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Introduction
We have defined the autoregressive distributed lag ADL(p, q) model as

φ(L)Yt = α + δt + β(L)Xt + εt

where
φ(L) = 1− φ1L− ...− φpLp

β(L) = β0 + β1L + ...+ βqLq

Estimation and interpretation of the ADL(p, q) model depends on whether
the series X and Y are stationary or not.

In this lecture we will assume that both X and Y have the same
stationarity properties: either both are stationary, or both have a unit
root.

If the properties of X differ from those of Y , it becomes difficult for X to
explain Y . For instance, it is hard for a stationary series to explain the
stochastic trend variation of a unit root series. In practice this means that,
before running any time series regression, you should examine the
univariate properties of the variables you plan to use.

In particular, you should carry out unit root tests along the lines described
in the previous lectures for every variable in your analysis.



Time Series Regression when Y and X are Stationary
This sections extends the topic presented in the previous lecture.

For the AR(p) model, it proved convenient for both the OLS estimation
and interpretation to rewrite the model with ∆Y as the dependent
variable. Similar considerations hold for the ADL(p, q) model:

Yt = α + δt + φ1Yt−1 + ...+ φpYt−p + β0Xt + ...+ βqXt−q + εt

which can be rewritten as:
∆Yt = α + δt + ρYt−1 + γ1∆Yt−1 + ...+ γp−1∆Yt−p+1

+ θXt + ω1∆Xt + ...+ ωq∆Xt−q+1 + εt

where
ρ = φ1 + ...+ φp − 1
γj = −[φj+1 + ...+ φp], j = 1, ..., p − 1
θ = β0 + β1 + ...+ βq

ωi = −[βi + ...+ βq], i = 1, ..., q

It should be emphasized that this model is the same as that in the original
form of the ADL(p, q) - it has merely undergone a few algebraic
manipulations. The second form is often more convenient than the first
because it allows us to easier test the unit root hypothesis.



This model may look complicated, but it is still, nevertheless, just a
regression model. That is, no new mathematical techniques are required
for this model, which is, after all, still based on the simple equation of a
straight line.
Example ADL(1, 1)

Yt = α + δt + φ1Yt−1 ± Yt−1 + β0Xt ± β1Xt + β1Xt−1 + εt

yields:

∆Yt = α + δt + (φ1 − 1)Yt + (β0 + β1)Xt − β1∆Xt + εt

Example ADL(2, 2)

Yt = α + δt + φ1Yt−1 ± Yt−1 + φ2Yt−2 ± φ2Yt−1

+ β0Xt + β1Xt−1 + β2Xt−2 ± β2Xt−1 ± (β1 + β2)Xt + εt

yields:

∆Yt = α + δt + (φ1 + φ2 − 1)Yt−1 − φ2∆Yt−1

+ (β0 + β1 + β2)Xt − (β1 + β2)∆Xt − β2∆Xt−1 + εt



The coefficients of both models have their usual interpretation, however in
economics the multiplier concept is more popular.

Coefficient and Short-run multiplier interpretation
We have already discussed how to interpret regression coefficients, placing
special emphasis on ceteris paribus conditions. Recall that we made
statements of the form:

The β0 coefficient measures the influence of Xk on Yk , ceteris
paribus.

In the ADL(p, q) model, such an interpretation can still be made, but it is
not that commonly done.
In economics, a common way to interpret the coefficients is through the
concept of a multiplier. Thus:

β0 is called the short-run or impact multiplier it describes how a
one unit size one-moment (i.e. temporary) increase of Xt affects
Yt .

However, it is common to focus on the long-run, or total, multiplier.



Long-run Multiplier Interpretation
Suppose that X and Y are in an equilibrium (steady state), i.e. they are
not changing over time.

All of a sudden, X changes permanently to a new level, which is one unit
higher than its previous value. This affects Y , which starts to change and
eventually settling down in the long-run to a new equilibrium value.

The difference between the old and the new equilibrium values for
Y can be interpreted as the long-run effect of X on Y and is the
long-run multiplier.

This multiplier is often of great interest for policymakers who want to
know the eventual effects of their policy changes in various areas. The
long run multiplier measures the effect of this sort of change.



Let E(Yt) = µY and E(Xt) = µX . By taking the expectations of both
sides, it is possible to calculate the long-run multiplier for the
ADL(p, q) model:

E(Yt) = α + δt + φ1E(Yt−1) + ...+ φpE(Yt−p) + β0E(Xt) + ...+ βqE(Xt−q)
(1− φ1 − ...− φp)µY = α + δ · t + (β0 + β1 + ...+ βq)µX

The equilibrium model is then:

µY = α

1− φ1 − ...− φp
+ δ

1− φ1 − ...− φp
· t + β0 + β1 + ...+ βq

1− φ1 − ...− φp
· µX

Now, if the process transfers to the new permanent level, say
Xt+1 = Xt+2 = ... = X + 1, this will change the equilibrium value of Y .
The change of Y is called the long-run or total multiplier and it equals:

β0 + β1 + ...+ βq
1− φ1 − ...− φp

= −θ
ρ

In other words, only the coefficients on Xt and Yt−1 will matter for the
long-run behavior in the rewritten ADL model for ∆Yt .



Marginal Effect Interpretation
In some cases, you might be interested in the effect of a temporary change
in X (i.e. X starts at some original level, then increases by one unit for one
period before going back to the original level the next). The long-run
multiplier does not measure the effect of this type of change.

We can use the traditional ‘marginal effect’ interpretation of regression
coefficients for such temporary changes (i.e. the short-run multiplier).



ADL(1,1) Example
To be more specific in distinguishing different multipliers we shall analyse
the ADL(1, 1) model in more detail (with assumption that |φ| < 1). The
model:

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt

can be rewritten in terms of X as follows:

(1− φL)Yt = α + β0Xt + β1Xt−1 + εt

or:
Yt = (1− φL)−1(α + β0X + β1Xt−1 + εt)

= (1 + φL + (φL)2 + ...)(α + β0X + β1Xt−1 + εt)

= α

1− φ + β0Xt + (β0φ+ β1)Xt−1

+ φ(β0φ+ β1)Xt−1 + φ2(β0φ+ β1)Xt−2 + ...+ νt

= δ̃ + δ0Xt + ...+ δsXt−s + ...+ νt



Yt = δ̃ + δ0Xt + ...+ δsXt−s + ...+ νt

I The coefficient δ0 = β0 at Xt (or ∂Yt/∂Xt) is called the short-run
multiplier .

