(s, χ) the Dirichlets L-function and χ is a
Dirichlet character mod 4 with χ(3) = −1. Only in these four cases (excluding periodicity
by λ) the Lerch zeta-function has an Euler product. In the forties of the last century A.
Selberg proved the following limit theorem

lim
T→∞

1

T
meas

{
t ∈ [0, T ] :

log |ζ(1/2 + it)|√
2−1 log log T

< x

}
= Φ(x)

The proof of the limit theorem for the Riemann zeta-function relies on the Euler product
and it is not clear whether limit theorems can be obtained for all Lerch zeta-functions, since
in general the Lerch zeta-function has no Euler product.

First we consider limit theorems for log |L(λ, α, 1/2 + it)|. We use notation

νT (. . . ) = T−1meas{t ∈ [0, T ] : . . . },

where in place of dots we mean some condition satisfied by t. By ε we always denote a
positive fixed number, which can be as small as we want.

If the parameter λ is “very” close to 0 or 1 and α is “very” close to 0, then the Lerch
zeta-function becomes “very” large. From the approximation by a finite sum (5) (see the
next section) we have that

|L(λ, α, 1/2 + it)| = e−πt

(1− {λ})1/2
+

1√
λ

+
1√
α

+O
(
t1/4
)

uniformly for 0 < λ, α ≤ 1, as t→∞, where {λ} denotes the fractional part of the number
λ. Accordingly we can remove these large terms and obtain central limit theorems when λ
is “very” close to 0 or 1 and α is “very” close to 0. Let

Λ(λ, α, t) =

(
2π

t

)it

exp

{
it+

πi

4
− 2πiλα

}
1

λ1/2−it .
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and

E(λ, α, t) = −

(
2π

t

)it

exp

{
it+

3πi

4
− 2πiλα + 2πiα

}
e−πt

(1− {λ})1/2−it .

Consider the cases:

a)
0 < λ ≤ 1

T (log T )1+ε
and 1− 1

T (log T )1+ε
≤ α ≤ 1,

b)
0 < λ ≤ 1

T (log T )1+ε
and |α− 1/2| ≤ 1

T (log T )1+ε
,

c)
0 < λ ≤ 1

T (log T )1+ε
and 0 < α ≤ 1

T (log T )1+ε
,

d)
|λ− 1/2| ≤ 1

T (log T )1+ε
and 0 < α ≤ 1

T (log T )1+ε
,

e)
1− 1

T (log T )1+ε
≤ λ < 1− e−T/ log T and 0 < α ≤ 1

T (log T )1+ε
,

f)
1− e−T/ log T ≤ λ < 1 and 0 < α ≤ 1

T (log T )1+ε
.

Theorem 1. If we assume a) or b) then

lim
T→∞

νT

(
log |L(λ, α, 1/2 + it)− Λ(λ, α, t)|√

2−1 log log T
< x

)
= Φ(x).(4)

If we assume c) then

lim
T→∞

νT

(
log |L(λ, α, 1/2 + it)− Λ(λ, α, t)− 1/α1/2+it|√

2−1 log log T
< x

)
= Φ(x).

If we assume d) or e) then

lim
T→∞

νT

(
log |L(λ, α, 1/2 + it)− 1/α1/2+it|√

2−1 log log T
< x

)
= Φ(x).

If we assume f) then

lim
T→∞

νT

(
log |L(λ, α, 1/2 + it)− E(λ, α)− 1/α1/2+it|√

2−1 log log T
< x

)
= Φ(x).

For cases from a) to f), similar theorems can be formulated for argL(λ, α, 1/2 + it). We
formulate only one example below.

Theorem 2. If we assume a), then

lim
T→∞

νT

(
arg(L(λ, α, 1/2 + it)− Λ(λ, α, t))√

2−1 log log T
< x

)
= Φ(x).

As an interesting fact we note that L(0, α, 1/2 + it) = L(1, α, 1/2 + it), but limit laws
differs when λ tends to 0 and 1, compare equalities (1) and (4).

The limit laws (1) and (2) remains true if in the conditions i) and ii) we replace T−1−ε by
1/T (log T )1+ε. Theorems are proved in the next section.
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2. Proofs

First we formulate several lemmas and later derive theorems.

Lemma 3. For (λ, α) equal to (0, 1), (0, 1/2), we have that

lim
T→∞

νT

(
log |L(λ, α, 1/2 + it)|√

2−1 log log T
< x

)
= Φ(x).

