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Financial Volatility
Consider Yt growing annually at rate r :

Yt = (1 + r)Yt−1 = (1 + r)2Yt−2 = ... = (1 + r)tY0 = et·log(1+r)Y0

The values of Yt lie on an exponent:

Yt with Y0 = 1 and r = 0.05
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In order for the model to represent a more realistic growth, let us
introduce an economic shock component, εt ∼WN(0, σ2).



Thus, our model is now:

Yt = (1 + r + εt)Yt−1 = Πt
s=1(1 + r + εs) · Y0 = e

∑t
s=1

log(1+r+εs ) · Y0

The values of Yt are again close to the exponent:

Yt with Y0 = 1, r = 0.05 and εt ~ WN(0, 0.052)
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Note: EYt = et·log(1+r)Y0, thus Yt is not stationary.



We can take the differences: ∆Yt = Yt − Yt−1 but they are also not
stationary. We can also take the logarithms and use the equality
log(1 + x) ≈ x (using Taylor’s expansions of a function around 0):

Ỹt = logYt = logY0 +
t∑

x=1
log(1 + r + εs) ≈ logY0 + rt +

t∑
s=1

εs

log(Yt)
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Ỹt is still not stationary, however its differences ∆Ỹt = r + εt are
stationary.



∆log(Yt)
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The differences, in this case, also have an economic interpretation - it is
the series of (logarithmic) returns, i.e. annual growth of Yt .



Stock and bond returns (or similar financial series) can be described as
having an average return of r but otherwise seemingly unpredictable from
the past values (i.e. resembling WN): Yt = r + εt , εt ∼WN(0, σ2).
Although the sequence may initially appear to be WN, there is strong
evidence to suggest that it is not an independent process.

As such, we shall try to create a model of residuals: et = ε̂t , i.e. centered
returns Yt − Ȳt = Yt − r̂ of real stocks that posses some interesting
empirical properties:
I high volatility events tend to cluster in time (i.e. persistency or inertia

of volatility);
I Yt is uncorrelated with its lags, but Y 2

t is correlated with
Y 2

t−1,Y 2
t−2, ...;

I Yt is heavy-tailed, i.e. the right tail of its density decreases slower
than that of the Gaussian density (this means that Yt take big values
more often than Gaussian random variables).

Note: volatility = the conditional standard deviation of the stock return:
σ2

t = Var(rt |Ωt−1), where Ωt−1 - the information set available at time
t − 1.



An introductory example:
Let’s say Pt denote the price of a financial asset at time t. Then, the log
returns:

Rt = log(Pt)− log(Pt−1)
could be typically modeled as a stationary time series. An ARMA model
for the series Rt would have the property that the conditional variance Rt
is independent of t. However, in practice this is not the case. Lets say our
Rt data is generated by the following process:
set.seed(346)
n = 1000
alpha = c(1, 0.5)
epsilon = rnorm(mean = 0, sd = 1, n = n)
R.t = NULL
R.t[1] = sqrt(alpha[1]) * epsilon[1]
for(j in 2:n){

R.t[j] = sqrt(alpha[1] + alpha[2] * R.t[j-1]^2) * epsilon[j]
}

i.e., Rt , t > 1, nonlinearly depends on its past values.



If we plot the data and the ACF and PACF plots:
forecast::tsdisplay(R.t)
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and perform the Ljung-Box test
Box.test(R.t, lag = 10, type = "Ljung-Box")$p.value

## [1] 0.9082987
Box.test(R.t, lag = 20, type = "Ljung-Box")$p.value

## [1] 0.3846643
Box.test(R.t, lag = 25, type = "Ljung-Box")$p.value

## [1] 0.4572007

We see that for all cases p-value > 0.05, so we do not reject the null
hypothesis that the autocorrelations are zero. The series appears to be
WN.
But we know that this is not the case from the data generation code.



If we check the ACF and PACF of the squared log-returns, R2
t :

forecast::tsdisplay(R.t^2)

R.t^2
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The squared log-returns are autocorrelated in the first couple of lags.