I The coefficient δs = φs(β0φ+ β1) at Xt−s (or ∂Yt+s/∂Xt) is the
s-period delay multiplier.

I The value
∑s

i=1 δi is the s-period interim multiplier .

I
∑∞

i=0 δi = β0 + β1
1− φ is the total or long-run multiplier .

In other words:
I The short-run multiplier is the immediate Yt ’s response to a

momentary change in X : X1 = ... = Xt−1 = X , Xt = X + 1 (i.e. X
increases by one in period t);

I The long-run multiplier is the eventual Yt ’s, as t →∞, response to
a permanent change in X : X1 = ... = Xt−1 = X ,
Xt = Xt+1 = ... = X + 1



Example: The Effect of Financial Liberalization on
Economic Growth

Researchers in the field of international finance and development are
interested in whether financial factors can play an important role in
encouraging growth in a developing country.

The purpose of this example is to investigate this issue empirically using
time series data from a single country. Dataset contains data from
Country A for 98 quarters on GDP growth and a variable reflecting
financial liberalization: the expansion of the stock market. In particular,
the dependent and explanatory variables are:
I Y = pchGDP - the percentage change in GDP;
I X = pchSMC - the percentage change in total stock market

capitalization.

"http://uosis.mif.vu.lt/~rlapinskas/(data%20R&GRETL/liberal.xls"
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colMeans(liberal)

## pchGDP pchSMC
## 0.29677662 0.01256935

The mean of these two variables is 0.30% and 0.01% per quarter,
indicating that stock markets in Country A have not expanded by much
on average.
Note, however, that this average hides wide variation. In some quarters
market capitalization increased considerably, while in other quarters it
decreased.
Assuming that both variables are stationary, we can estimate an ADL(2, 2)
model using OLS. Remember that, if the variables in a model are
stationary, then the standard regression quantities (e.g. OLS estimates,
p-values, confidence intervals) can be calculated in an ordinary way.



For now, we note that the ADL(2,2) model has insignificant variables:

∆pchGDPt = α + δt + ρ · pchGDPt−1 + γ1∆pchGDPt−1

+ θpchSMCt + ω1∆pchSMCt + ω2∆pchSMCt−1 + εt

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.8072 5.9112 -0.9824 0.3286
## time(pchGDP) 0.0029 0.0030 0.9836 0.3280
## L(pchGDP, 1) -0.1196 0.0126 -9.4641 0.0000
## L(d(pchGDP), 1) 0.7942 0.0310 25.6277 0.0000
## pchSMC 0.1254 0.0481 2.6054 0.0108
## L(d(pchSMC), 0:1)0 0.8375 0.0438 19.1106 0.0000
## L(d(pchSMC), 0:1)1 0.0022 0.0218 0.1028 0.9183

Generally, using the formula for the long-run multiplier of an ADL(p,q)
model, we can see that its OLS estimate is

−θ/ρ = −(0.1254/(−0.1196)) = 1.0485

There are different ways of expressing this information verbally (remember
that the dependent and explanatory variables are percentage changes).



Interpretation Examples
1. On average, market capitalization in Country A has been increasing

by 0.01% per quarter and GDP by 0.30% per quarter. If Country A’s
total stock market capitalization increases by 1.01% in each month
(i.e., increase by one unit from 0.01 each month to 1.01 each month),
then in the long run its GDP should start increasing by 1.3485% per
quarter (i.e., the initial 0.30 plus the long run multiplier of 1.0485).

2. The long run multiplier effect of financial liberalization on GDP
growth is 1.0485%.

3. If X permanently increases by 1%, the equilibrium value of Y will
increase by 1.0485%.

The statistical information, though, indicates that this might not be a
good model, since some of the explanatory variables are not significant
(e.g. the p-values for the coefficients on ∆Xt−1 and the time trend both
imply insignificance at the 5% level).

This raises the issue of lag length selection in the ADL(p, q) model.



Note on ADL(p, q) Lag Selection

We will note that the strategy for selecting q in the regression model with
lagged explanatory variables and the strategy for selecting p in the AR(p)
model can be combined.

There is no general convention about whether you should first select p,
then q, then decide whether the deterministic trend should be included, or
make another ordering (e.g., select q, then p, then trend or select q, then
trend, then p, etc.).

As long as you are careful, you will not be led too far wrong in selecting a
good model.



The final ADL model looks like:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0071 0.0204 0.3496 0.7275
## L(pchGDP, 1) -0.1201 0.0114 -10.5213 0.0000
## L(d(pchGDP), 1) 0.7997 0.0297 26.9430 0.0000
## pchSMC 0.1244 0.0416 2.9905 0.0036
## d(pchSMC) 0.8393 0.0365 23.0218 0.0000

which can be written as:

∆pchGDPt = 0.0071 + (−0.1201) · pchGDPt−1 + 0.7997 ·∆pchGDPt−1
+ 0.1244 · pchSMCt + 0.8393 ·∆pchSMCt + εt

the long-run multiplier −θ/ρ = −0.1244/(−0.1201) = 1.035803 and the
equilibrium model is:

pchGDP = 0.0071 + 1.035803 · pchSMC

thus, if pchSMC increased by 1 to a new permanent level, pchGDP will
eventually increase by 1.035803.



Time Series Regression when Y and X are Trend
Stationary: Spurious Regression

Consider the regression:

Yt = β0 + β1X1t + β2X2t + εt

and assume that some (or all) of the variables have a linear trend, e.g.:

X1t = α10 + α11t + ω1t

In this case the seemingly (or, spuriously) significant coefficients of the
(spurious) regression can be obtained not because the response ‘truly’
depends on the predictive variables, but because of the trends ‘hidden’ in
these variables - both Y and X increase because of a trend, but Y
increases not because X increases.