Proof. Since L(0, α, s) = L(1, α, s), the proof follows from Lemma 2.1 in [3].
�

Similarly as in [1], Lemma 3 can be extended to argL(λ, α, 1/2+ it). The following lemma
will be needed also for Theorem 1.

Lemma 4. If a sequence of distribution functions Fn(x) converges weakly to continuous
distribution function F (x), then this convergence is uniform in x, −∞ < x <∞.

Proof. The proof of lemma can be found in Petrov [5]. �

We consider how close are two Lerch zeta-functions if their parameters are also close.
Recall that

E(λ, α, t) = −

(
2π

t

)it

exp

{
it+

3πi

4
− 2πiλα + 2πiα

}
e−πt

(1− {λ})1/2−it

and

Λ(λ, α, t) =

(
2π

t

)it

exp

{
it+

πi

4
− 2πiλα

}
1

λ1/2−it .

Lemma 5. Let 0 < λ1, λ2, α1, α2 ≤ 1. Let T →∞ and max {|λ1 − λ2|, |α1 − α2|} � T−3/4.
Then

L(λ1, α1, 1/2 + iT )− E(λ1, α1, T )− Λ(λ1, α1, T )− α−1/2−iT
1

− L(λ2, α2, 1/2 + iT ) + E(λ2, α2, T ) + Λ(λ2, α2, T ) + α
−1/2−iT
2

� T (|λ1 − λ2|+ |α1 − α2|) + T−1/4.

Proof. The Lerch zeta-function can be approximated by a finite sum. We have (see Garunkštis
[2]) that

L(λ, α, 1/2 + it) =
∑

0≤n≤
√
t/2π

e2πiλn

(n+ α)1/2+it
(5)

+

(
2π

t

)it
exp

{
it+

πi

4
− 2πiλα

}( ∑
0≤n≤
√
t/2π

e−2πiαn

(n+ λ)1/2−it −
e−πt+πi/2+2πiα

(1− {λ})1/2−it

)
+O(t−1/4)
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uniformly in λ and α, 0 < λ, α ≤ 1. Thus

L(λ1, α1, 1/2 + iT )− E(λ1, α1, T )− Λ(λ1, α1, T )− α−1/2−iT
1

− L(λ2, α2, 1/2 + iT ) + E(λ2, α2, T ) + Λ(λ2, α2, T ) + α
−1/2−iT
2

�

∣∣∣∣∣∣
∑

1≤n≤
√
T

e2πiλ1n(n+ α2)
1/2+iT − e2πiλ2n(n+ α1)

1/2+iT

((n+ α1)(n+ α2))1/2+iT

∣∣∣∣∣∣(6)

+

∣∣∣∣∣∣
∑

1≤n≤
√
T

e−2πi(α1n+α1λ1)(n+ λ2)
1/2−iT − e−2πi(α2n+α2λ2)(n+ λ1)

1/2−iT

((n+ λ1)(n+ λ2))1/2−iT

∣∣∣∣∣∣
+O(T−1/4) := A+B +O(T−1/4).

We consider the first sum in formula (6).

A =
∑

1≤n≤
√
T

(n+ α1)
−1/2−iT e2πiλ1n

(
1− e2πin(λ2−λ1)

(
1 +

α1 − α2

n+ α2

)1/2+iT)

�
∑

1≤n≤
√
T

(n+ α1)
−1/2

(
1− exp{2πin(λ2 − λ1)} exp

{(
1

2
+ iT

)
log

(
1 +

α1 − α2

n+ α2

)})
.

By Taylor expansion of functions ex and log x we obtain

A�
∑

1≤n≤
√
T

(n+ α1)
−1/2

(
n|λ2 − λ1|+

T |α2 − α1|
n+ α2

+ T |λ2 − λ1||α2 − α1|
)
.

The bounds ∑
1≤n≤

√
T

n1/2 � T 3/4,
∑

1≤n≤
√
T

n−3/2 <∞ and
∑

1≤n≤
√
T

n−1/2 � T 1/4

leads to

A� T 3/4|λ2 − λ1|+ T |α2 − α1|+ T 5/4|λ2 − λ1||α2 − α1|.