From th Ljung-Box test:
Box.test(R.t^2, lag = 10, type = "Ljung-Box")

##
## Box-Ljung test
##
## data: R.t^2
## X-squared = 174.37, df = 10, p-value < 2.2e-16

we do not reject the null hypothesis that the squared log-returns are
autocorrelated.
In comparison, for a simple εt ∼WN(0, 1) process:
set.seed(123)
epsilon = rnorm(mean = 0, sd = 1, n = 5000)



The εt process is not serially correlated:
par(mfrow = c(1, 2))
forecast::Acf(epsilon, lag.max = 20)
forecast::Pacf(epsilon, lag.max = 20)
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Box.test(epsilon, lag = 10, type = "Ljung-Box")$p.val

## [1] 0.872063



The ε2t process is also not serially correlated:
par(mfrow = c(1, 2))
forecast::Acf(epsilon^2, lag.max = 20)
forecast::Pacf(epsilon^2, lag.max = 20)
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Box.test(epsilon^2, lag = 10, type = "Ljung-Box")$p.val

## [1] 0.7639204

So, Rt only appeared to be a WN process, unless we also analyse R2
t .



The following example stock data contains weekly data for logarithms of
stock prices, log(Pt):
suppressPackageStartupMessages({require(readxl)})
txt1 <- "http://uosis.mif.vu.lt/~rlapinskas/(data%20R&GRETL/"
txt2 <- "stock.xls"
tmp = tempfile(fileext = ".xls")
#Download the file
download.file(url = paste0(txt1, txt2),

destfile = tmp, mode = "wb")
#Read it as an excel file
stocks <- read_excel(path = tmp)
plot.ts(stocks$lStock)

## Warning: package 'readxl' was built under R version 3.6.1
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The differences do not pass WN checks:
tsdisplay(diff(stocks$lStock))

diff(stocks$lStock)
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Box.test(diff(stocks$lStock), lag = 10)$p.value

## [1] 3.014097e-05

The basic idea behind volatility study is that the series is serially
uncorrelated, but it is a dependent series.



Let us calculate the volatility as û2
t from ∆log(Yt) = α + ut

mdl <- lm(diff(stocks$lStock) ~ 1)
u <- residuals(mdl)
u2<- u^2
plot.ts(data.frame(diff(stocks$lStock), u2),

main = "returns and volatility")
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Note the small volatility in stable times and large volatility in fluctuating
return periods.



We have learned that the AR process is able to model persistency, which,
in our case, may be called clustering of volatility. Consider an
AR(1) model of volatility (for this example we assume u2

t is WN):

u2
t = α + φu2

t−1 + wt , wt ∼WN

library(forecast)
u2.mdl <- Arima(u2, order = c(1, 0, 0), include.mean = TRUE)
coef(u2.mdl)

## ar1 intercept
## 7.335022e-01 9.187829e-06

Remember that for a stationary process u2
t : Eu2

t = µ. So µ = α/(1− φ).
The Arima function returns the intercept, however, if the model has an
autoregressive part, it is actually the process mean.
#To get the alpha coefficient of an AR process:
#alpha = mu *(1-phi)
unname(coef(u2.mdl)[2] * (1 - coef(u2.mdl)[1]))

## [1] 2.448536e-06



The resulting model:

u2
t = 0.00000245 + 0.7335u2

t−1 + wt

Might be of great interest to an investor wanting to purchase this stock.
I Suppose an investor has just observed that u2

t−1 = 0, i.e. the stock
price changes by its average amount in period t − 1. The investor is
interested in predicting volatility in period t in order to judge the
likely risk involved in purchasing the stock. Since the error is
unpredictable, the investor ignores it (it could be positive or negative).
So, the predicted volatility in period t is 0.00000245.

I If the investor observed u2
t−1 = 0.0001, then he would have predicted

the volatility at period t to be 0.00000245 + 0.00007335 =
7.58e-05, which is almost 31 times bigger.

This kind of information can be incorporated into financial models of
investor behavior.



Weak WN and Strong WN

I A sequence of uncorrelated random variables (with zero mean and
constant variance) is called a weak WN;

I A sequence of independent random variables (with zero mean and
constant variance) is called a strong WN;

If εt is a strong WN then so is ε2t or any other function of εt .