To clear the ‘true’ dependence of Y on X , we can act two-fold:

1. Augment the initial equation with a linear, or polynomial, trend:

Yt = γ0 + γ1X1t + γ2X2t + δt + εt

or

2. Rewrite in initial equation in the form of deviations from the trend:

Ỹt = β0 + γ1X̃1t + γ2X̃2t + εt

where, for example:

X̃1t = X1t − (α̂10 + α̂11t)

Note that the γ coefficients, which describe the ‘true’ dependence between
X and Y , are the same in both methods.



Example #1:
We will generate two series:

Yt = β0 + β1t + ω1t , ω1t ∼WN
Xt = α0 + α1t + ω2t , ω2t ∼WN

And we will create two regression models:

Yt = γ10 + γ11Xt + ε1t

Yt = γ20 + γ21Xt + δt + ε2t

set.seed(123)
n = 100
Y <- 0.1 + 0.2 * 1:n + rnorm(n)
X <- 0.3 - 0.1 * 1:n + rnorm(n)
Y <- ts(Y)
X <- ts(X)



plot.ts(data.frame(Y, X), col = 4)

0
5

10
15

20

Y

−
10

−
6

−
2

0

0 20 40 60 80 100

X

Time

data.frame(Y, X)



Both of the series were generated independently, however because of the
deterministic trend, it might appear that they are correlated:
suppressPackageStartupMessages({library("forecast")})
Acf(data.frame(Y, X))
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suppressPackageStartupMessages({library("dynlm")})
model1 <- dynlm(Y ~ X)
model2 <- dynlm(Y ~ X + time(X))
round(summary(model1)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.1684 0.3996 2.9237 0.0043
## X -1.8779 0.0703 -26.7157 0.0000
round(summary(model2)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0653 0.1850 0.3529 0.7249
## X -0.0545 0.0958 -0.5687 0.5708
## time(X) 0.1972 0.0098 20.1151 0.0000

I We can see that if we do not include the trend coefficient, we have a
spurious regression as it may seem that Y depends on X .

I If, however, we do include a trend component, we actually see that
the coefficient of X is not significant.
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Example #2:
We will generate two series:

Yt = α0 + δ1t + β0Xt + ω1t , ω1t ∼WN
Xt = α1 + δ2t + ω2t , ω2t ∼WN

And we will create two regression models:

Yt = γ10 + γ11Xt + ε1t

Yt = γ20 + γ21Xt + δt + ε2t

set.seed(123)
n = 100
X <- 0.3 - 0.1 * 1:n + rnorm(n)
Y <- 0.1 + 0.2 * 1:n + 0.3 * X + rnorm(n)
Y <- ts(Y)
X <- ts(X)



plot.ts(data.frame(Y, X), col = 4)
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suppressPackageStartupMessages({library("forecast")})
Acf(data.frame(Y, X))
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Similarly to the previous example, the series appear correlated. The
difference is that in this case they are generated as dependent variables.
But Y should positively depend on X . From the cross-correlation plots
of Y&X (or X&Y) we see that the correlation between these variables is
negative - opposite of what we would expect. This is because of the
negative trend effect on X .



suppressPackageStartupMessages({library("dynlm")})
model1 <- dynlm(Y ~ X)
model2 <- dynlm(Y ~ X + time(X))
round(summary(model1)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2644 0.375 3.3718 0.0011
## X -1.5946 0.068 -23.4646 0.0000
round(summary(model2)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1532 0.1977 -0.7751 0.4401
## X 0.2390 0.1072 2.2291 0.0281
## time(X) 0.1973 0.0110 17.9635 0.0000

We can see that if we do not include the trend coefficient, then the signs
of the immediate effect, β̂0 is incorrect. If we do include the trend
component, then the signs are correctly estimated.
So, even if there is no spurious regression, if both X and Y have trends -
excluding the trend component results in an omitted variable bias.



Time Series Regression when Y and X Have Unit Roots:
Spurious Regression

For the remainder of this lecture, we will assume that Y and X have unit
roots.

In practice, of course, you would have to test whether this was the case
using the previously introduced sequential procedure and/or Dickey-Fuller
(or any other unit root) test.

We begin by focusing on the case of regression models without lags, then
proceed to similar models to the ADL(p, q) model.

Suppose we are interested in estimating the following regression:

Yt = α + δt + βXt + εt

If Y and X contain unit roots, then OLS estimation of this regression can
yield results which are completely wrong.



For instance, even if the true value of β is 0, OLS can yield an estimate β̂
which is very different from zero. Statistical tests (using the t-ratio or
p-value) may indicate that β is not zero.

Furthermore, if β = 0, then R2 should be zero. In fact, the R2 will often
be quite large. To put it another way: if Y and X have unit roots, then
all the usual OLS regression results might be misleading and
incorrect.

This is the so-called spurious regression problem. We do not have the
statistical tools to prove that this problem occurs, but it is important to
stress the practical implications:

With the one exception of cointegration (which will be presented later on),
you should never run a regression of Y on X if the variables have
unit roots.



Example of a spurious regression

We will illustrate the above statements: let X and Y be two independent
random walks with δ = 0 (as it follows from independence - true β = 0).
However, the OLS estimate β̂ differs from zero and, as its p-value is
almost always less than 0.05, we would mistakenly “conclude” that β is
almost always ‘significant’. As such, do not trust OLS in such a case!.

N <- 5000 # The length of a random walk
set.seed(231)
Y <- ts(cumsum(rnorm(N)))
X <- ts(cumsum(rnorm(N)))
vl <- c(seq(from = 100, to = 1100, by = 100), 5000)
par(mfrow = c(3, 4))
for(j in vl){

plot(X[1:j], Y[1:j], main = paste0("N = ", j))
lm.fit <- lm(Y[1:j] ~ X[1:j])
abline(lm.fit, col = "red", lwd = 1.5)

}
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We will soon see that the reason of these wrong conclusions is the fact
that εt ∼ I(1). Here are some properties of popular statistics in that ‘bad’
case where Yt , Xt and εt are I(1):
I DW statistics (tests the presence of autocorrelation in the residuals)

tend to 0, when T →∞;
I R2 tends to a random limit;
I β̂OLS is not consistent;
I t − statistics on β̂OLS diverge - need to be divided by

√
T to obtain a

random variable with well defined distribution.