Similarly, we derive that the second sum in formula (6) is

B �T 3/4|α2 − α1|+ T |λ2 − λ1|+ T 1/4|α2λ2 − α1λ1|
+ T 5/4|λ2 − λ1||α2 − α1|+ T |α2λ2 − α1λ1||λ2 − λ1|.

The lemma is proved. �

Proof of Theorem 1

We proof only the case a), where (λ, α), depending on T , is close to (0, 1). Remaining
cases are analogous. Recall that L(0, 1, 1/2 + it) = ζ(1/2 + it).

If |ζ(1/2 + it)| 6= 0, then

log |L(λ, α, 1/2 + it)− Λ(λ, α, t)|

= log |ζ(1/2 + it)|+ log

(
1 +
|L(λ, α, 1/2 + it)− Λ(λ)| − |ζ(1/2 + it)|

|ζ(1/2 + it)|

)
.
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From the last equality we see that log |L(λ, α, 1/2+it)−Λ(λ, α, t)| is “near” to log |ζ(1/2+it)|
if |ζ(1/2 + it)| is not very “small”. We expect that there are “not many” t for which
|ζ(1/2 + it)| is very “small”. For this reason we choose some monotone function K(T ),
which satisfies the following conditions:

K(T )→ +∞ as T → +∞ and K(T )�
√

log log T .

Accordingly, we divide the interval [0, T ] in to two intervals: [0, T/K(T )) and [T/K(T ), T ].
The second interval we divide in to two subsets

JT =

{
t ∈ [T/K(T ), T ] :

log |ζ(1/2 + it)|√
2−1 log log T

< −K(T )

}

and

IT = {t ∈ [T/K(T ), T ] : t 6∈ JT} .

By Lemma 4 (recall that Φ(x) denotes the standard normal distribution function) we see
that

1

T
meas{JT} =νT

(
log |ζ(1/2 + it)|√

2−1 log log T
< −K(T )

)
+ o(1)

=Φ (−K(T )) + o(1) = o(1),

as T →∞.
For t ∈ IT , we have

log |L(λ, α, 1/2 + it)− Λ(λ, α, t)|

= log |ζ(1/2 + it)|+ log

(
1 +O

(
|L(λ, α, 1/2 + it)− Λ(λ)− ζ(1/2 + it)|

|ζ(1/2 + it)|

))
Since t ∈ IT , by Lemma 5 we see that

|L(λ, α, 1/2 + it)− Λ(λ)− ζ(1/2 + it)|
|ζ(1/2 + it)|

� exp
(
K(T )

√
log log T

)∣∣∣L(λ, α, 1/2 + it)− Λ(λ)− ζ(1/2 + it)
∣∣∣

� exp
(
K(T )

√
log log T

)(
exp

(
− πT

K(T )

)
(1− {λ})−1/2 + Tλ+ T |α− 1|+

(
K(T )

T

)1/4
)

� log T

(
exp

(
− T/ log log T

)
+ (log T )−1−ε +

(
log log T

T

)1/4
)
� o(1).

And finally, for t ∈ IT , we have

log |L(λ, α, 1/2 + it)− Λ(λ, α, t)| = log |ζ(1/2 + it)|+ o(1).
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Now we can finish the proof. As T →∞, we obtain that

νT

(
log |L(λ, α, 1/2 + it)− Λ(λ, α, t)|√

2−1 log log T
< x

)

=
1

T
meas{t ∈ [0, T/K(T )) :

log |L(λ, α, 1/2 + it)− Λ(λ, α, t)|√
2−1 log log T

≤ x}

+
1

T
meas{t ∈ IT :

log |L(λ, α, 1/2 + it)− Λ(λ, α, t)|√
2−1 log log T

≤ x}

+
1

T
meas{t ∈ JT :

log |L(λ, α, 1/2 + it)− Λ(λ, α, t)|√
2−1 log log T

≤ x}+ o(1)

=
1

T
meas{t ∈ IT :

log |ζ(1/2 + it)|√
2−1 log log T

+ o(1) ≤ x}+O

(
1

T
meas{t ∈ JT}

)
+ o(1)

= νT

(
log |ζ(1/2 + it)|√

2−1 log log T
≤ x+ o(1)

)
+ o(1) = Φ (x) + o(1).

�
Proof of Theorem 2 is similar to the proof of Theorem 1. Note that Lemma 3 and proof of
Theorem 1 can be rewritten for argL(λ, α, 1/2 + it) (see the note after the proof of Lemma
3).

�
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