Let Ωs = F(εs , εs−1, ...) be the set containing all the information on the
past of the process.

If εt is a strong WN, then:
I conditional mean E(εt |Ωt−1) = 0;
I conditional variance Var(εt |Ωt−1) = E(ε2t |Ωt−1) = σ2

Now we shall present a model of weak WN process (its variance is
constant) such that its conditional variance or volatility may change over
time. The simplest way to model this kind of phenomenon is to use the
ARCH(1) model.



From the rules for the mean :

E(X + α) = µ+ α

and the variance

Var(β · X + α) = β2 · σ2

we can modify the random variables to have different mean and variance:

εt ∼ N (0, 1)⇒ (β · εt + µ) ∼ N (µ, β2 · 1)

If we take β = σt , we can have the variance change depending on the time
t. We can then specify the volatility (i.e. standard deviation) as a separate
equation and estimate its parameters.



Auto Regressive Conditional Heteroscedastic (ARCH)
model

The core idea of the ARCH model is to effectively describe the dependence
of volatility on recent (centered) returns rt .

The ARCH(1) model can be written as:


rt = εt

εt = σtzt

σ2
t = E(ε2t |Ωt−1) = ω + α1ε

2
t−1

where:
I zt are (0,1) - Gaussian or Student (or similar symmetric) i.i.d.

random variables (strong WN);
I ω, α1 > 0;
I E(εt) = 0, Var(εt) = ω/(1− α1), Cov(εt+h, εt) = 0,∀t ≥ 0 and
|h| ≥ 1. Also, Var(εt) ≥ 0⇒ 0 ≤ α1 < 1.

An ARCH process is stationary. If the returns are not centered, then the
first equation is rt = µ+ εt .



ARCH(q):
The ARCH process can also be generalized:

rt = µ+ εt

εt = σtzt

σ2
t = ω + α1ε

2
t−1 + ...+ αqε

2
t−q

AR(P)− ARCH(q):
It may also be possible that the returns rt themselves are autocorrelated:

rt = µ+ φ1rt−1 + ...+ φprt−P + εt

εt = σtzt

σ2
t = ω + α1ε

2
t−1 + ...+ αqε

2
t−q



Continuing the stock example (1)
Recall that our ‘naive’ log stock return data volatility model was:

û2t = 0.00000245 + 0.7335û2t−1

Because the coefficient of u2
t−1 was significant - it could indicate that u2

t is
probably an ARCH(1) process.
suppressPackageStartupMessages({library(fGarch)})
mdl.arch <- garchFit(~ garch(1,0), diff(stocks$lStock),

trace = FALSE)
mdl.arch@fit$matcoef
## Estimate Std. Error t value Pr(>|t|)
## mu 1.048473e-03 1.132355e-04 9.259222 0.000000e+00
## omega 2.400242e-06 3.904157e-07 6.147914 7.850864e-10
## alpha1 6.598808e-01 1.571422e-01 4.199260 2.677887e-05



So, our model looks like:


̂∆log(stockt) = µ = 0.001048

σ̂2t = ω + α1σ̂2t−1 = 2.4 · 10−6 + 0.660σ̂2t−1

Recall from tsdisplay(diff(stocks$lStock)) that the returns are not
WN (they might be an AR(6) process). To find the proper conditional
mean model for the returns, we use auto.arima function.
mdl.ar <- auto.arima(diff(stocks$lStock), max.p = 10, max.q = 0)
# AR(7) model is recommended
mdl.ar$coef[1:4]
mdl.ar$coef[5:length(mdl.ar$coef)]

## ar1 ar2 ar3 ar4
## -0.13499778 0.24918950 -0.09522378 -0.16750646
## ar5 ar6 ar7 intercept
## -0.024943351 0.159953621 -0.028619401 0.000983335