Because both Yt and Xt contain a stochastic trend, the OLS estimator
may indicate a significant correlation between the two series, even if they
are completely unrelated. The problem is that εt is nonstationary.

In short - do not regress Y on X in such a case.



However, the question remains - what to do if Xt and Yt have unit roots and are
not cointegrated?

The general advice is to rethink your model. For example, instead of working
with

Yt = α + βXt + εt

analyze the model

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt

In this case the OLS estimators are consistent - no spurious regression problem
arises because the parameters can be selected as φ = 1 (in the ADL model case
φ is used to determine whether the model is stable) and β0 = β1 = 0 such that
the error term is I(0), even if Yt ∼ I(1) and Xt ∼ I(1).

Another possibility is to create an ADL model for stationary differences ∆Yt and
∆Xt , for example:

∆Yt = α + φ∆Yt−1 + β0∆Xt + β1∆Xt−1 + εt

If, for example, Yt is the log of GDP and Xt is the log of the price level, then
∆Yt and ∆Xt are the growth rate and inflation, respectively, and the above
equation has a nice interpretation.



If we include the lagged coefficients and estimate via OLS:

round(coef(summary(dynlm(Y ~ L(Y, 1) + L(X, 0:1)))), 5)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04771 0.03041 1.56885 0.11675
## L(Y, 1) 0.99898 0.00075 1339.42121 0.00000
## L(X, 0:1)0 0.01108 0.01398 0.79204 0.42837
## L(X, 0:1)1 -0.01153 0.01399 -0.82436 0.40977

Or if we estimate a model on variable differences:

round(coef(summary(dynlm(d(Y) ~ d(X)))), 5)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.00074 0.01403 -0.05294 0.95778
## d(X) 0.01136 0.01398 0.81261 0.41648

The coefficient significance is inline with what we would expect (the
estimate of φ is also close to 1).



Time Series Regression when Y and X Have Unit Roots:
Cointegration

The one time where you do not have to worry about the spurious
regression problem occurs when X and Y are cointegrated.

This case not only overcomes the spurious regression problem, but it also
provides some nice financial intuition.

Cointegration has received a great deal of attention recently in the
financial literature and many theoretical finance models imply cointegration
should occur, so it is worthwhile to discuss the topic in detail.



Some intuition on cointegration
Consider the errors of a regression model:

εt = Yt − α− βXt

It is clear that the errors are just a linear combination of X and Y .
However, if both X and Y exhibit nonstationary unit root behavior, we
would expect that the error would also exhibit nonstationary behavior.

The error does indeed usually have a unit root. Statistically it is this unit
root in the error term that causes the spurious regression problem.

However, it is possible that the unit roots in Y and X ‘cancel each other
out’ and the resulting error is stationary, i.e. both X and Y trend together.
In this special case (called cointegration) the spurious regression problem
vanishes and it is valid to run a regression of Y on X .



Definition
If Y and X have unit roots but some linear combination of them,
γ1Yt + γ2Xt , is (trend) stationary, then we say that Y and X are
cointegrated.

In other words: Yt ∼ I(1) and X ∼ I(1) are cointegrated if they share a
common trend such that γ1Yt + γ2Xt ∼ I(0).

Note that the coefficients γ1 and γ2 are not uniquely defined if
γ1Yt + γ2Xt is stationary, then, for example Yt + (γ2/γ1)Xt is also
stationary.

How to make sure that such constants γ1 and γ2 exist? Stationarity means
low variability around the mean, therefore, to best approximate Yt in
terms of Xt , we can use OLS.

In other words1: If Yt ∼ I(1) and X ∼ I(1) and there exists such γ̃ such
that Zt = Yt − γ̃Xt ∼ I(0), then Xt and Yt are cointegrated with:
I γ̃ - called the cointegrating parameter,
I (1,−β)> - called the cointegrating vector.

1See: Verbeek, Marno - A guide to modern econometrics 5e, (2017)



Example
Let: 

Yt = 1.3Xt + ut

ut = 0.6ut−1 + ε1t

Xt = Xt−1 + ε2t , εit ∼ i .i .d .N(0, 1)

Here both Xt and Yt are quite irregular random walks, but the linear
combination: 1 · Yt − 1.3 · Xt = ut = 0.6ut−1 + ε1t is a stationary AR(1)
process.

Thus, Yt and Xt cointegrate (they have a common stochastic trend).

In practice, we have to test the residuals of the regression
Yt = α + βXt + ut for stationarity.



In the real world, it is unlikely that a financial system will ever be in
precise equilibrium since shocks and unexpected changes to it will always
occur. However, departures ut from equilibrium should not be too large
and there should always be a tendency to return to equilibrium after a
shock occurs. Hence, if a financial model which implies an equilibrium
relationship exists, then we should observe Y and X as being cointegrated.

Common sense tells you that, if two assets are close substitutes for one
another, then their prices should not drift too far apart. After all, if one
asset becomes much more expensive than a similar asset, then investors
will sell the first asset in order to buy the cheaper alternative. But if many
investors are selling the expensive asset, then its price should drop. And if
many investors are buying the cheap asset its price would rise. Thus, the
prices of the expensive and cheap assets would move closer to one another.
Many financial theories formalize this intuition to imply different
cointegrating relationships.

In short, financial theory suggests that cointegrating relationships between
many different financial time series should exist. Hence, it is important to
test whether cointegration is present (i.e., to see whether financial theory
holds in practice) and, if it is present, to estimate models involving
cointegrated variables.



Estimation and Testing with Cointegrated Variables
As mentioned above, if Y and X are cointegrated, then the spurious
regression problem does not apply; consequently, we can run an OLS
regression of Y on X and obtain valid results.

Furthermore, the coefficient from this regression is the long run multiplier.
Thus, to the extent that interest centers on the long run multiplier , then
estimation with cointegrated variables is very easy.

The test for cointegration described here is referred to as the Engle -
Granger test, after the two econometricians who developed it.

It is based on the regression of Y on X . Remember that, if cointegration
occurs, then the errors from this regression will be stationary.
Conversely, if cointegration does not occur, then the errors will have
a unit root.