We combine it with ARCH(1) to create a AR(7)-ARCH(1) model:
mdl.arch.final <- garchFit(~ arma(7,0) + garch(1,0),

diff(stocks$lStock),
trace = FALSE)

mdl.arch.final@fit$matcoef

## Estimate Std. Error t value Pr(>|t|)
## mu 1.193945e-03 1.730481e-04 6.8994954 5.218714e-12
## ar1 -1.236738e-01 7.070313e-02 -1.7491979 8.025682e-02
## ar2 8.081154e-02 4.427947e-02 1.8250341 6.799588e-02
## ar3 -3.825929e-02 4.558812e-02 -0.8392383 4.013356e-01
## ar4 -1.069443e-01 3.932896e-02 -2.7192253 6.543502e-03
## ar5 7.208729e-03 3.970051e-02 0.1815777 8.559141e-01
## ar6 1.635547e-01 3.580176e-02 4.5683442 4.915924e-06
## ar7 -1.124515e-01 3.388652e-02 -3.3184725 9.051122e-04
## omega 2.045548e-06 3.566767e-07 5.7350195 9.750115e-09
## alpha1 6.503373e-01 1.721740e-01 3.7772104 1.585947e-04



The Generalized ARCH (GARCH) model
Although the ARCH model is simple, it often requires many parameters to
adequately describe the volatility process of an asset return. To reduce the
number of coefficients, an alternative model must be sought.

If an ARMA type model is assumed for the error variance, then a
GARCH(p, q) model should be considered:


rt = µ+ εt

εt = σtzt

σ2
t = ω +

∑q
j=1 αjε

2
t−j +

∑p
i=1 βiσ

2
t−i

A GARCH model can be regarded as an application of the ARMA idea to
the series ε2t .

Both ARCH and GARCH are (weak) WN processes with a special
structure of their conditional variance.

Such processes are described by an almost endless family of ARCH models:
ARCH, GARCH, TGARCH, GJR − GARCH, EGARCH, GARCH −M,
AVGARCH, APARCH, NGARCH, NAGARCH, IGARCH etc.



Volatility Model Building
Building a volatility model consists of the following steps:
1. Specify a mean equation of rt by testing for serial dependence in

the data and, if necessary, build an econometric model (e.g. ARMA
model) to remove any linear dependence.

2. Use the residuals of the mean equation, êt = rt − r̂t to test for
ARCH effects.

3. If ARCH effects are found to be significant, one can use the PACF of
ê2

t to determine the ARCH order (may not be effective when the
sample size is small). Specifying the order of a GARCH model is not
easy. Only lower order GARCH models are used in most applications,
say, GARCH(1, 1), GARCH(2, 1), and GARCH(1, 2) models.

4. Specify a volatility model if ARCH effects are statistically significant
and perform a joint estimation of the mean and volatility equations.

5. Check the fitted model carefully and refine it if necessary.



Testing for ARCH Effects
Let εt = rt − r̂t be the residuals of the mean equation. Then ε2t are used
to check for conditional heteroscedasticity (i.e. the ARCH effects). Two
tests are available:
1. Apply the usual Ljung-Box statistic Q(k) to ε2t . The null hypothesis

is that the first k lags of ACF of ε2t are zero:
H0 : ρ(1) = 0, ρ(2) = 0, ..., ρ(k) = 0

2. The second test for the conditional heteroscedasticity is the Lagrange
Multiplier (LM) test, which is equivalent to the usual F − statistic for
testing H0 : α1 = ... = αk = 0 in the linear regression:

ε2t = α0 +
k∑

j=1
ε2t−j + et , t = k + 1, ...,T



Continuing the stock example (2)
Going through each of the steps:
tsdisplay(diff(stocks$lStock))

diff(stocks$lStock)
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The log-returns are autocorrelated. So we need to specify an ARMA
model for the mean equation via auto.arima:
mdl.auto <- auto.arima(diff(stocks$lStock))
matrix(names(mdl.auto$coef), nrow = 2, byrow = TRUE)
## [,1] [,2] [,3]
## [1,] "ar1" "ar2" "ar3"
## [2,] "ar4" "ma1" "intercept"
The output is and ARMA(3,2) model:

rt = µ+ φ1rt−1 + φ2rt−2 + φ3rt−3 + εt + θ1εt−1 + θ2εt−2



Now, we examine the residuals of this model:
par(mfrow = c(1,3))
forecast::Acf(mdl.auto$residuals)
forecast::Acf(mdl.auto$residuals^2)
forecast::Pacf(mdl.auto$residuals^2)
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We see that the ACF of the residuals are not autocorrelated, however the
squared residuals are autocorrelated. So, we need to create a volatility
model. Because the first lag of the PACF plot of the squared residuals is
significantly different from zero, we need to specify an ARCH(1) model for
the residuals.