Given the close relationship between the errors and the residuals, it is
reasonable to examine the properties of the residuals in order to
investigate the presence of cointegration.



Engle - Granger test for cointegration
In the previous lectures we discussed testing for a unit root in a time series
variable. Here, we test for a unit root in the residuals using the same
techniques. In particular, the test for cointegration involves the following
steps:

0. Carry our a Dickey-Fuller test on the null hypothesis that Y and X
each has a unit root. If both time series are I(0) - standard regression
analysis will be valid. If they are both integrated to the same order
(usually I(1)) - proceed to the next step

1. Run a regression of Y on X and save the residuals;
2. Carry out a unit root test on the residuals (without including a

constant and a deterministic trend) ;
3. If the unit root hypothesis is rejected, then conclude that Y and X

are cointegrated. However, if the unit root hypothesis is accepted,
then conclude that cointegration does not occur.

Thus, if Yt and Xt are cointegrated in Yt = α + βXt + εt , the error term
is I(0). If not, εt will be I(1). Hence, one can test for the presence of a
cointegration relationship by testing for a unit root in the OLS residuals et .



It seems that this can be done by using the Dickey-Fuller tests of the
previous chapter. For example, one can run the regression:

∆et = ρet−1 +
p∑

j=1
βj∆et−j + ut , ut ∼WN

on OLS residuals rather than an observed time series.

Because the OLS estimators ’choose’ the residuals in the cointe-
grating regression to have as small variance as possible, even if
the variables are not cointegrated, the OLS estimator will make
the residuals look as stationary as possible (because these are the
assumptions under which OLS estimation is carried out).

Thus, using standard DF or ADF tests, we may reject the null hypothesis
of nonstationarity too often. As a result, the appropriate critical values are
more negative than those for the standard Dickey-Fuller tests.



If et is not appropriately described by a first order autoregressive process,
one should add lagged values of ∆et to its equation leading to the
augmented Dickey-Fuller (ADF) tests, with the same asymptotic critical
values. This test can be extended to test for cointegration between three
or more variables. If more than a single Xt variable is included in the
cointegrating regression

Yt = α + δt + βXt + εt ,

the critical values shift further to the left.

Number of X’s No deterministic Only a constant Constant and
in the rhs of eq. terms in eq. in eq. a trend in eq.

1 -2.76 -3.37 -3.80
2 -3.27 -3.77 -4.16
3 -3.74 -4.11 -4.49
4 -4.12 -4.45 -4.74
5 -4.40 -4.71 -5.03

Thus if the ADF test statistic ρ̂/se(ρ̂) is closer to zero than respective
critical value, we do not reject the unit root hypothesis.



Note also that in the Dickey-Fuller test, we test the hypothesis that ρ = 0.
(i.e. unit root).

In the cointegration test, we use the Dickey-Fuller methodology but
cointegration is found if we reject the unit root hypothesis for the
residuals.

In other words, the null hypothesis in the Engle-Granger test is no
cointegration and we conclude cointegration is present only if we reject
this hypothesis.

Furthermore, note the following:
I If all variables are stationary at level, i.e. if Xt ,Yt ∼ I(0) - there is no

long run relationship (i.e. co-movement), but a short run
relationship may exist - there is no need for cointegration estimation.

I While the long-run relationship may not exist - this does not mean
that the same applies to the s-period interim multiplier , which
describes the effect (which may be quickly declining to zero) of a
(usually permanent) change in X on Y after s periods.



Time Series Regression when Y and X are Cointegrated:
The Error Correction Model (ECM)

You may encounter instances where unit root tests indicate that your time
series have unit roots, but the Engle-Granger test indicates that the
series are not cointegrated (they have no long-run relationship).

That is, the series may not be trending together and may not have an
equilibrium relationship. In these cases, you should not run a regression of
Y on X due to the spurious regression problem.

The presence of such characteristics suggests that you should rethink your
basic model and include other explanatory variables.

Instead of working with Y and X themselves you could, for example, take
their differences (since they have unit roots - their differences should be
stationary).



In other words, you may wish to estimate the ADL model for stationary
differences:

∆Yt = φ+ γ1∆Yt−1 + ...+ γp′∆Yt−p′ + ω0∆Xt + ...+ ωq′∆Xt−q′ + εt

Although such models can be estimated, it is important to understand that
they describe only short-run interactions between Yt and Xt (there is no
equilibrium, therefore there is no sense to speak about long run multiplier).

Furthermore, if the variables are cointegrated, these models are not
satisfactory, because they ignore the long-run relationship between the
variables Yt and Xt .

A principal feature of cointegrated variables is that their time paths are
influenced by the extent of any deviation from long-run equilibrium. After
all, if the system is to return to the long-run equilibrium, the movements
of at least some of the variables must respond to the magnitude of the
disequilibrium.



The ECM
The dynamic model implied by this discussion is one of error correction.
In an error-correction model, the short-term dynamics of the variables in
the system are influenced by the deviation from equilibrium . Furthermore,
there exists the Granger Representation Theorem that says that if Y and
X are cointegrated, then the relationship between them can always be
expressed as an ECM.

A common expression for ECM in two variables (Y and X ) is a single
equation form:

∆Yt = ψ + λut−1 + ω0∆Xt + εt

where ut−1 is the error obtained from cointegrating regression of Y on X ,
i.e. ut−1 = Yt−1 − α− βXt−1. Note that if we knew ut−1, then the ECM
is just a regression model.

For the derivation of the ECM, see the slides on Regressions with
time lags.



We can also generalize the above expression to:

∆Yt = ψ+δt+λut−1+γ̃1∆Yt−1+...+γ̃p∆Yt−p+ω̃0∆Xt+...+ω̃q∆Xt−1+εt

Thus, if Yt and Xt both have unit roots - regress in differences, but if they
are cointegrated - add an error correction term.

Some sophisticated statistical techniques have been developed to estimate
the ECM, but the simplest thing to do is merely to replace the unknown
errors by the residuals from the regression of Y on X , i.e. replace ut−1 by
ût−1.

That is a simple technique based on two OLS regressions (also known as
the Engle and Granger 2-step approach) proceeds as follows:

1. Run a regression of Y on X and save the residuals2:
ut = Yt − α̂0 − α̂1Xt .

2. Run a regression of ∆Yt on all regressors from the above equation,
including the residuals from the previous step, which are lagged by
one period.

2OLS will not only be valid, but in fact super consistent as the estimate converges
to the true parameter much faster than with conventional asymptotics.



ECM Derivation Outline
Assume that the long-run relationship is defined as: Y = α̃ + β̃X . Taking the
expectation from the ADL(p, q) (with stationarity: Xt ,Yt ∼ I(0)) yields:

µY = α +
p∑

i=1

φiµY +
q∑

j=0

βjµX ⇐⇒ µY = α

1−
∑p

i=1 φi
+

∑q
j=0 βj

1−
∑p

i=1 φi
µX

with

α̃ = α

1−
∑p

i=1 φi
, β̃ =

∑q
j=0 βj

1−
∑p

i=1 φi

Then, the general dynamic relationship can be rewritten as:

Yt = α +
p∑

i=1

φi Yt−i +
q∑

j=0

βjXt−j + εt

= α̃

[
1−

p∑
i=1

φi

]
+

[
1− α

α̃
−

p∑
i=2

φi

]
Yt−1 +

p∑
i=2

φi Yt−i

+ β0Xt +

[(
1−

p∑
i=1

φi

)
β̃ − β0 −

q∑
j=2

βj

]
Xt−1 +

q∑
j=2

βjXt−j + εt

(alternatively, we can derive this by subtracting Yt−1 from both sides and do
some rewriting, but the above derivation has an economic interpretation)



With some rewriting we get the following:

Yt − Yt−1 = α̃

[
1−

p∑
i=1

φi

]
−

[
1−

p∑
i=1

φi

]
Yt−1 −

p∑
i=2

φi Yt−1

±
p∑

k=3

(
Yt−k+1

p∑
j=k

φi

)
+

p∑
i=2

φi Yt−i

+

[
1−

p∑
i=1

φi

]
β̃Xt−1 + β0Xt − β0Xt−1 −

q∑
j=2

βjXt−1

±
q∑

m=3

(
Xt−m+1

q∑
j=m

βi

)
+

q∑
j=2

βjXt−j + εt

=
p−1∑
j=1

− [φj+1 + ...+ φp] ∆Yt−j + β0∆Xt +
q−1∑
i=1

− [βi + ...+ βq] ∆Xt−i

−

[
1−

p∑
i=1

φi

](
Yt−1 − α̃− β̃Xt−1

)
+ εt



which we can finally write as:

∆Yt =γ1∆Yt−1 + ...+ γp∆Yt−p+1 + β0∆Xt + ω2∆Xt−1 + ...+ ωq∆Xt−q+1

−

[
1−

p∑
i=1

φi

](
Yt−1 − α̃− β̃Xt−1

)
+ εt

The model can be estimated in a number of ways (as long as the variables are
either cointegrated or do not have a unit root):

I by multiplying out the terms in parenthesis;
I by estimating the nonlinear equation via non-linear least squares (nls(...)

function in R);
I by substituting the long-run difference with the residuals from its

cointegrating regression: ût−1 = Yt−1 − ̂̃α− ̂̃βXt−1. The cointegrating
vector can be estimated (super)consistently from the cointegrating
regression.



Relationship between Yt , ∆Yt and the ECM
I The ADL(p, q) model for the levels (i.e. Xt and Yt):

Yt = α + δt + φ1Yt−1 + ...+ φpYt−p + β0Xt + ...+ βqXt−q + εt

I The ADL(p, q) model for the levels rewritten for the
differences (i.e. ∆Xt and ∆Yt):

∆Yt = α + δt + ρYt−1 + γ1∆Yt−1 + ...+ γp−1∆Yt−p+1

+ θXt + ω1∆Xt + ...+ ωq∆Xt−q+1 + εt

I The Error-Correction form of the ADL(p, q) model:

∆Yt = α + δt + λût−1 + γ̃1∆Yt−1 + ...+ γ̃p−1∆Yt−p+1

+ ω̃1∆Xt + ...+ ω̃q∆Xt−q+1 + εt , where ût−1 = Yt−1 − ̂̃α− ̂̃βXt−1



I If Xt ,Yt ∼ I(1) and ut ∼ I(1), then there is no long-run relationship
and we set λ = 0;

I If Xt ,Yt ∼ I(0), then the process can always be written in an
error-correction form. But the concept of cointegration can be applied
to I(1) time series only. The presence of a cointegrating vector
can be interpreted as the presence of a long-run equilibrium
relationship.

I If α 6= 0 (short-run) in addition to ̂̃α 6= 0 (long-run), then the
long-run equilibrium corresponds to a steady state growth with
∆Yt = ∆Xt−1 6= 0.



The Long-run and Short-run Multipliers
Now we shall get back to the material which was earlier exposed. First,
assume that both Yt and Xt are stationary .

1. Let us consider two processes Yt and Xt , bound together by the
static equation:

Yt = α + βXt + εt

If the values of Yt and Xt do not change: ... = XT−1 = XT = X ,
... = YT−1 = YT = Y = α + βX , and εt = 0, we say that Xt and Yt are
in equilibrium.

Now assume that in time T + 1 the variable Xt changes its value to
XT+1 = XT+2 = ... = X + 1 - the (Xt ,Yt) system will move to a new
equilibrium but, generally speaking, it could take some time. A (usually
not very realistic) static system is remarkable in the sense that it reaches
the new equilibrium in no time :

YT+1 = α + βXT+1 = α + β · (X + 1)⇒ YT+1 − Y = β

Yt+h = α + βXT+h = α + β · (X + 1)⇒ YT+h − Y = β, h ≥ 2

Here, β is both the short-run (when h = 1) and the long run (when
h→∞) multiplier.