The final model is an ARMA(3, 2)− ARCH(1):
mdl.arch.final <- garchFit(~ arma(3, 2) + garch(1, 0),

diff(stocks$lStock),
trace = FALSE)

mdl.arch.final@fit$matcoef

## Estimate Std. Error t value Pr(>|t|)
## mu 1.980586e-03 3.367634e-04 5.8812393 4.072058e-09
## ar1 -2.743818e-01 1.943599e-01 -1.4117200 1.580324e-01
## ar2 -6.001322e-01 1.365386e-01 -4.3953299 1.106047e-05
## ar3 -1.065850e-01 8.060903e-02 -1.3222460 1.860863e-01
## ma1 1.258717e-01 1.831323e-01 0.6873265 4.918770e-01
## ma2 7.018161e-01 1.486765e-01 4.7204244 2.353530e-06
## omega 2.488709e-06 4.030309e-07 6.1749835 6.617036e-10
## alpha1 6.216022e-01 1.525975e-01 4.0734767 4.631649e-05
mdl.arch.final@fit$ics

## AIC BIC SIC HQIC
## -9.359004 -9.230203 -9.361846 -9.306918



Finally, we check the standardized residuals ŵt = ε̂t/σ̂t to check if ŵt and
ŵ2

t are WN:
par(mfrow = c(2,2))
stand.res = mdl.arch.final@residuals / mdl.arch.final@sigma.t
forecast::Acf(stand.res); forecast::Pacf(stand.res)
forecast::Acf(stand.res^2); forecast::Pacf(stand.res^2)
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Unfortunately, the residuals ŵt still seem to be autocorrelated. In this case,
more complex models should be considered, like the ones mentioned in the
GARCH model slide . . . But this may not be necessary!



These tests are performed and provided in the model output:
capture.output(summary(mdl.arch.final))[46:56]

## [1] "Standardised Residuals Tests:"
## [2] " Statistic p-Value "
## [3] " Jarque-Bera Test R Chi^2 2.981865 0.2251626"
## [4] " Shapiro-Wilk Test R W 0.9941911 0.6029121"
## [5] " Ljung-Box Test R Q(10) 14.81308 0.1390265"
## [6] " Ljung-Box Test R Q(15) 17.92572 0.2665907"
## [7] " Ljung-Box Test R Q(20) 21.14201 0.3888168"
## [8] " Ljung-Box Test R^2 Q(10) 5.334754 0.8677243"
## [9] " Ljung-Box Test R^2 Q(15) 8.492303 0.9025344"
## [10] " Ljung-Box Test R^2 Q(20) 12.02647 0.9151619"
## [11] " LM Arch Test R TR^2 8.228338 0.7670416"

We see that:
I Jarque-Bera Test and Shapiro-Wilk Test p-values > 0.05,

so we do NOT reject the null hypothesis of normality of the
standardized residuals R.

I The Ljung-Box Test for the standardized residuals R and Rˆ2
p-values > 0.05, so the residuals form a WN. - Finally, the LM
Arch Test p-value > 0.05 shows that there are no more ARCH
effects in the residuals.

So, our estimated model is correctly specified in the sense that the
residual autocorrelation from the ACF/PACF plots is relatively
weak!



To explore the predictions of volatility, we calculate and plot 51
observations from the middle of the data along with the one-step-ahead
predictions of the corresponding volatility σ̂2t :
d_lstock <- ts(diff(stocks$lStock))
sigma = mdl.arch.final@sigma.t
plot(window(d_lstock, start = 75, end = 125),

ylim = c(-0.02, 0.035), ylab = "diff(stocks$lStock)",
main = "returns and their +- 2sigma confidence region")

lines(window(d_lstock - 2*sigma, start = 75, end = 125),
lty = 2, col = 4)

lines(window(d_lstock + 2*sigma, start = 75, end = 125),
lty = 2, col = 4)

returns and their +− 2sigma confidence region
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predict(mdl.arch.final, n.ahead = 2, mse ="cond", plot = T)
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Prediction with confidence intervals