2. Transition to the new equilibrium is slower in dynamic case. Assume
that DGP is described by a DL(1) process:

Yt = α + β0Xt + β1Xt−1 + εt

Now:

YT+1 = α + β0XT+1 + β1XT = α + β0 · (X + 1) + β1X
⇒ YT+1 − Y = β0

YT+h = α + β0XT+h + β1Xt+h−1 = α + (β0 + β1) · (X + 1)
⇒ YT+h − Y = β0 + β1, h ≥ 2

i.e., the short-run (or impact) multiplier is β0 and the long-run multiplier is
β0 + β1. Note that β0 + β1 is also the slope of the equilibrium equation
which can be obtained from the original dynamic equation as t →∞,
Xt−1 → X and Xt → X : limt→∞ Yt = Y = α + (β0 + β1)X .



3. Assume that the DGP is described as ADL(1, 1) process:

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt

In equilibrium, at moment T we have: Y = α + φY + β0X + β1X or

YT = α

1− φ + β0 + β1
1− φ · X

Thus:
YT+1 = α + φYT + β0(X + 1) + β1X

= α + φ · α

1− φ + φ · β0 + β1
1− φ · X + (β0 + β1)X + β0

= α

1− φ + β0 + β1
1− φ · X + β0 = YT + β0

=⇒ YT+1 − YT = β0

i.e., the short-run multiplier equals β0.

To find the limit YT+h − YT as h→∞, repeat the reasoning as before on
the ADL model by adding up the partial derivatives of Yt ,Yt+1, ... by Xt
which implies that the long-run multiplier equals (β0 + β1)/(1− φ) for the
ADL(1,1) (see the previous lecture on ADL models).



4. The ADL(1, 1) process can be rewritten as the error correction model
(ECM):

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt ± Yt−1 ± β0Xt−1

...

∆Yt = α + β0∆Xt + (φ− 1)
(
Yt−1 −

β0 + β1
1− φ Xt−1

)
+ εt

= β0∆Xt + (φ− 1)
(
Yt−1 −

α

1− φ −
β0 + β1
1− φ Xt−1

)
+ εt

where the short-run and long-run features of the dynamic relationship are
modeled separately. Here:
I β0 describes the short-run relationship;
I (β0 + β1)/(1− φ) - the long-run multiplier;
I φ− 1 - speed of adjustment to equilibrium described by the error

correction term.

5. Let us assume that the above equations are not in levels but in
logarithms. Then respective multipliers are called short-run and
long-run elasticity.



Now, assume that both Yt and Xt are I(1) processes, i.e. they have a unit
root.

6. Regression analysis applied to non-stationary time series can produce
misleading results (spurious regression), therefore (if the series are
not cointegrated, i.e., they are not trending together) we should
not look for a long-run multiplier in equilibrium equation:

Yt = α + βXt + εt − NOT VALID IF NO COINTEGRATION
Instead, to find the short-run multiplier, assume that process for
stationary differences can be expressed as and ADL(1, 1):

∆Yt = φ∆Yt−1 + β∆Xt + β1∆Xt−1 + εt

For example, say yt = log(GDPt) and xt = log(Pt) (stock exchange index)
are both integrated but not cointegrated. In this case, regression:

yt = α + βxt + εt

is senseless but ADL(p, q) equation for stationary GDP growth rate ∆yt
and stock returns ∆xt can be reasonable (the coefficient β0 is the
short-run multiplier).

Unfortunately, the model on the differences then removes any information
about the long-run from the model - are we above or below the equilibrium
?



7. If Yt and Xt are cointegrated, i.e., the equilibrium relationship
exists, the ECM equation:

∆Yt = φ+ λ(Yt−1 − α− βXt−1) + ω0∆Xt + εt

contains both:
I The short-run multiplier ω0;
I The long-run multiplier β.



Summary

The static (or long-run) model: Yt = β0 + β1X1t + β2X2t depicts an
equilibrium relationship such that for given values of the right-hand-side
variables and their long-run impact on Y (i.e. βi), there is no reason for
the response to be at any other value than Yt .

However, it is also of interest to consider the short-run evolution of the
variables under consideration, especially since equilibrium (i.e., the
steady-state) may rarely be observed. The major reason why
relationships are not always in equilibrium centers on the inability of
economic agents to adjust to new information instantaneously.
I There are often substantial costs of adjustment (both pecuniary and

non-pecuniary) which result in the current value of the dependent
variable Y being determined not only by the current value of some
explanatory variables Xt but also by their past values Xt−1, ...,Xt−q.

I In addition, as Y evolves through time in reaction to current and
previous values of X , past (i.e. lagged) values of itself, Yt−1, ...,Yt−p
will also enter the short-run (dynamic) model.



This inclusion of lagged values of the dependent variable as regressors is a
means of simplifying the form of the dynamic model, which would
otherwise tend to have a large number of highly correlated lagged values
of X , and lead to the problem of multicollinearity (when two or more of
the predictors in a regression model are highly correlated) with high R2

but imprecise parameter estimates and low t − values, even though the
model may be correctly specified. A very simple dynamic model of
short-run adjustments is:

Yt = α0 + γ0Xt + γ1Xt−1 + α1Yt−1 + εt , εt ∼WN

(here variables in lower case are in logarithms).

I The parameter γ0 denotes the short-run reaction of Yt to a change in
Xt and not the long-run effect that would occur if the model were in
equilibrium (the latter is defined by Yt = β0 + β0Xt).

I So in the long-run, the elasticity between Y and X is
β1 = (γ0 + γ1)/(1− α1), assuming that |α1| < 1 (necessary if the
short-run model is to converge to a long-run solution).



The dynamic model represented in the previous slide is easily generalized
to allow for more complicated, and often more realistic adjustment
processes by increasing the lag-lengths. However, there are several
potential problems with this form of the dynamic model.

1. Multicollinearity.
2. some (if not all) of the variables in a dynamic model are likely to be

non-stationary, since they enter in levels (this leads to the potential
problem of spurious regression).

A solution might be to re-specify the dynamic model in (first) differences.
However, this then removes any information about the long-run from the
model (are we above or below the equilibrium?) and consequently is
unlikely to be useful for forecasting purposes. A more suitable approach is
to adopt the error-correction (ECM) formulation of the dynamic model:

∆Yt = γ0∆Xt + (1− α)(Yt−1β̃0 − β̃1Xt−1) + εt

An advantage of the ECM is that all the terms in the model are stationary
so standard regression techniques are valid, assuming cointegration and
that we have estimates of β0 and β1.



The simple depicted ECM can be generalized in several directions. First,
increasing the lag-length p and/or q results in additional lagged first
differences:

A(L)∆Yt = B(L)∆Xt − (1− π)
[
Yt−1 − β̃0 − β̃1Xt−1

]
+ εt

where π = α1 + ...+ αp.

If more than one X enters the model, we have to consider the possibility
for more than one cointegrating relationship to exist. This leads to the
ECM in multivariate form, VECM, which will be explored in the next topic.



Remark (1): Model Equivalence
Consider a static model with autoregressive errors:{

Yt = α + β0Xt + ut

ut = φut−1 + εt , |φ| < 1, εt ∼WN

The process can be re-written as a dynamic model:{
ut = Yt − α− β0Xt

ut = φut−1 + εt

Yt = α(1− φ) + φYt−1 + β0Xt − β0φXt−1 + εt

which we can write as an ADL(1, 1):

Yt = α̃ + φYt−1 + β0Xt + β1Xt−1 + εt

After estimating the model via OLS we would need to test the nonlinear
restriction:

H0 : β1 = −β0φ

This can be achieved by creating two models - one without parameter
restrictions, estimated via OLS and another - with parameter restrictions.
Both can be estimated via nls() and compared with the anova()
function.



Remark (2): Cross-Correlation Functions

While examining the relationship between two time series variables Yt and
Xt , the series Yt may depend on the past values of X . Similarly to the
ACF for single time series, the sample cross correlation function
(CCF) may be employed to identify, which lags of Xt may be useful in
predicting Yt by calculating Corr(Yt ,Xt+h), where h = 0,±1,±2, ....
I When Xt+h, h < 0 (past values) significantly correlate with Yt , we

may say that X leads Y ;
I When Xt+h, h > 0 (future values) significantly correlate with Yt , we

may say that X lags Y ;
In some problems, the goal may be to identify which variable is leading
and which is lagging.

X <- astsa::rec
Y <- astsa::soi

If we want to examine which Xt−k to include in our model for Yt -
we need to examine cross-correlations where X is leading Y .



# custom cross-correlation
cr <- function(x, y, h = 1){

mux <- mean(x)
muy <- mean(y)
dx <- mean((x - mux)^2)
dy <- mean((y - muy)^2)
n <- length(x)
#
if(h < 0){

h <- -h
x <- x[-c(length(x) - (h-1):0)]
y <- y[-c(1:h)]

}else{
x <- x[-c(1:h)]
y <- y[-c(length(y) - (h-1):0)]

}
cxy <- sum((x - mux)*(y - muy)) / n
cxy / sqrt(dx * dy)

}

Compare the custom, with the built-in results:
# X leads Y
round(cr(X, Y, h = -6), 3)

## [1] -0.232
# X lags Y
round(cr(X, Y, h = 6), 3)

## [1] -0.599
forecast::Ccf(X, Y, lag.max = 6, plot = FALSE)

##
## Autocorrelations of series 'X', by lag
##
## -6 -5 -4 -3 -2 -1 0 1 2 3 4
## -0.232 -0.259 -0.228 -0.154 -0.086 -0.013 0.025 0.011 -0.042 -0.146 -0.297
## 5 6
## -0.527 -0.599

Specifying Ccf(X,Y) means that X will be leading Y for h < 0.



To calculate the Ĉorr(Xt+h,Yt) use the forecast::Ccf() function in R:
forecast::Ccf(X, Y)
abline(v = 0, lty = 2, col = "darkgreen")
text(x = -20, y = -0.4, labels = "X leads Y", col = "red")
text(x = 20, y = -0.4, labels = "X lags Y \n (Y leads X)", col = "red")
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To calculate the Ĉorr(Yt+h,Xt) use the forecast::Ccf() function in R:
forecast::Ccf(Y, X)
abline(v = 0, lty = 2, col = "darkgreen")
text(x = -20, y = -0.4, labels = "Y leads X", col = "red")
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We can get the ACF and CCF using:
forecast::Acf(cbind(Y, X))
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Note the difference in CCF plots with stats::acf()!
acf(cbind(Y, X))
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Scatterplots can also be employed:
astsa::lag2.plot(X, Y, max.lag = 8)
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Significant lags could be selected by including the most dominant (i.e. lags
with the most negative and/or the most positive correlation). Examining
the coefficient significance may help further determine, whether some lags
are insignificant.

Another option is pre-whitening the Xt variable, which is achieved by
fitting an appropriate ARIMA model (usually with q = 0) on Xt . Then
the series Y is filtered using the coefficients from the model on Xt as a
stats::filter(). Finally, a CCF is plotted on the pre-whitened Xt
model residuals and the filtered Yt series.

The CCF pattern is affected by the underlying time series structures of the
two variables and the trend each series has. It often is helpful to either
de-trend (if it is a stationary process) and/or take into account the
univariate ARIMA structure of Xt and Yt before graphing the CCF.

https://newonlinecourses.science.psu.edu/stat510/node/75/
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/filter


Remark (3): Seasonality In Time Series Regression
We can look back at the Seasonal ARMA model to get an idea on which
coefficients could be included in the model to account for seasonal
correlation.
I If we look at SARIMA(0, 0, 0)× (1, 0, 0)s

(1− Φ1Ls)Yt = εt ⇐⇒ Yt = ΦsYt−s + εt

A similar model can also be applied to a time series regression. For
example, if we assume that the seasonal correlation comes both from
Y and X . The model would look like:

Yt = φsYt−s + β0Xt + βsXt−s + εt

I If we look at a SARIMA(1, 0, 0)× (1, 0, 0)s

(1− Φ1Ls)(1− φL)Yt = εt

⇐⇒ Yt = φ1Yt−1 + ΦsYt−s − φ1ΦsYt−s−1 + εt

⇐⇒ Yt = φ1Yt−1 + ΦsYt−s + δ̃Yt−s−1 + εt , δ̃ = −φ1Φs

we could estimate a similar model for the time-series regression:

Yt = φ1Yt−1+φsYt−s +φs+1Yt−s−1+β0Xt+βsXt−s +βs+1Xt−s−1+εt