X̂t+h

X̂t+h − 1.96 MSE
X̂t+h + 1.96 MSE

## meanForecast meanError standardDeviation lowerInterval upperInterval
## 1 0.0008520921 0.002132817 0.002132817 -0.003328152 0.005032337
## 2 0.0010536363 0.002327369 0.002305715 -0.003507924 0.005615196



Data Sources

A useful R package for downloading financial data directly from open
sources, like Yahoo Finance, Google Finance, etc., is the quantmod
package. Click here for some examples.

suppressPackageStartupMessages({library(quantmod)})
suppressMessages({

getSymbols("GOOG", from = "2007-01-03", to = "2020-01-01")
})
tail(GOOG, 3)

## [1] "GOOG"

## GOOG.Open GOOG.High GOOG.Low GOOG.Close
## 2019-12-27 1362.99 1364.53 1349.310 1351.89
## 2019-12-30 1350.00 1353.00 1334.020 1336.14
## 2019-12-31 1330.11 1338.00 1329.085 1337.02
## GOOG.Volume GOOG.Adjusted
## 2019-12-27 1038400 1351.89
## 2019-12-30 1050900 1336.14
## 2019-12-31 961800 1337.02

http://www.quantmod.com/examples/


Time plots of daily closing price and trading volume of Google from the
last 365 trading days:
chartSeries(tail(GOOG, 365), theme = "white", name = "GOOG")
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GOOG.rtn = diff(log(GOOG[, "GOOG.Adjusted"]))
chartSeries(GOOG.rtn, theme = "white",

name = "Daily log return data of GOOGLE stocks")
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Example of getting non-financial data. Unemployment rates from FRED:
getSymbols("UNRATE", src = "FRED")

## [1] "UNRATE"
chartSeries(UNRATE, theme = "white", up.col = 'black')
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Summary of Volatility Modelling (1)

Quite often, the process we want to investigate for the ARCH effects is
stationary but not WN.
I Let εt be a weak WN(0, σ2) and consider the model Yt = r + εt , or

Yt = β0 + β1Xt + εt or Yt = α + φYt−1 + εt or similar.
I Test whether the WN shocks εt make an ARCH process: plot the

graph of e2
t ( = ε̂2t ) - if εt is an ARCH process, this graph must show

a clustering property.
I Further test whether the shocks εt form an ARCH process: test them

for normality (the hypothesis must be rejected) (e.g. using
Shapiro-Wilk test of normality).

I Further test whether the shocks εt form an ARCH process: draw the
correlogram of et - the correlogram must indicate WN, but that of
e2

t must not (it should be similar to the correlogram of an AR(p)
process).



Summary of Volatility Modelling (2)

I To formally test whether the shocks εt form ARCH(q), test the null
hypothesis H0 : α1 = ... = αq = 0 (i.e. no ARCH in
σ2

t = ω +
∑q

j=1 αjε
2
t−j):

1) Choose the proper AR(q) model of the auxiliary regression
e2

t = α+α1e2
t−1 + ...+αqe2

t−1 + wt (proper means minimum AIC and
WN residuals wt);

2) To test H0, use the F − test (or the LM test).

I Instead of using ARCH(q) with a high order q, an often more
parsimonious description of εt is usually given by GARCH(1,1) (or a
similar lower order GARCH process);

I In order to show that the selected ARCH(q) or GARCH(1,1) model is
‘good’, test whether the residuals ŵt = ε̂t/σ̂t and ŵ2

t make WN (as
they are expected to).



Rewriting the GARACH(p, q) as ARCH(∞)
The conditional variance of a GARCH(p, q) can be expressed as:

σ2
t = ω + α(L)ε2t + β(L)σ2

t

where
I α(L) = α1L + ...+ αqLq

I β(L) = β1L + ...+ βpLp

Or (similarly to how we would write an ARMA process):

(1− β(L))σ2
t = ω + α(L)ε2t

If the roots of 1− β(L) lie outside the unit circle, we can rewrite the
conditional variance as:

σ2
t = ω

1− β(L) + α(L)
1− β(L)ε

2
t

The above expression reveals that a GARCH(p, q) process can be
viewed as an ARCH(∞) process (with certain conditions on the lag
polynomial parameters).



Rewriting GARCH(p, q) as an ARMA model on squared
perturbations

Let us define νt = ε2t − σ2
t . We can then replace σ2

t by ε2t − νt in the
conditional variance equation of the GARCH(p, q) process:

ε2t − νt = ω +
q∑

j=1
αjε

2
t−j +

p∑
i=1

βi (ε2t−i − ν2
t−i )

We can then collect the lags of ε2t to get:

ε2t = ω +
max{p, q}∑

j=1
(αj + βj)ε2t−j + νt −

p∑
i=1

βiνt−i ,

where αj = 0 for j > q and βj = 0 for j > p.

The above representation suggests that a GARCH(p, q) process
can be rewritten as an ARMA(max{p, q}, p) representation for ε2t ,
with νt acting as the error term in this alternative representation.
In this case, νt is a white noise process that does not necessarily
have a constant variance.



Value-at-Risk (VaR)
There are several types of risk in financial markets. The three main
financial risk categories are (1) Credit risk; (2) Operational risk; and
(3) Market risk.

Value at risk (VaR) is mainly concerned with market risk.

VaR can be defined as the maximal loss of a financial position
during a given time period for a given probability. It is a measure
of loss associated with a rare (or extraordinary) event under normal
market conditions.

Some key financial terms:
I a financial long position means owning a financial asset;
I a financial short position involves selling an asset one does not own.

This is accomplished by borrowing the asset from an investor who has
purchased it. At some subsequent date, the short seller is obligated to
buy exactly the same number of shares borrowed, in order to pay back
the lender. Because the repayment requires an equal share amount,
rather than an equal value, the short seller benefits from a decline in
the price of the asset.



Suppose that at time t we are interested in the risk of a financial position
for the next h periods. Let ∆V (h) be the change in value of the
underlying asset(s) of the financial position from time t to t + h and
L(h) be the associated loss function. Furthermore:
I ∆V (h) and L(h) are random variables at time t;
I L(h) is either a positive, or a negative function of ∆V (h), depending

on whether the financial position was short, or long.

Let Fh(x) be the cumulative distribution function (CDF) of L(h). We can
then define VaR of a financial position over the time horizon h with tail
probability p as:

p = P(L(h) ≥ VaR) = 1− P(L(h) < VaR)

In other words:
I the probability that the position holder would encounter a loss greater

than or equal to VaR over the time horizon h is p;
I with probability 1− p, the potential loss, encountered by the holder

of the financial position, over the time horizon h is less than VaR.



VaR is concerned with the upper tail behavior of the loss CDF, Fh(x).
Define the qth quantile of Fh(x) as:

xq = inf{x : Fh(x) ≥ q}

If L(h) is a continuous random variable, then q = P(L(h) < xq).

If the CDF, Fh(x), is known, then 1− p = P(L(h) < VaR). This means
that

VaR is the (1− p)th quantile of the CDF of the loss function L(h):

VaR = x1−p

However, the CDF, Fh(x), is unknown in practice. Consequently,
studies of VaR are concerned with the estimation of the CDF and
its quantile, with focus on analysing the upper tail behavior of the
loss CDF.



Remark 1: VaR when using log returns
I For a long financial position, loss occurs when the (log) returns, rt ,

are negative. We shall use negative returns in VaR analysis for a long
financial position.

I Up until now, VaR has been defined in a monetary amount
(e.g. dollars). Yet in most econometric financial modelling, we are
examining log returns;

I Log returns correspond, approximately, to percentage changes in
value of a financial asset.

I The VaR calculated from the upper quantile of the distribution of
rt+1 is therefore in percentages.

Consequently, the monetary amount (e.g. dollars) of VaR is then:

VaR = Value × VaRlog_returns

(i.e. the monetary value of the financial position, multiplied by the VaR of
the log return series).

An alternative approximation:

VaR = Value × [exp{VaRlog_returns} − 1]

can also be used.



Remark 2: VaR and Prediction
I VaR is a prediction concerning possible loss of a portfolio in a given

time horizon.
I VaR should be computed using the predictive distribution of future

returns, rt+1, of the financial position.
I The predictive distribution takes into account the parameter

uncertainty (in a properly specified model).
A predictive distribution is difficult to obtain. Hence most of
the methods for VaR calculation ignore the effects of parameter
uncertainty.

Remark 3: VaR of multiple assets
I As we have seen, VaR is just a quantile of the loss function;
I Consequently, it does not fully describe the upper tail behavior of the

loss function;
I In practice, two assets may have the same VaR yet encounter

different losses when the VaR is exceeded.
A sub-additivity property states that a risk measure for two portfolios,
after they have been merged, should be no greater than the sum of their
risk measures before they were merged. The VaR does NOT satisfy
this property.



To highlight the previous remarks:
I VaR is a point estimate of a potential financial loss.
I It contains a certain degree of uncertainty.
I It also has a tendency to underestimate the actual loss if an extreme

event actually occurs.
I Consequently, alternative risk measures, such as expected shortfalls,

as well as the loss distribution of a financial position should also be
considered.

Nevertheless, econometric modelling allows us to use VaR in
conjuncture with GARCH models, to assess possible risks of holding
certain assets.



An Econometric Approach to VaR Calculation
Consider the log return rt of an asset. We can then write a general time
series model for rt as:

rt = φ0 +
p∑

i=1
φi rt−i + εt +

q∑
j=1

θjεt−j (mean)

εt = σtzt

σ2
t = ω +

P∑
i=1

αiσ
2
t−i +

Q∑
j=1

βjε
2
t−j (volatility)

Assuming that the parameters are known, the (mean) and (volatility)
equations for rt can be used to obtain the 1-step ahead forecasts of the
conditional mean and conditional variance of rt :

r̂t+1|t = r̂t(1) = φ0 +
p∑

i=1
φi rt+1−i +

q∑
j=1

θjεt+1−j

σ̂2
t+1|t = σ̂2

t (1) = ω +
P∑

i=1
αiσ

2
t+1−i +

Q∑
j=1

βjε
2
t+1−j



If we assume that zt is Gaussian, then the conditional distribution:

rt+1|Ωt ∼ N
(
r̂t(1), σ̂2

t (1)
)

Quantiles of this conditional distribution can easily be obtained for VaR
calculation.

For example, the 95% quantile is r̂t(1) + 1.65σ̂2
t (1).

Example
We will consider an example from Ch.7 in Tsay - Analysis of Financial
Time Series, 3rd. ed.
Assume that for the daily IBM stock log returns we want to use a volatility
model to calculate VaR of 1-day horizon at t = 9190 for a long position
of $10 million.
Because the position is long, we use rt = −r c

t , where r c
t is the usual log

return of IBM stock.



Assume that zt is standard normal, and that our fitted
AR(2)− GARCH(1, 1) model is:

rt = −0.00066− 0.0247× rt−2 + εt

εt = σtzt

σ2
t = 0.00000389 + 0.9073× σ2

t−1 + 0.0799× ε2t−1

Further assume that from the data we have that r9189 = 0.00201,
r9190 = 0.0128 and σ2

9190 = 0.00033455. Consequently, the model
produces 1-step ahead forecasts as:

r̂9190(1) = −0.00071
σ̂2

9190(1) = 0.0003211



The 95% quantile is then:
var_log_ret = -0.00071 + qnorm(p = 0.95) * sqrt(0.0003211)
print(var_log_ret)

## [1] 0.02876457

The VaR for a long position of $10 million with probability 0.05 is:
10e6 * var_log_ret

## [1] 287645.7

The result shows that, with probability 95%, the potential loss of holding
that position next day is $287 200, or less, assuming that the specified
AR(2)− GARCH(1, 1) model holds.
If the tail probability is 0.01, then the 99% quantile is:
var_log_ret = -0.00071 + qnorm(p = 0.99) * sqrt(0.0003211)
print(var_log_ret)

## [1] 0.04097644

and the VaR becomes:
10e6 * var_log_ret

## [1] 409764.4

i.e., we would risk losing $409 764.


